CSC 336F

Consider the integral

$$I_n = \int_0^1 x^n \mathrm{e}^{x-1} \, dx \tag{1}$$

where n is a non-negative integer. Note that $x^n e^{x-1} > 0$ for all non-negative integers n and for all $x \in (0, 1)$. Therefore, $I_n > 0$ for all non-negative integers n. Moreover, $x^n > x^{n+1}$ for all non-negative integers n and for all $x \in (0, 1)$. Hence, $x^n e^{x-1} > x^{n+1} e^{x-1}$ for all nonnegative integers n and for all $x \in (0, 1)$. Therefore, $I_n > I_{n+1}$ for all non-negative integers n. That is, the sequence I_0, I_1, I_2, \ldots is positive and monotonically decreasing.

One way to compute I_n for any non-negative integer n is as follows. Note that

$$I_0 = \int_0^1 e^{x-1} dx = \left[e^{x-1}\right]_0^1 = 1 - e^{-1} = 1 - 1/e$$
(2)

Moreover, for $n \ge 1$, integrating (1) by parts leads to

$$I_n = \int_0^1 x^n e^{x-1} dx = \left[x^n e^{x-1} \right]_0^1 - \int_0^1 n x^{n-1} e^{x-1} dx = 1 - n I_{n-1}$$
(3)

Therefore, we can use the recurrence

$$I_0 = 1 - 1/e I_n = 1 - nI_{n-1}$$
 for $n = 1, 2, 3, ...$ (4)

to evaluate I_n for any non-negative integer n. You can use the MatLab function $\exp(1.0)$ to compute e accurately in (4). If you use (4) in a little MatLab program to compute I_n for $n = 0, 1, \ldots, 25$, you get the values listed on the next page.

You should try to write a little MatLab program yourself to compute I_n for $n = 0, 1, \ldots, 25$.

n	I_n
0	6.3212e-01
1	3.6788e-01
2	2.6424 e-01
3	2.0728e-01
4	1.7089e-01
5	1.4553e-01
6	1.2680e-01
7	1.1238e-01
8	1.0093e-01
9	9.1612e-02
1	8.3877e-02
11	7.7352e-02
12	7.1773e-02
13	6.6948e-02
14	6.2731e-02
15	5.9034e-02
16	5.5459e-02
17	5.7192e-02
18	-2.9454e-02
19	1.5596e + 00
20	-3.0192e+01
21	6.3504e + 02
22	-1.3970e+04
23	3.2131e + 05
24	-7.7114e + 06
25	1.9279e + 08

The values for I_n look reasonable for n = 0, 1, 2, ..., 15 or so, but the values are clearly wrong for n = 20, 21, ..., 25, since the computed I_n values are not all positive and monotonically decreasing, as they should be.

1. Explain why my MatLab program computes such inaccurate values for I_n for $n = 20, 21, \ldots, 25$.

My program is a correct implementation of the recurrence (4). That is, the inaccuracy in the table above is not a result of a programming bug. The problem is with the recurrence (4) itself and the rounding errors that occur when you implement it in floating-point arithmetic.

In this explanation, it is not sufficient to say that there is round-off error in the computation. Although this is true and should play a part in your explanation, there is round-off error in almost all floating-point computations and most of them produce accurate results. You need to explain why the round-off error produces such bad results in this case. 2. Re-arrange the recurrence

$$I_n = 1 - nI_{n-1}$$

starting it from a different initial value so that your new recurrence computes accurate values for I_n for n = 0, 1, 2, ..., 25.

Explain why you believe your new method produces accurate results.

Write a little MatLab program that uses your new method to compute I_n for n = 0, 1, 2, ..., 25. Your program should also print n and I_n for n = 0, 1, 2, ..., 25 in a nicely formatted table.