Solution to Problem 3 on Assignment 5

Ken Jackson

20 April 2014

In Problem 3 on Assignment 5, you are asked to prove the following result.

Theorem 1 If

1. \(f : \mathbb{R}^n \to \mathbb{R} \) is twice continuously differentiable (i.e., \(\nabla^2 f(x) \) exists and is continuous for all \(x \in \mathbb{R}^n \)),

2. the level set \(\mathcal{L} = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \} \) is convex and there exist positive constants \(m \) and \(M \) such that
 \[
 m \| z \|^2 \leq z^T \nabla^2 f(x) z \leq M \| z \|^2
 \]
 for all \(z \in \mathbb{R}^n \) and all \(x \in \mathcal{L} \),

3. the sequence of points \(x_0, x_1, x_2, \ldots \) generated by the minimization algorithm satisfies \(f(x_{k+1}) \leq f(x_k) \) for all \(k = 0, 1, 2, \ldots \),

4. the sequence of points \(x_0, x_1, x_2, \ldots \) generated by the minimization algorithm also satisfies
 \[
 \liminf_{k \to \infty} \| \nabla f(x_k) \| = 0
 \]

then \(f \) has a unique strict minimizer \(x^* \in \mathcal{L} \) and

\[
\lim_{k \to \infty} x_k = x^*
\]

By \(f \) having a unique strict minimizer \(x^* \in \mathcal{L} \), we mean that there exists a point \(x^* \in \mathcal{L} \) that satisfies \(f(x^*) < f(x) \) for all \(x \in \mathcal{L} \) for which \(x \neq x^* \).

Of course, there cannot be an \(\hat{x} \notin \mathcal{L} \) such that \(f(\hat{x}) \leq f(x^*) \), since \(\hat{x} \notin \mathcal{L} \) implies that \(f(x_0) < f(\hat{x}) \) and \(x^* \in \mathcal{L} \) implies that \(f(x^*) \leq f(x_0) \), whence \(f(x^*) \leq f(x_0) < f(\hat{x}) \). So, if \(x^* \) is the unique strict minimizer of \(f \) in \(\mathcal{L} \), then \(x^* \) is also the unique strict minimizer of \(f \) in all of \(\mathbb{R}^n \).

There are many ways to prove Theorem 1 above. Here’s one. If you notice any errors, let me know.
Note that the proof below does not use the inequality \(z^T \nabla^2 f(x) z \leq M \|z\|_2^2 \) in Assumption 3, but it does rely heavily on the inequality \(m \|z\|_2^2 \leq z^T \nabla^2 f(x) z \). So, I believe we can weaken Assumption 3 to

the level set \(\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\} \) is convex and there exists a positive constant \(m \) such that

\[
m \|z\|_2^2 \leq z^T \nabla^2 f(x) z
\]

for all \(z \in \mathbb{R}^n \) and all \(x \in \mathcal{L} \).

If you can see why we need the stronger Assumption 3, let me know.

Proof: To begin, note that Assumption 1 ensures that \(f : \mathbb{R}^n \to \mathbb{R} \) is twice continuously differentiable. That is, \(\nabla^2 f(x) \) exists and is continuous for all \(x \in \mathbb{R}^n \). This also implies that \(\nabla f(x) \) exists and is continuous for all \(x \in \mathbb{R}^n \) and \(f(x) \) is continuous for all \(x \in \mathbb{R}^n \). We use these properties without further comment throughout the proof.

We first show that \(f \) has a unique minimizer \(x^* \in \mathcal{L} \). That is, there is an \(x^* \in \mathcal{L} \) such that \(f(x^*) < f(x) \) for all \(x \in \mathcal{L} \) for which \(x \neq x^* \).

To this end, we begin by showing that \(\mathcal{L} \) is compact (i.e., closed and bounded). To show that \(\mathcal{L} \) is closed, it is sufficient to show that, if \(y_n \to y \) as \(n \to \infty \) and all \(y_n \in \mathcal{L} \), for \(n = 0, 1, 2, \ldots \), then \(y \in \mathcal{L} \). We prove this by first noting that, \(y_n \in \mathcal{L} \) implies that \(f(y_n) \leq f(x_0) \), since

\[
\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}
\]

Next note that \(f(y_n) \leq f(x_0) \), for \(n = 0, 1, 2, \ldots \), and \(y_n \to y \) as \(n \to \infty \) implies that \(f(y) \leq f(x_0) \), since \(f \) is continuous. Therefore, \(y \in \mathcal{L} \). Hence, \(\mathcal{L} \) is closed.

