Solution to Problem 3 on Assignment 5

Ken Jackson

20 April 2014

In Problem 3 on Assignment 5, you are asked to prove the following result.

Theorem 1 If

- 1. $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable (i.e., $\nabla^2 f(x)$ exists and is continuous for all $x \in \mathbb{R}^n$),
- 2. the level set $\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}$ is convex and there exist positive constants m and M such that

$$m \|z\|_2^2 \le z^T \nabla^2 f(x) \, z \le M \|z\|_2^2$$

for all $z \in \mathbb{R}^n$ and all $x \in \mathcal{L}$,

- 3. the sequence of points x_0, x_1, x_2, \ldots generated by the minimization algorithm satisfies $f(x_{k+1}) \leq f(x_k)$ for all $k = 0, 1, 2, \ldots$,
- 4. the sequence of points x_0, x_1, x_2, \ldots generated by the minimization algorithm also satisfies

$$\liminf_{k \to \infty} \|\nabla f(x_k)\| = 0$$

then f has a unique strict minimizer $x^* \in \mathcal{L}$ and

$$\lim_{k \to \infty} x_k = x^*$$

By f having a unique strict minimizer $x^* \in \mathcal{L}$, we mean that there exists a point $x^* \in \mathcal{L}$ that satisfies $f(x^*) < f(x)$ for all $x \in \mathcal{L}$ for which $x \neq x^*$.

Of course, there cannot be an $\hat{x} \notin \mathcal{L}$ such that $f(\hat{x}) \leq f(x^*)$, since $\hat{x} \notin \mathcal{L}$ implies that $f(x_0) < f(\hat{x})$ and $x^* \in \mathcal{L}$ implies that $f(x^*) \leq f(x_0)$, whence $f(x^*) \leq f(x_0) < f(\hat{x})$. So, if x^* is the unique strict minimizer of f in \mathcal{L} , then x^* is also the unique strict minimizer of f in all of \mathbb{R}^n .

There are many ways to prove Theorem 1 above. Here's one. If you notice any errors, let me know.

Note that the proof below does not use the inequality $z^T \nabla^2 f(x) z \leq M ||z||_2^2$ in Assumption 3, but it does rely heavily on the inequality $m ||z||_2^2 \leq z^T \nabla^2 f(x) z$. So, I believe we can weaken Assumption 3 to

the level set $\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}$ is convex and there exists a positive constant *m* such that

$$n \|z\|_2^2 \le z^T \, \nabla^2 f(x) \, z$$

for all $z \in \mathbb{R}^n$ and all $x \in \mathcal{L}$.

If you can see why we need the stronger Assumption 3, let me know.

Proof: To begin, note that Assumption 1 ensures that $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable. That is, $\nabla^2 f(x)$ exists and is continuous for all $x \in \mathbb{R}^n$. This also implies that $\nabla f(x)$ exists and is continuous for all $x \in \mathbb{R}^n$ and f(x) is continuous for all $x \in \mathbb{R}^n$. We use these properties without further comment throughout the proof.

We first show that f has a unique minimizer $x^* \in \mathcal{L}$. That is, there is an $x^* \in \mathcal{L}$ such that $f(x^*) < f(x)$ for all $x \in \mathcal{L}$ for which $x \neq x^*$.

To this end, we begin by showing that \mathcal{L} is compact (i.e., closed and bounded). To show that \mathcal{L} is closed, it is sufficient to show that, if $y_n \to y$ as $n \to \infty$ and all $y_n \in \mathcal{L}$, for $n = 0, 1, 2, \ldots$, then $y \in \mathcal{L}$. We prove this by first noting that, $y_n \in \mathcal{L}$ implies that $f(y_n) \leq f(x_0)$, since

$$\mathcal{L} = \{ x \in \mathbb{R}^n : f(x) \le f(x_0) \}$$

Next note that $f(y_n) \leq f(x_0)$, for n = 0, 1, 2, ..., and $y_n \to y$ as $n \to \infty$ implies that $f(y) \leq f(x_0)$, since f is continuous. Therefore, $y \in \mathcal{L}$. Hence, \mathcal{L} is closed.

