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Abstract

Uniformity and Nonuniformity in Proof Complexity

Kaveh Ghasemloo
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

2016

This thesis is dedicated to the study of the relations between uniform and nonuniform

proof complexity and computational complexity. Nonuniform proof complexity studies

the lengths of proofs in various propositional proof systems such as Frege. Uniform

proof complexity studies the provability strength of bounded arithmetic theories which

use only concepts computable in specific computational complexity classes, e.g. the

two-sorted bounded arithmetic theory VNC1 uses only concepts computable in NC1.

We are interested in transferring concepts, tools, and results from computational

complexity to proof complexity. We introduce the notion of proof complexity class which

corresponds to the notion of computational complexity class. We show the possibility

of developing a systematic framework for studying proof complexity classes associated

with computational complexity classes. The framework is based on soundness statements

for proof complexity classes and evaluation problems for circuit complexity classes. The

soundness statements are universal for proof complexity classes as circuit evaluation

problems are complete for computational complexity classes.

We introduce the notion of io-typed theories to design theories corresponding to com-

putational complexity classes which are not closed under composition. We use io-types

to control the composition of provably total functions of theories. We design a new class

of theories nε-ioV∞ (ε < 1) corresponding to AC0(exp(nε)) = AltTime(O(1), O(nε)),

bounded-alternation sublinear-time computable concepts. This is the uniform coun-

terpart of subexponential-size bounded-depth circuits. We provide a propositional
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translation from the proofs of ΣB
0 -theorems in nε-ioV∞ to subexponential-size bounded-

depth proof families in Frege.

We prove that AltTime(O(1), O(nε)) contains NTimeSpace(nO(1), no(1)). This implies

that Boolean formulas can be evaluated in AltTime(O(1), O(nε)). We formalize this con-

tainment inside our nε-ioV∞ theories and prove that nε-ioV∞ for AltTime(O(1), O(nε))

contains ioVNC1 for NC1. This is the proof complexity version of AltTime(O(1), O(nε))

containing NC1 and a uniform version of the nonuniform proof complexity result that

polynomial-size Frege proofs can be transformed to subexponential-size bounded-depth

Frege proofs [FPS15].

Finally, we combine the universality of soundness, the propositional translation,

and the containment ioVNC1 ⊆ nε-ioV∞ to obtain an alternative proof of [FPS15].
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Dedication

My heart ordered for thee: “Seek my face.”
Thy face, my Lord, I seek.

Psalm 27 of David
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Chapter 1

Introduction

1.1 Motivation

The fundamental question of computational complexity is classifying computational
tasks based on the amount of resources required to solve them in various models of
computation [Edm65; HS65; Emd90; Vol99; CK02; FH03; AB09; Juk12]. The amount
of resources for solving a computational task is typically measured as a function of
the size of the input representing an instance of the computational task at hand. The
models of computation themselves are divided into two main categories: uniform, e.g.
various Turing machine models, where a single object encompasses a single algorithm
solving any instance of the computational task; and nonuniform, e.g. various circuit
models, where the computational task is solved by a family of independent programs,
one for each input size. In other words, the specification of a program for solving
task instances of size n can depend on n; while the specification of an algorithm is
independent of n. We use “algorithm” to refer to a member of some uniform computa-
tional model and “program” to refer to a member of some nonuniform computational
model. Nonuniform models are considered hardware computational solutions whereas
uniform models are considered software solutions [KL82]. A nonuniform program
for solving task instances of a particular size can hardcode a small amount of extra
information which can help in solving those task instances. This extra information
called advice is essentially the nonuniform part of the program [Sch76; Pip79; Ruz79;
KL82]. Uniform algorithms are as capable as nonuniform programs generated by a
uniform algorithm; while uniform algorithms with suitable advice are as capable as
nonuniform programs. See figure 1.1. A uniform algorithm A can be considered a
family of programs with no nonuniform advice by simply taking the family {A}n

1
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Figure 1.1: Uniformity and Advice for Computational Complexity

and interpreting the nth member of the family as the algorithm A restricted to task
instances of size n.

A computational complexity class is typically defined by introducing measures of
resource complexity for a model of computation and putting restrictions on the amount
of available resources. E.g. the class of (decision problems solvable by) polynomial-time
Turing machines P = DTime(nO(1)) is obtained by defining the worst-case running-
time of Turing machines and considering only those Turing machines which run
in at most polynomial time with respect to the size of their input. Similarly, the
class of (decision problems solvable by) polynomial-size circuit families Size(nO(1))

is obtained by defining the size of circuits and considering only circuit families of
polynomial size with respect to the size of their input. Transformations from uniform
to nonuniform and from nonuniform to uniform mentioned in the previous paragraph
often remain valid for robust complexity classes with suitable advice and uniformity
conditions. E.g. DTime(nO(1)) machines with a polynomial amount of advice are as
capable as Size(nO(1)) circuit families; while DTime(nO(1)) machines are as capable as
Size(nO(1)) circuit families uniformly generated by a DTime(nO(1)) algorithm. For this
reason Size(nO(1)) is also denoted by P/poly — the class of (decision problems solvable
by) polynomial-time Turing machines with a polynomial amount of advice. There are
two general ingredients for these transformations: the transformation of a uniform
algorithm with a fixed input size to a program as in Cook’s theorem [Coo71]; and a
uniform algorithm for evaluation of programs on inputs, e.g. there is an algorithm in P
for the Circuit Value Problem [Lad75]. See figure 1.2. Our main reference for uniform
and nonuniform computational complexity is [Vol99].