We use proof by contradiction to show that \(\mathcal{L} \) is bounded. To this end, suppose that \(\mathcal{L} \) is not bounded. Thus, there is an \(\hat{x} \in \mathcal{L} \) such that \(\|\hat{x} - x_0\| > \frac{2}{m} \|\nabla f(x_0)\| \), where \(m \) is the positive constant from Assumption 2. Since \(f \) is twice continuously differentiable, we get from Taylor’s Theorem (equation (2.6) on page 14 of your textbook) that

\[
f(\hat{x}) = f(x_0) + (\hat{x} - x_0)^T \nabla f(x_0) + \frac{1}{2} (\hat{x} - x_0)^T \nabla^2 f(x_0 + t(\hat{x} - x_0)) (\hat{x} - x_0)
\]

for some \(t \in [0, 1] \). Since \(\hat{x} \in \mathcal{L} \), \(x_0 \in \mathcal{L} \) and \(\mathcal{L} \) is convex, \(x_0 + t(\hat{x} - x_0) = (1 - t)x_0 + t\hat{x} \in \mathcal{L} \). Therefore, by Assumption 2,

\[
\frac{1}{2} (\hat{x} - x_0)^T \nabla^2 f(x_0 + t(\hat{x} - x_0)) (\hat{x} - x_0) \geq \frac{m}{2} \|\hat{x} - x_0\|^2
\]

Also, by the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),

\[
|(\hat{x} - x_0)^T \nabla f(x_0)| \leq \|\hat{x} - x_0\| \|\nabla f(x_0)\|
\]

Therefore,

\[
(\hat{x} - x_0)^T \nabla f(x_0) \geq -\|\hat{x} - x_0\| \|\nabla f(x_0)\|
\]

2
Combining (1), (2), (3) and the assumption that \(\|\hat{x} - x_0\| > \frac{2}{m}\|\nabla f(x_0)\| \), which implies that
\[
-\frac{2}{m}\|\nabla f(x_0)\| + \|\hat{x} - x_0\| > 0,
\]
we get
\[
f(\hat{x}) - f(x_0) \geq -\|\hat{x} - x_0\|\|\nabla f(x_0)\| + \frac{m}{2}\|\hat{x} - x_0\|^2
\]
\[
= \frac{m}{2}\|\hat{x} - x_0\| \left(-\frac{2}{m}\|\nabla f(x_0)\| + \|\hat{x} - x_0\|\right)
\]
\[
> 0
\]
whence \(f(\hat{x}) > f(x_0) \). However, this contradicts, \(\hat{x} \in \mathcal{L} \). Therefore, \(\mathcal{L} \) must be bounded.

Since \(\mathcal{L} \) is closed and bounded, it is compact. Moreover, \(\mathcal{L} \) is not empty, since \(x_0 \in \mathcal{L} \). A key theorem in analysis tells us that any continuous function obtains its minimum on a compact set. Therefore, there is an \(x^* \in \mathcal{L} \) such that \(f(x^*) \leq f(x) \) for all \(x \in \mathcal{L} \).

To prove that \(x^* \) is the unique minimizer of \(f(x) \) in \(\mathcal{L} \), we first show that \(\nabla f(x^*) = 0 \). We have to be a little careful about this, since \(x^* \) could be on the boundary of \(\mathcal{L} \). Thus, there may not be an open neighbourhood of \(x^* \) contained in \(\mathcal{L} \). Nevertheless, we can prove \(\nabla f(x^*) = 0 \) by contradiction.

