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In Problem 3 on Assignment 5, you are asked to prove the following result.

Theorem 1 If

1. f : Rn → R is twice continuously differentiable (i.e., ∇2f(x) exists and is continuous
for all x ∈ Rn),

2. the level set L = {x ∈ Rn : f(x) ≤ f(x0)} is convex and there exist positive constants
m and M such that

m‖z‖22 ≤ zT ∇2f(x) z ≤M‖z||22
for all z ∈ Rn and all x ∈ L,

3. the sequence of points x0, x1, x2, . . . generated by the minimization algorithm satisfies
f(xk+1) ≤ f(xk) for all k = 0, 1, 2, . . . ,

4. the sequence of points x0, x1, x2, . . . generated by the minimization algorithm also sat-
isfies

lim inf
k→∞

‖∇f(xk)‖ = 0

then f has a unique strict minimizer x∗ ∈ L and

lim
k→∞

xk = x∗

By f having a unique strict minimizer x∗ ∈ L, we mean that there exists a point x∗ ∈ L
that satisfies f(x∗) < f(x) for all x ∈ L for which x 6= x∗.

Of course, there cannot be an x̂ /∈ L such that f(x̂) ≤ f(x∗), since x̂ /∈ L implies that
f(x0) < f(x̂) and x∗ ∈ L implies that f(x∗) ≤ f(x0), whence f(x∗) ≤ f(x0) < f(x̂). So, if
x∗ is the unique strict minimizer of f in L, then x∗ is also the unique strict minimizer of f
in all of Rn.

There are many ways to prove Theorem 1 above. Here’s one. If you notice any errors,
let me know.
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Note that the proof below does not use the inequality zT ∇2f(x) z ≤M‖z||22 in Assump-
tion 3, but it does rely heavily on the inequality m‖z‖22 ≤ zT ∇2f(x) z. So, I believe we can
weaken Assumption 3 to

the level set L = {x ∈ Rn : f(x) ≤ f(x0)} is convex and there exists a positive
constant m such that

m‖z‖22 ≤ zT ∇2f(x) z

for all z ∈ Rn and all x ∈ L.

If you can see why we need the stronger Assumption 3, let me know.

Proof: To begin, note that Assumption 1 ensures that f : Rn → R is twice continuously
differentiable. That is, ∇2f(x) exists and is continuous for all x ∈ Rn. This also implies that
∇f(x) exists and is continuous for all x ∈ Rn and f(x) is continuous for all x ∈ Rn. We use
these properties without further comment throughout the proof.

We first show that f has a unique minimizer x∗ ∈ L. That is, there is an x∗ ∈ L such
that f(x∗) < f(x) for all x ∈ L for which x 6= x∗.

To this end, we begin by showing that L is compact (i.e., closed and bounded). To
show that L is closed, it is sufficient to show that, if yn → y as n → ∞ and all yn ∈ L,
for n = 0, 1, 2, . . . , then y ∈ L. We prove this by first noting that, yn ∈ L implies that
f(yn) ≤ f(x0), since

L = {x ∈ Rn : f(x) ≤ f(x0)}

Next note that f(yn) ≤ f(x0), for n = 0, 1, 2, . . . , and yn → y as n → ∞ implies that
f(y) ≤ f(x0), since f is continuous. Therefore, y ∈ L. Hence, L is closed.

We use proof by contradiction to show that L is bounded. To this end, suppose that L
is not bounded. Thus, there is an x̂ ∈ L such that ‖x̂ − x0‖ > 2

m
‖∇f(x0)‖, where m is the

positive constant from Assumption 2. Since f is twice continuously differentiable, we get
from Taylor’s Theorem (equation (2.6) on page 14 of your textbook) that

f(x̂) = f(x0) + (x̂− x0)T ∇f(x0) +
1

2
(x̂− x0)T ∇2f(x0 + t(x̂− x0)) (x̂− x0) (1)

for some t ∈ [0, 1]. Since x̂ ∈ L, x0 ∈ L and L is convex, x0 + t(x̂− x0) = (1− t)x0 + tx̂ ∈ L.
Therefore, by Assumption 2,

1

2
(x̂− x0)T ∇2f(x0 + t(x̂− x0)) (x̂− x0) ≥

m

2
‖x̂− x0‖2 (2)