We use proof by contradiction to show that \mathcal{L} is bounded. To this end, suppose that \mathcal{L} is not bounded. Thus, there is an $\hat{x} \in \mathcal{L}$ such that $\|\hat{x} - x_0\| > \frac{2}{m} \|\nabla f(x_0)\|$, where *m* is the positive constant from Assumption 2. Since *f* is twice continuously differentiable, we get from Taylor's Theorem (equation (2.6) on page 14 of your textbook) that

$$f(\hat{x}) = f(x_0) + (\hat{x} - x_0)^T \nabla f(x_0) + \frac{1}{2} (\hat{x} - x_0)^T \nabla^2 f(x_0 + t(\hat{x} - x_0)) (\hat{x} - x_0)$$
(1)

for some $t \in [0, 1]$. Since $\hat{x} \in \mathcal{L}$, $x_0 \in \mathcal{L}$ and \mathcal{L} is convex, $x_0 + t(\hat{x} - x_0) = (1 - t)x_0 + t\hat{x} \in \mathcal{L}$. Therefore, by Assumption 2,

$$\frac{1}{2}(\hat{x} - x_0)^T \nabla^2 f(x_0 + t(\hat{x} - x_0)) (\hat{x} - x_0) \ge \frac{m}{2} \|\hat{x} - x_0\|^2$$
(2)

Also, by the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),

$$|(\hat{x} - x_0)^T \nabla f(x_0)| \le ||\hat{x} - x_0|| ||\nabla f(x_0)||$$

Therefore,

$$(\hat{x} - x_0)^T \nabla f(x_0) \ge -\|\hat{x} - x_0\| \|\nabla f(x_0)\|$$
(3)

Combining (1), (2), (3) and the assumption that $\|\hat{x} - x_0\| > \frac{2}{m} \|\nabla f(x_0)\|$, which implies that $-\frac{2}{m} \|\nabla f(x_0) + \|\hat{x} - x_0\| > 0$, we get

$$f(\hat{x}) - f(x_0) \geq -\|\hat{x} - x_0\| \|\nabla f(x_0)\| + \frac{m}{2} \|\hat{x} - x_0\|^2$$

$$= \frac{m}{2} \|\hat{x} - x_0\| \left(-\frac{2}{m} \|\nabla f(x_0)\| + \|\hat{x} - x_0\|\right)$$

$$> 0$$

whence $f(\hat{x}) > f(x_0)$. However, this contradicts, $\hat{x} \in \mathcal{L}$. Therefore, \mathcal{L} must be bounded.

Since \mathcal{L} is closed and bounded, it is compact. Moreover, \mathcal{L} is not empty, since $x_0 \in \mathcal{L}$. A key theorem in analysis tells us that any continuous function obtains its minimum on a compact set. Therefore, there is an $x^* \in \mathcal{L}$ such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{L}$.

To prove that x^* is the unique minimizer of f(x) in \mathcal{L} , we first show that $\nabla f(x^*) = 0$. We have to be a little careful about this, since x^* could be on the boundary of \mathcal{L} . Thus, there may not be an open neighbourhood of x^* contained in \mathcal{L} . Nevertheless, we can prove $\nabla f(x^*) = 0$ by contradiction.

To this end, suppose that $\nabla f(x^*) \neq 0$. Let $p = -\alpha \nabla f(x^*)$ for some $\alpha > 0$ to be determined below and let $x^+ = x^* + p$. By Taylor's Theorem (equation (2.4) on page 14 of your textbook),

$$f(x^{+}) = f(x^{*} + p) = f(x^{*}) + p^{T} \nabla f(x^{*} + tp) = f(x^{*}) - \alpha \nabla f(x^{*})^{T} \nabla f(x^{*} - t\alpha \nabla f(x^{*}))$$

