Text Segmentation and Summarization

Siavash Kazemian

Based on
Tutorial Notes by Cosmin Munteanu

C. Manning and H. Schutze Foundations of Statistical Natural Language Processing

M. A. Hearst, TextTiling: Segmenting Text into Multi-paragraph Subtopic Passages
Text Segmentation and Summarization

• Overview of Assignment 3
 – Purpose
 – Tasks
 – Corpus

• Text Segmentation
 – Applications and motivation
 – TextTiling Algorithm
 • Tokenization
 • Similarity determination
 • Segment breakpoint identification

• Text Summarization
 – Paragraph Salience
 – Singular Value Decomposition (SVD)
Overview of Assignment 3

• Your Data:
 • Text files containing several multi-paragraph articles concatenated together. Each article is about a certain topic
 • In this assignment your articles are news articles from the British National Corpus

• Your Purpose:
 • Break the text files into segments such that each segment contains one article
 • Write code that will generate a summary of each segment that you have identified in the previous step
Task Breakdown in Assignment 3

- Implement the TextTilling Algorithm that breaks each file into segments

- Test it on 10 files (containing 185 news articles)

- Evaluate your segmentation algorithm by comparing your results with the true article break points (labeled in your data)

- For each segment, determine the most salient paragraph (that will stand as its summary)

- Evaluation: Examine your generated summaries, comment on their quality and explain why your algorithm came up with them
Text Segmentation: Motivations and Applications

– Information Retrieval:
 • Performing query similarity measures against a sections of document as supposed to the whole document
 • When displaying the search result, you can display the most relevant portion of the document to the query. Similar to the way Google displays its search results

– Processing News Streams: Segmenting Stream into Stories
Text Segmentation: Motivations and Applications

– Discourse Analysis: Detecting Topic Shifts (changes)

– Text summarization: Breaking a document into sections before summarizing. This will ensure that the summary includes all the topics that were covered in the document.
Text Segmentation using TextTiling

• M. A. Hearst, TextTiling: Segmenting Text into Multi-paragraph Subtopic Passages

• TextTiling is an algorithm for breaking documents into topically coherent multi-paragraph subparts

• Identifies parts of text where the vocabulary shifts – Degree of terms repetition is low in each side of the boundary

• Three phases:
 – Tokenization
 – Similarity Determination
 – Segment breakpoint identification
Tokenization

• Sentence Boundaries are not relevant

• Tiles: Equal sized areas of text: sequences of words that contain the same number of words

• Phases:
 1. Convert text into lower-cases
 2. Remove punctuation (including end of sentence boundaries)
 3. Remove numbers and non-alphabetic symbols
 4. Keep the paragraph breaks
 5. Mark stop-words (no-deletion)
 6. Remaining tokens are stemmed
 7. Divide the text into token sequences of n tokens: Tiles. Usually n=20

• Example: “He **Drives a car or a taxi.**” → “stopword **driv** stopword stopword **car**

 stopword **taxi**”

University of Toronto Computer Science, CSC 401/2511
Similarity Measures

• Measure how similar two blocks around a potential segment break (gap) are

• One block: k token sequences

• Three possible measures:

 Vector Space Model: create two artificial documents from the sequence of tokens at the left and the right of the gap; compute correlation coefficients for the documents (Using their term vectors)

 Vocabulary Introduction: Similarity is measured as the negative of the number of new terms introduced on either side of the gap

 Block Comparison: compute correlation coefficients between left and right blocks based on within-block term frequency (without inverse document frequency) (We will use this method)
Similarity Measure – Block Comparison

• A “bag of words” approach

• For a gap i:

\[
sim(i) = \frac{\sum_{t \in T} C(t, b_l) \cdot C(t, b_r)}{\sqrt{\sum_{t \in T} C(t, b_l)^2 \sum_{t \in T} C(t, b_r)^2}}
\]

• Where:
 – T is the set of non-stop list terms in both blocks b_l and b_r
 – For a token $t \in T$, $C(a,b)$ is the number of occurrences of t in b

• If $\sim(i) = 0/0$, then assign:
 – $\sim(i) = 1$ (highly similar) if both $C(t, b_l) = C(t, b_r) = 0$
 – $\sim(i) = 0$ if only one of $C(t, b_l)$ or $C(t, b_r)$ is 0
Depth Scoring

• Similarity measure is relative and so, can not be used to determine the breakpoints (segment boundaries)

• Successive token sequences can have:
 – Low similarity (also called cohesion scores) ex: Introduction
 – High cohesion score (only slight shift in vocabulary over large areas of text)

• Need to observe how similarity scores change (i.e. compare the difference in similarity scores not their absolute value)

• \(\text{Depth}(i) = \text{sim}(i-1) - \text{sim}(i) + \text{sim}(i+1) - \text{sim}(i) \)