Also, by the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),

|(x̂− x0)T ∇f(x0)| ≤ ‖x̂− x0‖ ‖∇f(x0)‖

Therefore,
(x̂− x0)T ∇f(x0) ≥ −‖x̂− x0‖ ‖∇f(x0)‖ (3)
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Combining (1), (2), (3) and the assumption that ‖x̂− x0‖ > 2
m
‖∇f(x0)‖, which implies that

− 2
m
‖∇f(x0) + ‖x̂− x0‖ > 0, we get

f(x̂)− f(x0) ≥ −‖x̂− x0‖ ‖∇f(x0)‖+
m

2
‖x̂− x0‖2

=
m

2
‖x̂− x0‖

(
− 2

m
‖∇f(x0)‖+ ‖x̂− x0‖

)
> 0

whence f(x̂) > f(x0). However, this contradicts, x̂ ∈ L. Therefore, L must be bounded.
Since L is closed and bounded, it is compact. Moreover, L is not empty, since x0 ∈ L.

A key theorem in analysis tells us that any continuous function obtains its minimum on a
compact set. Therefore, there is an x∗ ∈ L such that f(x∗) ≤ f(x) for all x ∈ L.

To prove that x∗ is the unique minimizer of f(x) in L, we first show that ∇f(x∗) = 0.
We have to be a little careful about this, since x∗ could be on the boundary of L. Thus,
there may not be an open neighbourhood of x∗ contained in L. Nevertheless, we can prove
∇f(x∗) = 0 by contradiction.

To this end, suppose that ∇f(x∗) 6= 0. Let p = −α∇f(x∗) for some α > 0 to be
determined below and let x+ = x∗ + p. By Taylor’s Theorem (equation (2.4) on page 14 of
your textbook),

f(x+) = f(x∗ + p) = f(x∗) + pT ∇f(x∗ + tp) = f(x∗)− α∇f(x∗)T ∇f(x∗ − tα∇f(x∗))

for some t ∈ [0, 1]. Now let

φ(s) = ∇f(x∗)T ∇f(x∗ − s∇f(x∗))

Note that ∇f(x∗) 6= 0 implies that φ(0) > 0. Moreover, φ(s) is continuous, since ∇f(x) is
continuous. Therefore, there is a ŝ > 0 such that φ(s) > 0 for all s ∈ [0, ŝ]. Moreover, if we
choose α ∈ (0, ŝ], then tα ∈ [0, ŝ] for all t ∈ [0, 1]. Hence,

∇f(x∗)T ∇f(x∗ − tα∇f(x∗)) > 0

for all t ∈ [0, 1]. Also, recall α > 0. Therefore,

f(x+) = f(x∗ + p) = f(x∗)− α∇f(x∗)T ∇f(x∗ − tα∇f(x∗)) < f(x∗)

Moreover, x∗ ∈ L implies f(x∗) ≤ f(x0), whence f(x+) ≤ f(x0) too. Thus, x+ ∈ L, since
L = {x ∈ Rn : f(x) ≤ f(x0)}. However, f(x+) < f(x∗) and x+ ∈ L contradicts our claim
that x∗ is a minimizer for f(x) in L. Therefore, the assumption that ∇f(x∗) 6= 0 must be
false. Thus, we have proven that ∇f(x∗) = 0.

We want to show that x∗ is the unique strict minimizer of f(x) in L. That is, f(x∗) < f(x)
for all x ∈ L for which x 6= x∗. To this end, choose any x ∈ L for which x 6= x∗. Since
f is twice continuously differentiable (by Assumption 1), we have from Taylor’s Theorem
(equation (2.6) on page 14) that

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1

2
(x− x∗)T ∇2f(x∗ + t(x− x∗)) (x− x∗) (4)
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for some t ∈ [0, 1]. Since x∗ ∈ L, x ∈ L and L is convex, x∗+ t(x− x∗) = (1− t)x∗+ tx ∈ L.
Therefore, it follows from Assumption 2 that

(x− x∗)T ∇2f(x∗ + t(x− x∗)) (x− x∗) ≥ m‖x− x∗‖2

for some m > 0. Moreover, we showed above that ∇f(x∗) = 0. Therefore, (4) reduces to

f(x)− f(x∗) ≥ m

2
‖x− x∗‖2 > 0

since m > 0 and x 6= x∗. Therefore, f(x∗) < f(x), establishing the result that x∗ is the
unique strict minimizer of f(x) in L.