for some $t \in [0, 1]$. Now let

$$\phi(s) = \nabla f(x^*)^T \nabla f(x^* - s \nabla f(x^*))$$

Note that $\nabla f(x^*) \neq 0$ implies that $\phi(0) > 0$. Moreover, $\phi(s)$ is continuous, since $\nabla f(x)$ is continuous. Therefore, there is a $\hat{s} > 0$ such that $\phi(s) > 0$ for all $s \in [0, \hat{s}]$. Moreover, if we choose $\alpha \in (0, \hat{s}]$, then $t\alpha \in [0, \hat{s}]$ for all $t \in [0, 1]$. Hence,

$$\nabla f(x^*)^T \, \nabla f(x^* - t\alpha \nabla f(x^*)) > 0$$

for all $t \in [0, 1]$. Also, recall $\alpha > 0$. Therefore,

$$f(x^{+}) = f(x^{*} + p) = f(x^{*}) - \alpha \nabla f(x^{*})^{T} \nabla f(x^{*} - t\alpha \nabla f(x^{*})) < f(x^{*})$$

Moreover, $x^* \in \mathcal{L}$ implies $f(x^*) \leq f(x_0)$, whence $f(x^+) \leq f(x_0)$ too. Thus, $x^+ \in \mathcal{L}$, since $\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}$. However, $f(x^+) < f(x^*)$ and $x^+ \in \mathcal{L}$ contradicts our claim that x^* is a minimizer for f(x) in \mathcal{L} . Therefore, the assumption that $\nabla f(x^*) \neq 0$ must be false. Thus, we have proven that $\nabla f(x^*) = 0$.

We want to show that x^* is the unique strict minimizer of f(x) in \mathcal{L} . That is, $f(x^*) < f(x)$ for all $x \in \mathcal{L}$ for which $x \neq x^*$. To this end, choose any $x \in \mathcal{L}$ for which $x \neq x^*$. Since f is twice continuously differentiable (by Assumption 1), we have from Taylor's Theorem (equation (2.6) on page 14) that

$$f(x) = f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^* + t(x - x^*)) (x - x^*)$$
(4)

for some $t \in [0, 1]$. Since $x^* \in \mathcal{L}$, $x \in \mathcal{L}$ and \mathcal{L} is convex, $x^* + t(x - x^*) = (1 - t)x^* + tx \in \mathcal{L}$. Therefore, it follows from Assumption 2 that

$$(x - x^*)^T \nabla^2 f(x^* + t(x - x^*)) (x - x^*) \ge m ||x - x^*||^2$$

for some m > 0. Moreover, we showed above that $\nabla f(x^*) = 0$. Therefore, (4) reduces to

$$f(x) - f(x^*) \ge \frac{m}{2} ||x - x^*||^2 > 0$$

since m > 0 and $x \neq x^*$. Therefore, $f(x^*) < f(x)$, establishing the result that x^* is the unique strict minimizer of f(x) in \mathcal{L} .

Since, by Assumption 4,

$$\liminf_{k \to \infty} \|\nabla f(x_k)\| = 0$$

there is a subsequence $\{x_{k_i}\}$ of the full sequence $\{x_k\}$, such that

$$\lim_{k_j \to \infty} \left\| \nabla f(x_{k_j}) \right\| = 0$$

We show next that $x_{k_j} \to x^*$ as $k_j \to \infty$.

To this end, first note that, by Taylor's Theorem (equation (2.5) on page 14 of your textbook)

$$\nabla f(x_{k_j}) = \nabla f(x^*) + \int_0^1 \nabla^2 f(x^* + t(x_{k_j} - x^*)) \left(x_{k_j} - x^*\right) dt$$
(5)

Using the fact that $\nabla f(x^*) = 0$ established above and multiplying (5) by $(x_{k_j} - x^*)^T$, we get

$$(x_{k_j} - x^*)^T \nabla f(x_{k_j}) = \int_0^1 (x_{k_j} - x^*)^T \nabla^2 f(x^* + t(x_{k_j} - x^*)) (x_{k_j} - x^*) dt$$
(6)