• Smoothing (applied twice) to filter out the noise:
 \[
 \text{depth}(i) = \frac{\text{depth}(i - 1) + \text{depth}(i) + \text{depth}(i + 1)}{3}
 \]
Depth Scoring Example
Boundary Identification

• Two methods to choose gaps with big depth scores as breakpoints
 – Compute the mean and standard deviation of depth scores and select gaps with depth scores bigger than $\mu - c\sigma$ (depending on the data, usually we pick $c=0.5$ or $c=1.0$)
 – Estimate the number of breakpoints from data: D and pick the D gaps with biggest depths (We’ll use this method)

• Token sequences are of predefined length \rightarrow proposed break points could end up in the middle of a paragraph. In this case, mark the closest paragraph break as a breakpoint (mark L or R if paragraph break is to the left or right of the gap). Note: If a paragraph break is marked both with R and L, you are more confident that it’s a breakpoint.

• Discard the breakpoints at occur in consecutive paragraph breaks. But do ensure that at the end there are D breakpoints
Evaluation

• Use precision and Recall (gold standard: the original breakpoint marks on your data)

• Methods:
 – **Strict**: If breakpoint is correctly marked with R or L
 – **Relaxed**:
 • Score of 1 if the breakpoint is marked properly
 • Score 0.8 if the breakpoint is within one paragraph: The proposed breakpoint is marked with L and is to the left of the true breakpoint or marked with R and is to the right of the breakpoint
 • Score 0.4 if the breakpoint is within two paragraphs. The proposed breakpoint is marked with R and is to the left of the true breakpoint or marked with L and is to the right of the true breakpoint
 – **Very Relaxed**: mark all three cases above with 1.0
SEGMENT SUMMARIZATION
Paragraph Salience

• Motivation: Automatic summarization by sentence/paragraph extraction

• Goal: Identify the most significant (salient) paragraph in the segment

• Task: Compute the Salient score for each paragraph for each segment through SVD
SVD for Salient Scores

- SVD: Method for dimensionality reduction
- Dimensions of your data matrix A— terms by paragraphs
- Matrix A: rows \rightarrow non-stoplist terms
 columns \rightarrow paragraphs
- $a_{ij} = \text{count}_{\text{paragraph } j} (\text{term } i)$

- Matrix A:
 - **Total method**: counts collected over all files S01 ... S10
 - **Tile method**: represent term frequencies of terms in paragraphs from
 a single segment. (number of paragraphs and terms much smaller
 than in the total method) Note: In Tile method, number of rows =
 number of terms in a segment

- Decompose A through SVD: $A = U \cdot S \cdot V^T$
Voting Protocols

- use matrices S and V
- choose $s = 1 \ldots n$
- $\tilde{S} =$ first s rows of S
- $\tilde{V} =$ first s columns of V
- for a paragraph p:
 \begin{align*}
 \text{summing:} \\
 \sum_{p} = \sum_{i} |(\tilde{S} \cdot \tilde{V}^T)_{i}|
 \\
 \text{maxing:} \\
 \max_{p} = \sum_{j:p=\arg\max_{i}|V_{ij}|} S_{jj}
 \end{align*}
Voting Protocols – Summing

\[S = \begin{pmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{pmatrix} \]

\[V = \begin{pmatrix} -0.75 & -0.29 & 0.28 & 0 & -0.53 \\ -0.28 & -0.53 & -0.75 & 0 & 0.29 \\ -0.20 & -0.19 & 0.45 & 0.58 & 0.63 \\ -0.45 & 0.63 & -0.20 & 0 & 0.19 \\ -0.33 & 0.22 & 0.12 & -0.58 & 0.41 \end{pmatrix} \]

\[p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \]

summing: \(s = 5 \)

\[\tilde{S} \cdot \begin{pmatrix} -0.75 & -0.29 & 0.28 & 0 & -0.53 \end{pmatrix}^T = \begin{pmatrix} -1.62 & -0.46 & 0.35 & 0 & 0.2 \end{pmatrix}^T \]

\[sum_{p_1} = 1.62 + 0.46 + 0.35 + 0 + 0.2 = 2.6462 \]
Voting Protocols - maxing

\[S = \begin{pmatrix}
 2.16 & 0 & 0 & 0 & 0 \\
 0 & 1.59 & 0 & 0 & 0 \\
 0 & 0 & 1.28 & 0 & 0 \\
 0 & 0 & 0 & 1.00 & 0 \\
 0 & 0 & 0 & 0 & 0.39 \\
\end{pmatrix} \]

\[V = \begin{pmatrix}
 -0.75 & -0.29 & 0.28 & 0 & -0.53 \\
 -0.28 & -0.53 & -0.75 & 0 & 0.29 \\
 -0.20 & -0.19 & 0.45 & 0.58 & 0.63 \\
 -0.45 & 0.63 & -0.20 & 0 & 0.19 \\
 -0.33 & 0.22 & 0.12 & -0.58 & 0.41 \\
\end{pmatrix} \]

