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Chapter 2: Systems of Linear Equations

Computer Problems

2.1. (a) Show that the matrix

0.1 02 03
A=|04 05 06
0.7 08 09

is singular. Describe the set of solutions to the
system Ax = b if

0.1
0.3
0.5

b=

(b) If we were to use Gaussian elimination with
partial pivoting to solve this system using exact
arithmetic, at what point would the process fail?

(c) Because some of the entries of A are not ex-
actly representable in a binary floating-point sys-
tem, the matrix is no longer exactly singular when
entered into a computer; thus, solving the system
by Gaussian elimination will not necessarily fail.
Solve this system on a computer using a library
routine for Gaussian elimination. Compare the
computed solution with your description of the
solution set in part a. If your software includes
a condition estimator, what is the estimated value
for cond(A)? How many digits of accuracy in the
solution would this lead you to expect?

2.2. (a) Use a library routine for Gaussian elim-
ination to solve the system Ax = b, where

2 4 -2 2
A= 4 9 3|, b= 8
-2 -1 7 10

(b) Use the LU factorization of A already com-
puted to solve the system Ay = ¢, where

4
c= 81,
-6

without refactoring the matrix.

(c) If the matrix A changes so that a;2 = 2,
use the Sherman-Morrison updating technique to
compute the new solution = without refactoring
the matrix, using the original right-hand-side vec-
tor b.

2.3. The following diagram depicts a plane truss
having 13 members (the numbered lines) con-
nected by 10 joints (the numbered circles). The
indicated loads, in tons, are applied at joints 2,
5, and 6, and we wish to determine the resulting
force on each member of the truss.

For the truss to be in static equilibrium, there
must be no net force, horizontally or vertically,
at any joint. Thus, we can determine the mem-
ber forces by equating the horizontal forces to the
left and right at each joint, and similarly equat-
ing the vertical forces upward and downward at
each joint. For the eight joints, this would give
16 equations, which is more than the 13 unknown
forces to be determined. For the truss to be stati-
cally determinate, that is, for there to be a unique
solution, we assume that joint 1 is rigidly fixed
both horizontally and vertically, and that joint 8
is fixed vertically. Resolving the member forces
into horizontal and vertical components and defin-
ing @ = v/2/2, we obtain the following system of
equations for the member forces f;:

Joint 2 : { ;z z {g

Joint 3 : Z;i:ﬁiz;;’:o
Joint 4 : ;: i gs

o554 08 LR Teh LTy
Joint 6 : { ;1(1) z 583

san 7 o

Joint 8: { fis+ afi2=0

‘Use a library routine to solve this system of linear

equations for the vector f of member forces. Note
that the matrix of this system is quite sparse, so
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you may wish to experiment with a banded sys-
tem solver or more general sparse solver, although
this particular problem instance is too small for
these to offer significant advantage over a general
solver.

2.4. Write a routine for estimating the condition
number of a matrix A. You may use either the
1-norm or the oc-norm (or try both and compare
the results). You will need to compute || A[|, which
is easy, and estimate ||A~!||, which is more chal-
lenging. As discussed in Section 2.3.3, one way to
estimate ||A™!| is to choose a vector y such that
the ratio ||z|/||ly|| is large, where z is the solu-
tion to Az = y. Try two different approaches to
choosing y:

(a) Choose vy as the solution to the system ATy =

¢, where ¢ is a vector each of whose components
is +1, with the sign for each component chosen
by the following heuristic. Using the factoriza-
tion A = LU, the system ATy = c is solved
in two stages, successively solving the triangular
systems UTv = ¢ and LTy = v. At each step
of the first triangular solution, choose the cor-
responding component of ¢ to be 1 or —1, de-
pending on which will make the resulting com-
ponent of v larger in magnitude. (You will need
to write a custom triangular solution routine to
implement this.) Then solve the second triangu-
lar system in the usual way for y. The idea here
is that any ill-conditioning in A will be reflected
in U, resulting in a relatively large v. The rel-
atively well-conditioned unit triangular matrix L
will then preserve this relationship, resulting in a
relatively large y.

(b) Choose some small number, say, five, different
vectors y randomly and use the one producing the
largest ratio ||z||/||ly|l. (For this you can use an or-
dinary triangular solution routine.)

You may use a library routine to obtain the nec-
essary LU factorization of A. Test both of the
approaches on each of the following matrices:

10 -7 0
Ai=|-3 2 6],
5 -1 5
73 78 24
A>=| 92 66 25

—-80 37 10

How do the results using these two methods com-
pare? To check the quality of your estimates, com-
pute A~! explicitly to determine its true norm
(this computation can also make use of the LU
factorization already computed). If you have ac-
cess to linear equations software that already in-
cludes a condition estimator, how do your results
compare with its?