Now note that the sequence $\{x_k\}$ satisfies Assumption 3, whence $f(x_k) \leq f(x_0)$ for all $k \geq 0$. Moreover, since $\{x_{k_j}\} \subset \{x_k\}$, $f(x_{k_j}) \leq f(x_0)$ too for all k_j , whence all $x_{k_j} \in \mathcal{L}$. Furthermore, $x^* \in \mathcal{L}$ and \mathcal{L} is convex by Assumption 2. Therefore, $x^* + t(x_{k_j} - x^*) = (1 - t)x^* + tx_{k_j} \in \mathcal{L}$ for all $t \in [0, 1]$. Hence, by Assumption 2, there is an m > 0 such that

$$m\|x_{k_j} - x^*\|^2 \le (x_{k_j} - x^*)^T \nabla^2 f(x^* + t(x_{k_j} - x^*))(x_{k_j} - x^*)$$
(7)

for all $t \in [0, 1]$. Combining (6) and (7), we get

$$m \|x_{k_j} - x^*\|^2 \le (x_{k_j} - x^*)^T \nabla f(x_{k_j})$$
(8)

By the Cauchy-Schwartz inequality (inequality (A.5) on page 600 of your textbook),

$$(x_{k_j} - x^*)^T \nabla f(x_{n_k}) \le ||x_{k_j} - x^*|| ||\nabla f(x_{k_j})||$$
(9)

Combining (8) and (9), we get

$$m \|x_{k_j} - x^*\|^2 \le \|x_{k_j} - x^*\| \|\nabla f(x_{k_j})\|$$

which implies

$$\|x_{k_j} - x^*\| \le \frac{1}{m} \|\nabla f(x_{k_j})\|$$
(10)

Since

$$\lim_{k_j \to \infty} \nabla f(x_{k_j}) = 0$$

(10) implies that $x_{k_j} \to x^*$ as $k_j \to \infty$. That is, we have shown that the subsequence $\{x_{k_j}\}$ converges to x^* .

To see that the whole sequence $\{x_k\}$ converges to x^* , first note that, from Assumption 3,

$$f(x_k) \le f(x_{k_j})$$

for all $k \ge k_i$. Moreover, since x^* is the minimum of $f(x), f(x^*) \le f(x_k)$. Therefore,

$$0 \le f(x_k) - f(x^*) \le f(x_{k_j}) - f(x^*) \tag{11}$$

However, we showed above that $x_{k_j} \to x^*$ as $k_j \to \infty$. Therefore, by the continuity of f(x), $f(x_{k_j}) - f(x^*) \to 0$ as $k_j \to \infty$. Hence, by (11), $f(x_k) - f(x^*) \to 0$ as $k \to \infty$.

By Taylor's Theorem (equation (2.6) on page 14 of your textbook),

$$f(x_k) = f(x^*) + (x_k - x^*)^T \nabla f(x^*) + \frac{1}{2} (x_k - x^*)^T \nabla^2 f(x^* + t(x_k - x^*)) (x_k - x^*)$$
(12)

for some $t \in [0, 1]$.

As noted above, the sequence $\{x_k\}$ satisfies Assumption 3, whence $f(x_k) \leq f(x_0)$ for all $k \geq 0$. Therefore, $x_k \in \mathcal{L}$ for all $k \geq 0$. Moreover, $x^* \in \mathcal{L}$ and \mathcal{L} is convex (by Assumption 2). Therefore, $x^* + t(x_k - x^*) = (1 - t)x^* + tx_k \in \mathcal{L}$ for all $t \in [0, 1]$. Hence, by Assumption 2, there is an m > 0 such that

$$m\|x_k - x^*\|^2 \le (x_k - x^*)^T \nabla^2 f(x^* + t(x_k - x^*)) (x_k - x^*)$$
(13)

for all $t \in [0, 1]$. Therefore, combining (12) and (13) and using the fact that $\nabla f(x^*) = 0$, we get

$$\frac{1}{2}m\|x_k - x^*\|^2 \le f(x_k) - f(x^*)$$

which implies

$$\|x_k - x^*\| \le \sqrt{\frac{2(f(x_k) - f(x^*))}{m}}$$
(14)

Recall that we showed above that $f(x_k) - f(x^*) \to 0$ as $k \to \infty$. This together with (14) implies that $||x_k - x^*|| \to 0$ as $k \to \infty$. That is, the whole sequence $\{x_k\}$ converges to x^* .