Consider the integral

$$
\begin{equation*}
I_{n}=\int_{0}^{1} x^{n} \mathrm{e}^{x-1} d x \tag{1}
\end{equation*}
$$

where n is a non-negative integer. Note that $x^{n} \mathrm{e}^{x-1}>0$ for all non-negative integers n and for all $x \in(0,1)$. Therefore, $I_{n}>0$ for all non-negative integers n. Moreover, $x^{n}>x^{n+1}$ for all non-negative integers n and for all $x \in(0,1)$. Hence, $x^{n} \mathrm{e}^{x-1}>x^{n+1} \mathrm{e}^{x-1}$ for all nonnegative integers n and for all $x \in(0,1)$. Therefore, $I_{n}>I_{n+1}$ for all non-negative integers n. That is, the sequence $I_{0}, I_{1}, I_{2}, \ldots$ is positive and monotonically decreasing.

One way to compute I_{n} for any non-negative integer n is as follows. Note that

$$
\begin{equation*}
I_{0}=\int_{0}^{1} \mathrm{e}^{x-1} d x=\left[\mathrm{e}^{x-1}\right]_{0}^{1}=1-\mathrm{e}^{-1}=1-1 / \mathrm{e} \tag{2}
\end{equation*}
$$

Moreover, for $n \geq 1$, integrating (1) by parts leads to

$$
\begin{equation*}
I_{n}=\int_{0}^{1} x^{n} \mathrm{e}^{x-1} d x=\left[x^{n} \mathrm{e}^{x-1}\right]_{0}^{1}-\int_{0}^{1} n x^{n-1} \mathrm{e}^{x-1} d x=1-n I_{n-1} \tag{3}
\end{equation*}
$$

Therefore, we can use the recurrence

$$
\begin{align*}
& I_{0}=1-1 / \mathrm{e} \\
& I_{n}=1-n I_{n-1} \quad \text { for } n=1,2,3, \ldots \tag{4}
\end{align*}
$$

to evaluate I_{n} for any non-negative integer n. You can use the MatLab function $\exp (1.0)$ to compute e accurately in (4). If you use (4) in a little MatLab program to compute I_{n} for $n=0,1, \ldots, 25$, you get the values listed on the next page.

You should try to write a little MatLab program yourself to compute I_{n} for $n=0,1, \ldots, 25$.

n	I_{n}
0	$6.3212 \mathrm{e}-01$
1	$3.6788 \mathrm{e}-01$
2	$2.6424 \mathrm{e}-01$
3	$2.0728 \mathrm{e}-01$
4	$1.7089 \mathrm{e}-01$
5	$1.4553 \mathrm{e}-01$
6	$1.2680 \mathrm{e}-01$
7	$1.1238 \mathrm{e}-01$
8	$1.0093 \mathrm{e}-01$
9	$9.1612 \mathrm{e}-02$
1	$8.3877 \mathrm{e}-02$
11	$7.7352 \mathrm{e}-02$
12	$7.1773 \mathrm{e}-02$
13	$6.6948 \mathrm{e}-02$
14	$6.2731 \mathrm{e}-02$
15	$5.9034 \mathrm{e}-02$
16	$5.5459 \mathrm{e}-02$
17	$5.7192 \mathrm{e}-02$
18	$-2.9454 \mathrm{e}-02$
19	$1.5596 \mathrm{e}+00$
20	$-3.0192 \mathrm{e}+01$
21	$6.3504 \mathrm{e}+02$
22	$-1.3970 \mathrm{e}+04$
23	$3.2131 \mathrm{e}+05$
24	$-7.7114 \mathrm{e}+06$
25	$1.9279 \mathrm{e}+08$

The values for I_{n} look reasonable for $n=0,1,2, \ldots, 15$ or so, but the values are clearly wrong for $n=20,21, \ldots, 25$, since the computed I_{n} values are not all positive and monotonically decreasing, as they should be.

1. Explain why my MatLab program computes such inaccurate values for I_{n} for $n=20,21$, ..., 25.

My program is a correct implementation of the recurrence (4). That is, the inaccuracy in the table above is not a result of a programming bug. The problem is with the recurrence (4) itself and the rounding errors that occur when you implement it in floating-point arithmetic.
In this explanation, it is not sufficient to say that there is round-off error in the computation. Although this is true and should play a part in your explanation, there is round-off error in almost all floating-point computations and most of them produce accurate results. You need to explain why the round-off error produces such bad results in this case.
2. Re-arrange the recurrence

$$
I_{n}=1-n I_{n-1}
$$

starting it from a different initial value so that your new recurrence computes accurate values for I_{n} for $n=0,1,2, \ldots, 25$.

Explain why you believe your new method produces accurate results.
Write a little MatLab program that uses your new method to compute I_{n} for $n=$ $0,1,2, \ldots, 25$. Your program should also print n and I_{n} for $n=0,1,2, \ldots, 25$ in a nicely formatted table.