2.5. (a) Use a single-precision routine for Gaus-

sian elimination to solve the system Ax = b,
where
21.0 67.0 88.0 73.0
A= 76.0 63.0 7.0 20.0
] 0.0 850 56.0 54.0|°
19.3 43.0 30.2 294
141.0
109.0
b 218.0
93.7

(b) Compute the residual r = b — Az using
double-precision arithmetic, if available (but stor-
ing the final result in a single-precision vector r).
Note that the solution routine may destroy the
array containing A, so you may need to save a
separate copy for computing the residual. (If only
one precision is available in the computing envi-
ronment you use, then do all of this problem in
that precision.)

(¢) Solve the linear system Az = r to obtain the
“improved” solution x + z. Note that A need not
be refactored.

(d) Repeat steps b and ¢ until no further improve-
ment is observed.

2.6. An n x n Hilbert matrix H has entries
hij = 1/(i + j — 1), so it has the form

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5
For n = 2,3,..., generate the Hilbert matrix of

~order n, and also generate the n-vector b = Hzx,

where x is the n-vector with all of its components
equal to 1. Use a library routine for Gaussian
elimination (or Cholesky factorization, since the
Hilbert matrix is symmetric and positive definite)
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to solve the resulting linear system Hx = b, ob-
taining an approximate solution £. Compute the
oo-norm of the residual » = b — H& and of the
error Az = & — x, where x is the vector of all
ones. How large can you take n before the error is
100 percent (i.e., there are no significant digits in
the solution)? Also use a condition estimator to
obtain cond(H) for each value of n. Try to char-
acterize the condition number as a function of n.
As n varies, how does the number of correct digits
in the components of the computed solution relate
to the condition number of the matrix?

2.7. (a) What happens when Gaussian elimina-
tion with partial pivoting is used on a matrix of
the following form?

1 0 0 01
-1 1 0 0 1
-1 -1 1 0 1
-1 -1 -1 11
-1 -1 -1 -1 1

Do the entries of the transformed matrix grow?
What happens if complete pivoting is used in-
stead? (Note that part a does not require a com-
puter.)

() Use a library routine for Gaussian elimination
with partial pivoting to solve various sizes of linear
systems of this form, using right-hand-side vec-
tors chosen so that the solution is known. How do
the error, residual, and condition number behave
as the systems become larger? This artificially
contrived system illustrates the worst-case growth
factor cited in Section 2.3.5 and is not indicative
of the usual behavior of Gaussian elimination with
partial pivoting.

2.8. Multiplying both sides of a linear system
Ax = b by a nonsingular diagonal matrix D to
obtain a new system DAz = Db simply rescales
the rows of the system and in theory does not
change the solution. Such scaling does affect the
condition number of the matrix and the choice
of pivots in Gaussian elimination, however, so it
may affect the accuracy of the solution in finite-
precision arithmetic. Note that scaling can intro-
duce some rounding error in the matrix unless the
entries of D are powers of the base of the floating-
point arithmetic system being used (why?).
Using a linear system with randomly chosen ma-
trix A, and right-hand-side vector b chosen so that

the solution is known, experiment with various
scaling matrices D to see what effect they have
on the condition number of the matrix DA and
the solution given by a library routine for solv-
ing the linear system DAx = Db. Be sure to
try some fairly skewed scalings, where the magni-
tudes of the diagonal entries of D vary widely (the
purpose is to simulate a system with badly chosen
units). Compare both the relative residuals and
the error given by the various scalings. Can you
find a scaling that gives very poor accuracy? Is
the residual still small in this case?

2.9. (a) Use Gaussian elimination without piv-
oting to solve the linear system

R0

for e = 1072* k = 1,...,10. The exact solution
isz = [1 1]7, independent of the value of e.
How does the accuracy of the computed solution
behave as the value of € decreases?

(b) Repeat part g, still using Gaussian elimination
without pivoting, but this time use one iteration of
iterative refinement to improve the solution, com-
puting the residual in the same precision as the
rest of the computations. Now how does the accu-
racy of the computed solution behave as the value
of € decreases?

2.10. Consider the linear system

1 14el{z] _[1+Q+ek
1—c¢ 1 x| 1 ’
where ¢ is a small parameter to be specified. The
exact solution is obviously

B

r =

€

for any value of €.

Use a library routine based on Gaussian elimina-
tion to solve this system. Experiment with various
values for ¢, especially values near ,/€mach for your
computer. For each value of € you try, compute
an estimate of the condition number of the ma-
trix and the relative error in each component of
the solution. How accurately is each component
determined? How does the accuracy attained for
each component compare with expectations based
on the condition number of the matrix and the
error bounds given in Section 2.3.47 What con-
clusions can you draw from this experiment?