To this end, suppose that \(\nabla f(x^*) \neq 0 \). Let \(p = -\alpha \nabla f(x^*) \) for some \(\alpha > 0 \) to be determined below and let \(x^+ = x^* + p \). By Taylor’s Theorem (equation (2.4) on page 14 of your textbook),
\[
f(x^+) = f(x^* + p) = f(x^*) + p^T \nabla f(x^* + tp) = f(x^*) - \alpha \nabla f(x^*)^T \nabla f(x^* - t\alpha \nabla f(x^*))
\]
for some \(t \in [0, 1] \). Now let
\[
\phi(s) = \nabla f(x^*)^T \nabla f(x^* - s \nabla f(x^*))
\]
Note that \(\nabla f(x^*) \neq 0 \) implies that \(\phi(0) > 0 \). Moreover, \(\phi(s) \) is continuous, since \(\nabla f(x) \) is continuous. Therefore, there is a \(\hat{s} > 0 \) such that \(\phi(s) > 0 \) for all \(s \in [0, \hat{s}] \). Moreover, if we choose \(\alpha \in (0, \hat{s}] \), then \(t\alpha \in [0, \hat{s}] \) for all \(t \in [0, 1] \). Hence,
\[
\nabla f(x^*)^T \nabla f(x^* - t\alpha \nabla f(x^*)) > 0
\]
for all \(t \in [0, 1] \). Also, recall \(\alpha > 0 \). Therefore,
\[
f(x^+) = f(x^* + p) = f(x^*) - \alpha \nabla f(x^*)^T \nabla f(x^* - t\alpha \nabla f(x^*)) < f(x^*)
\]
Moreover, \(x^* \in \mathcal{L} \) implies \(f(x^*) \leq f(x_0) \), whence \(f(x^+) \leq f(x_0) \) too. Thus, \(x^+ \in \mathcal{L} \), since \(\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\} \). However, \(f(x^+) \) < \(f(x^*) \) and \(x^+ \in \mathcal{L} \) contradicts our claim that \(x^* \) is a minimizer for \(f(x) \) in \(\mathcal{L} \). Therefore, the assumption that \(\nabla f(x^*) \neq 0 \) must be false. Thus, we have proven that \(\nabla f(x^*) = 0 \).

We want to show that \(x^* \) is the unique strict minimizer of \(f(x) \) in \(\mathcal{L} \). That is, \(f(x^*) < f(x) \) for all \(x \in \mathcal{L} \) for which \(x \neq x^* \). To this end, choose any \(x \in \mathcal{L} \) for which \(x \neq x^* \). Since \(f \) is twice continuously differentiable (by Assumption 1), we have from Taylor’s Theorem (equation (2.6) on page 14) that
\[
f(x) = f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^* + t(x - x^*)) (x - x^*) \quad (4)
\]
for some $t \in [0, 1]$. Since $x^* \in \mathcal{L}$, $x \in \mathcal{L}$ and \mathcal{L} is convex, $x^* + t(x - x^*) = (1 - t)x^* + tx \in \mathcal{L}$. Therefore, it follows from Assumption 2 that
\[(x - x^*)^T \nabla^2 f(x^* + t(x - x^*)) (x - x^*) \geq m\|x - x^*\|^2\]
for some $m > 0$. Moreover, we showed above that $\nabla f(x^*) = 0$. Therefore, (4) reduces to
\[f(x) - f(x^*) \geq \frac{m}{2}\|x - x^*\|^2 > 0\]
since $m > 0$ and $x \neq x^*$. Therefore, $f(x^*) < f(x)$, establishing the result that x^* is the unique strict minimizer of $f(x)$ in \mathcal{L}.

Since, by Assumption 4,
\[\lim_{k \to \infty} \|\nabla f(x_k)\| = 0\]
there is a subsequence $\{x_{k_j}\}$ of the full sequence $\{x_k\}$, such that
\[\lim_{k_j \to \infty} \|\nabla f(x_{k_j})\| = 0\]
We show next that $x_{k_j} \to x^*$ as $k_j \to \infty$.