\[p_1 \]
\[p_2 \]
\[p_3 \]
\[p_4 \]
\[p_5 \]

maxing: \(s = 5 \)

\[max_{p_1} = 2.16 \]
\[max_{p_2} = 1.28 \]
\[max_{p_3} = 1.00 + 0.39 = 1.39 \]
\[max_{p_4} = 1.59 \]
Summing vs. Maxing

\[S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix} \]

\[s = 2 \]

\[\text{sum}_{p_1} = \]
\[\text{sum}_{p_2} = \]
\[\Rightarrow \text{Winner:} \]

\[\text{max}_{p_1} = \]
\[\text{max}_{p_2} = \]
\[\Rightarrow \text{Winner:} \]
Summing vs. Maxing

\[S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix} \]

\[s = 2 \]

\[sum_{p_1} = 1.1 \cdot 2.1 + 2.2 \cdot 1.7 = 6.05 \]
\[sum_{p_2} = 0.7 \cdot 2.1 + 3.1 \cdot 1.7 = 6.74 \]

⇒ Winner: \(p_2 \)

\[max_{p_1} = \]
\[max_{p_2} = \]

⇒ Winner:
Summing vs. Maxing

\[S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix} \]

\[s = 2 \]

\[\text{sum}_{p_1} = 1.1 \cdot 2.1 + 2.2 \cdot 1.7 = 6.05 \]
\[\text{sum}_{p_2} = 0.7 \cdot 2.1 + 3.1 \cdot 1.7 = 6.74 \]

⇒ Winner: \(p_2 \)

\[\text{max}_{p_1} = 2.1 \]
\[\text{max}_{p_2} = 1.7 \]

⇒ Winner: \(p_1 \)
Changing s

\[S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix} \]

$s = 1 \Rightarrow \text{winner is}$

\[
\begin{align*}
\text{sum}_{p_1} & = \\
\text{sum}_{p_2} & = \\
\text{max}_{p_1} & = \\
\text{max}_{p_2} & =
\end{align*}
\]

$s = 3 \Rightarrow \text{winner is}$

\[
\begin{align*}
\text{sum}_{p_1} & = \\
\text{sum}_{p_2} & = \\
\text{sum}_{p_3} & = \\
\text{max}_{p_1} & = \\
\text{max}_{p_2} & = \\
\text{max}_{p_1} & =
\end{align*}
\]
Changing s

$$S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix}$$

$s = 1 \Rightarrow$ winner is p_1

$$sum_{p_1} = 1.1 \cdot 2.1 = 2.31$$
$$sum_{p_2} = 0.7 \cdot 2.1 = 1.47$$
$$max_{p_1} = 2.1$$
$$max_{p_2} = 0$$

$s = 3 \Rightarrow$ winner is

$$sum_{p_1} = \quad \quad $$
$$sum_{p_2} = \quad \quad $$
$$sum_{p_3} = \quad \quad $$
$$max_{p_1} = \quad \quad $$
$$max_{p_2} = \quad \quad $$
$$max_{p_1} = \quad \quad $$
Changing s

$$S = \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 1.3 \end{pmatrix} \quad V = \begin{pmatrix} 1.1 & 2.2 & 1.6 \\ 0.7 & 3.1 & 2.5 \\ 0 & 0.2 & 0 \end{pmatrix}$$

$s = 1 \Rightarrow$ winner is p_1

- $sum_{p_1} = 1.1 \cdot 2.1 = 2.31$
- $sum_{p_2} = 0.7 \cdot 2.1 = 1.47$
- $max_{p_1} = 2.1$
- $max_{p_2} = 0$

$s = 3 \Rightarrow$ winner is p_2

- $sum_{p_1} = 1.1 \cdot 2.1 + 2.2 \cdot 1.7 + 1.6 \cdot 1.3 = 8.13$
- $sum_{p_2} = 0.7 \cdot 2.1 + 3.1 \cdot 1.7 + 2.5 \cdot 1.3 = 9.99$
- $sum_{p_3} = 0 \cdot 2.1 + 0.2 \cdot 1.7 + 0 \cdot 1.3 = 0.34$
- $max_{p_1} = 2.1$
- $max_{p_2} = 1.7 + 1.3 = 3.0$
- $max_{p_1} = 0$
Your Tasks

• Total matrix with summing
• Total matrix with maxing
• Tile matrices with summing
• Tile matrices with maxing
• Each for your best choice of s
Evaluation

• Automatic summarization – no gold standard evaluation

• Choose the best s for each voting protocol and matrix dimension

• Decision: based on your own judgment

• Important information to include:
 – Your methodology for choosing s
 – Arguments supporting your decision
 – Discussion