
CSC 2305S Assignment #5 Due: 11 April 2014

This assignment is due on Friday, 11 April 2014, a week after classes end. Since we won’t
have a class on that day, you can either

• drop the assignment off at my office, BA 4228,

• leave it for me in my mailbox in BA 4239,

• give it to Lynda Barnes, the receptionist in BA 4283, and ask her to leave it for me in
my mailbox,

• email it to me at krj@cs.toronto.edu.

1. [10 marks]

Do question 5.1 on page 133 of your textbook.

Also discuss whether your numerical results are consistent with the theory for the
convergence of the conjugate gradient method developed on pages 112–118 of your
textbook.

If you do this questions in MatLab, you can use the MatLab function hilb to construct
the Hilbert matrix and the MatLab functions eig and cond to compute the eigenvalues
and condition number, respectively, of the Hilbert matrix.

2. [10 marks]

Do question 5.9 on page 134 of your textbook.

3. [10 marks]

Suppose that a minimization algorithm for the problem

min
x∈Rn

f(x) (1)

generates a sequence of points x0, x1, x2, . . . As we noted a few times this term, your
textbook says that the algorithm is globally convergent if

lim
k→∞

‖∇f(xk)‖ = 0 (2)

or possibly even
lim inf

k→∞

‖∇f(xk)‖ = 0 (3)

See, for example, the third line from the top of page 40 and Theorem 4.5 on page 80.

The condition (3) means that, for any ε > 0 and any K ≥ 0, there is a k ≥ K such
that ‖∇f(xk)‖ < ε.
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As I’ve mentioned a few times in class, both (2) and (3) are weaker than

lim
k→∞

xk = x∗ (4)

where x∗ is a local minimizer of (1), which is what we usually mean by a globally con-
vergent algorithm. By weaker here I mean that we can have a sequence x0, x1, x2, . . .

that satisfies either (2) or (3), but does not satisfy (4). For example, for the function
f(x) = e−x and the sequence xk = k, for k = 0, 1, 2, . . . , both (2) and (3) are satisfied,
but (4) is not satisfied, since xk does not converge to any real value.

However, we can sometimes get the stronger result (4) from either (2) or (3). As a case
in point, prove the following theorem.

Theorem If

(a) f : R
n → R is twice continuously differentiable (i.e., ∇2f(x) exists and

is continuous for all x ∈ R
n),

(b) the level set L = {x ∈ R
n : f(x) ≤ f(x0)} is convex and there exist

positive constants m and M such that

m‖z‖2

2 ≤ zT ∇2f(x) z ≤ M‖z||22

for all z ∈ R
n and all x ∈ L,

(c) the sequence of points x0, x1, x2, . . . generated by the algorithm satisfies
f(xk+1) ≤ f(xk) for all k = 0, 1, 2, . . . ,

(d) the sequence of points x0, x1, x2, . . . generated by the algorithm also
satisfies

lim inf
k→∞

‖∇f(xk)‖ = 0

then f has a unique strict minimizer x∗ ∈ L and

lim
k→∞

xk = x∗

By f having a unique strict minimizer x∗ ∈ L, we mean that there exists a point x∗ ∈ L
that satisfies f(x∗) < f(x) for all x ∈ L for which x 6= x∗.

This is quite a difficult result to prove. If you find there are pieces of the proof that
you can’t actually prove yourself (such as, for example, the existence of the unique
strict minimizer x∗), clearly state the result you need as an unproven assumption.

Of course, the fewer of these unproven assumptions you need in your proof, the better
your proof will be.
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