Since, by Assumption 4,
lim inf
k→∞

‖∇f(xk)‖ = 0

there is a subsequence {xkj} of the full sequence {xk}, such that

lim
kj→∞

‖∇f(xkj)‖ = 0

We show next that xkj → x∗ as kj →∞.
To this end, first note that, by Taylor’s Theorem (equation (2.5) on page 14 of your

textbook)

∇f(xkj) = ∇f(x∗) +

∫ 1

0

∇2f(x∗ + t(xkj − x∗)) (xkj − x∗) dt (5)

Using the fact that ∇f(x∗) = 0 established above and multiplying (5) by (xkj − x∗)T , we get

(xkj − x∗)T ∇f(xkj) =

∫ 1

0

(xkj − x∗)T ∇2f(x∗ + t(xkj − x∗)) (xkj − x∗) dt (6)

Now note that the sequence {xk} satisfies Assumption 3, whence f(xk) ≤ f(x0) for all k ≥ 0.
Moreover, since {xkj} ⊂ {xk}, f(xkj) ≤ f(x0) too for all kj, whence all xkj ∈ L. Furthermore,
x∗ ∈ L and L is convex by Assumption 2. Therefore, x∗+ t(xkj − x∗) = (1− t)x∗+ txkj ∈ L
for all t ∈ [0, 1]. Hence, by Assumption 2, there is an m > 0 such that

m‖xkj − x∗‖2 ≤ (xkj − x∗)T ∇2f(x∗ + t(xkj − x∗))(xkj − x∗) (7)

for all t ∈ [0, 1]. Combining (6) and (7), we get

m‖xkj − x∗‖2 ≤ (xkj − x∗)T ∇f(xkj) (8)

By the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),

(xkj − x∗)T ∇f(xnk
) ≤ ‖xkj − x∗‖ ‖∇f(xkj)‖ (9)

Combining (8) and (9), we get

m‖xkj − x∗‖2 ≤ ‖xkj − x∗‖ ‖∇f(xkj)‖
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which implies

‖xkj − x∗‖ ≤
1

m
‖∇f(xkj)‖ (10)

Since
lim

kj→∞
∇f(xkj) = 0

(10) implies that xkj → x∗ as kj →∞. That is, we have shown that the subsequence {xkj}
converges to x∗.

To see that the whole sequence {xk} converges to x∗, first note that, from Assumption 3,

f(xk) ≤ f(xkj)

for all k ≥ kj. Moreover, since x∗ is the minimum of f(x), f(x∗) ≤ f(xk). Therefore,

0 ≤ f(xk)− f(x∗) ≤ f(xkj)− f(x∗) (11)

However, we showed above that xkj → x∗ as kj →∞. Therefore, by the continuity of f(x),
f(xkj)− f(x∗)→ 0 as kj →∞. Hence, by (11), f(xk)− f(x∗)→ 0 as k →∞.

By Taylor’s Theorem (equation (2.6) on page 14 of your textbook),

f(xk) = f(x∗) + (xk − x∗)T ∇f(x∗) +
1

2
(xk − x∗)T ∇2f(x∗ + t(xk − x∗)) (xk − x∗) (12)

for some t ∈ [0, 1].
As noted above, the sequence {xk} satisfies Assumption 3, whence f(xk) ≤ f(x0) for all

k ≥ 0. Therefore, xk ∈ L for all k ≥ 0. Moreover, x∗ ∈ L and L is convex (by Assumption 2).
Therefore, x∗ + t(xk − x∗) = (1− t)x∗ + txk ∈ L for all t ∈ [0, 1]. Hence, by Assumption 2,
there is an m > 0 such that

m‖xk − x∗‖2 ≤ (xk − x∗)T ∇2f(x∗ + t(xk − x∗)) (xk − x∗) (13)

for all t ∈ [0, 1]. Therefore, combining (12) and (13) and using the fact that ∇f(x∗) = 0, we
get

1

2
m‖xk − x∗‖2 ≤ f(xk)− f(x∗)

which implies

‖xk − x∗‖ ≤
√

2(f(xk)− f(x∗))

m
(14)

Recall that we showed above that f(xk) − f(x∗) → 0 as k → ∞. This together with (14)
implies that ‖xk − x∗‖ → 0 as k →∞. That is, the whole sequence {xk} converges to x∗.
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