To this end, first note that, by Taylor’s Theorem (equation (2.5) on page 14 of your textbook)
\[\nabla f(x_{k_j}) = \nabla f(x^*) + \int_0^1 \nabla^2 f(x^* + t(x_{k_j} - x^*)) (x_{k_j} - x^*) \, dt\]
(5)
Using the fact that $\nabla f(x^*) = 0$ established above and multiplying (5) by $(x_{k_j} - x^*)^T$, we get
\[(x_{k_j} - x^*)^T \nabla f(x_{k_j}) = \int_0^1 (x_{k_j} - x^*)^T \nabla^2 f(x^* + t(x_{k_j} - x^*)) (x_{k_j} - x^*) \, dt\]
(6)
Now note that the sequence $\{x_k\}$ satisfies Assumption 3, whence $f(x_k) \leq f(x_0)$ for all $k \geq 0$. Moreover, since $\{x_{k_j}\} \subset \{x_k\}$, $f(x_{k_j}) \leq f(x_0)$ too for all k_j, whence all $x_{k_j} \in \mathcal{L}$. Furthermore, $x^* \in \mathcal{L}$ and \mathcal{L} is convex by Assumption 2. Therefore, $x^* + t(x_{k_j} - x^*) = (1 - t)x^* + tx_{k_j} \in \mathcal{L}$ for all $t \in [0, 1]$. Hence, by Assumption 2, there is an $m > 0$ such that
\[m\|x_{k_j} - x^*\|^2 \leq (x_{k_j} - x^*)^T \nabla^2 f(x^* + t(x_{k_j} - x^*)) (x_{k_j} - x^*)\]
(7)
for all $t \in [0, 1]$. Combining (6) and (7), we get
\[m\|x_{k_j} - x^*\|^2 \leq (x_{k_j} - x^*)^T \nabla f(x_{k_j})\]
(8)
By the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),
\[(x_{k_j} - x^*)^T \nabla f(x_{k_j}) \leq \|x_{k_j} - x^*\| \|\nabla f(x_{k_j})\|\]
(9)
Combining (8) and (9), we get
\[m\|x_{k_j} - x^*\|^2 \leq \|x_{k_j} - x^*\| \|\nabla f(x_{k_j})\|\]
which implies
\[\|x_{k_j} - x^*\| \leq \frac{1}{m} \|\nabla f(x_{k_j})\| \] (10)

Since
\[\lim_{k_j \to \infty} \nabla f(x_{k_j}) = 0 \]

(10) implies that \(x_{k_j} \to x^* \) as \(k_j \to \infty \). That is, we have shown that the subsequence \(\{x_{k_j}\} \) converges to \(x^* \).

To see that the whole sequence \(\{x_k\} \) converges to \(x^* \), first note that, from Assumption 3,
\[f(x_k) \leq f(x_{k_j}) \]
for all \(k \geq k_j \). Moreover, since \(x^* \) is the minimum of \(f(x) \), \(f(x^*) \leq f(x_k) \). Therefore,
\[0 \leq f(x_k) - f(x^*) \leq f(x_{k_j}) - f(x^*) \] (11)

However, we showed above that \(x_{k_j} \to x^* \) as \(k_j \to \infty \). Therefore, by the continuity of \(f(x) \), \(f(x_{k_j}) - f(x^*) \to 0 \) as \(k_j \to \infty \). Hence, by (11), \(f(x_k) - f(x^*) \to 0 \) as \(k \to \infty \).

By Taylor’s Theorem (equation (2.6) on page 14 of your textbook),
\[f(x_k) = f(x^*) + (x_k - x^*)^T \nabla f(x^*) + \frac{1}{2} (x_k - x^*)^T \nabla^2 f(x^* + t(x_k - x^*)) (x_k - x^*) \] (12)

for some \(t \in [0, 1] \).

As noted above, the sequence \(\{x_k\} \) satisfies Assumption 3, whence \(f(x_k) \leq f(x_0) \) for all \(k \geq 0 \). Therefore, \(x_k \in \mathcal{L} \) for all \(k \geq 0 \). Moreover, \(x^* \in \mathcal{L} \) and \(\mathcal{L} \) is convex (by Assumption 2). Therefore, \(x^* + t(x_k - x^*) = (1 - t)x^* + tx_k \in \mathcal{L} \) for all \(t \in [0, 1] \). Hence, by Assumption 2, there is an \(m > 0 \) such that
\[m\|x_k - x^*\|^2 \leq (x_k - x^*)^T \nabla^2 f(x^* + t(x_k - x^*)) (x_k - x^*) \] (13)

for all \(t \in [0, 1] \). Therefore, combining (12) and (13) and using the fact that \(\nabla f(x^*) = 0 \), we get
\[\frac{1}{2} m\|x_k - x^*\|^2 \leq f(x_k) - f(x^*) \]
which implies
\[\|x_k - x^*\| \leq \sqrt{\frac{2(f(x_k) - f(x^*))}{m}} \] (14)

Recall that we showed above that \(f(x_k) - f(x^*) \to 0 \) as \(k \to \infty \). This together with (14) implies that \(\|x_k - x^*\| \to 0 \) as \(k \to \infty \). That is, the whole sequence \(\{x_k\} \) converges to \(x^* \).