Proof complexity, in turn, is concerned with the study of the amount of “reasoning
resources” required for proving mathematical theorems [Coo75; Rec76; CR79; Bus86;
Kra95; CN10]. Proof complexity is mainly concerned with provability of universal
formulas of the form ∀n ϕ(n) in first-order arithmetic theories. Reasoning in mathe-
matics is typically carried out in first-order theories like ZFC or PA, implicitly if not
explicitly. The main topic of study in uniform proof complexity is the provability of
universal formulas in various arithmetic theories. E.g. we can study the provability of
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Figure 1.2: Uniform and Nonuniform Computational Models

the soundness of SAT algorithms uniformly in a theory like PV for polynomial-time
computable concepts [Coo75; CU93]. We can view a universal formula ∀n ϕ(n) as
a family of propositional formulas {ϕ(n)}n. The main topic of study in nonuniform
proof complexity is the length of proofs for families of tautologies. E.g. we can study
the length of nonuniform proofs for the soundness of SAT algorithms in a proof system
restricted to polynomial-time computable concepts like EFrege where lines in the proof
correspond to polynomial-size circuits [Kra12].

Early work in uniform proof complexity stemmed from the logical studies of arith-
metic with concerns about computational feasibility [Par71; Coo75]. Nonuniform proof
complexity originated from the study of the computational complexity of automatic
theorem proving algorithms [Tse68; Coo71; CR74; Coo75]; which led to the theory
of NP-completeness and the notion of polynomial-time computable reductions be-
tween problems. Proof systems can be viewed more generally as nondeterministic
algorithms for the tautology problem TAUT, the dual of the NP-complete satisfiability
problem SAT. An accepting execution history of a sound and complete algorithm for
TAUT on a tautology can be viewed as a proof for the tautology. Similarly, a rejecting
execution of a sound and complete algorithm for SAT on an unsatisfiable formula ϕ

can be viewed as a refutation proof for the validity of ¬ϕ. The idea of viewing the
execution history of an algorithm on an input as a proof goes back to at least the dawn
of computational complexity theory, e.g. [Rab60]. The amount of reasoning resources
used in a proof of a tautology is often closely related to the amount of computational
resources used by SAT algorithms corresponding to the proof system, e.g. the length of
a proof corresponds to the length of an execution history, which in turn is closely tied
to its running-time. The existence of a super proof system where every propositional
tautology has a polynomial-size proof is equivalent to NP = coNP. We are not close to
settling the existence of a super proof system. Even the question about the existence
of an optimal proof system which up to a polynomial overhead is as efficient as any
other proof system remains open [KP89; Kra95]. New links between the existence of an
optimal proof system and open questions have been discovered in recent years. E.g.
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the existence of an optimal proof system is equivalent to the existence of a descriptive
logic that captures P in descriptive complexity theory [CF10].

The length of proofs in proof systems is also of interest for algorithmic reasons even
when those proof systems are known not to be super. A rejecting execution of the
DPLL SAT algorithm [DP60; DLL62] and its variants — including those using various
heuristics like Variable State Independent Decay (VSID) variable branching [KSM11],
Conflict-Driven Clause Learning (CDCL) [MLM09], and random restarts [GSK98] — can
be converted to a proof in the Resolution proof system [Rob65] of similar size. As
a result, an exponential lower bound on the length of the proofs of the Pigeonhole
Principle tautologies (PHP) in a proof system like Resolution [Hak85] implies a lower
bound on the running time of the DPLL-based SAT algorithm used in practice. In the
other direction, it is known that variants of CDCL SAT algorithms where heuristics
like VSID are replaced with nondeterminism can find proofs corresponding to proofs
in Resolution and its subsystems [BKS04; PD11; BS14b]. These connections provide a
theoretical foundation for evaluating and developing SAT algorithms supplementing
the experimental benchmarking employed by engineers and practitioners for the
evaluation and comparison of SAT algorithms. All known explicit hard instances
for SAT algorithms are obtained through proof complexity lower bounds. Similar
connections exist between semi-algebraic proof systems and optimization algorithms
for linear, semi-definite, and sum of squares programming frameworks [GHP02; CT12;
BS14a].

The soundness of a correct algorithm on inputs of a fixed size can be viewed as a
tautology. Therefore, we can study the proof complexity of proving the soundness of
algorithms. This provides a conceptual measure for classifying algorithms in addition
to their computational complexity. Fascinatingly, soundness statements turn out to
be universal for proof complexity classes analogous to circuit evaluation problems
being universal for computational complexity classes. If a proof system Q has a short
proof for the soundness of another proof system Q′ and satisfies some basic closure
properties, it has short proofs for all tautologies with short proofs in Q′ [Coo75; Kra12].
Soundness tautologies are analogous to complete problems for complexity classes.

The classification of algorithms based on the axioms required to prove their sound-
ness is a special case of bounded reverse mathematics [Ngu08; CN10], which itself is a
refinement of reverse mathematics [Sim09] concerned with the computational complexity of
concepts required for proving mathematical theorems rather than their computability.
Reverse mathematics classifies theorems using RCA0 as the base theory, which corre-
sponds to the comprehension axiom for recursive sets. Bounded reverse mathematics
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Formula Tautology

Uniform ϕ(X) � ∀X ϕ(X)

Sectioned {ϕ(X)}n � {∀X = n ϕ(X)}n

Advice {ϕ(X, F(n))}n � {∀X = n ϕ(X, F(n))}n

Nonuniform {ϕn(X)}n � {∀X = n ϕn(X)}n

F is an advice function from natural numbers to binary strings.

Figure 1.3: Uniform and Nonuniform Tautologies

classifies theorems using V0 as the base theory. The theory V0 is a two-sorted version
of Buss’s bounded arithmetic theories [Bus86] based on the two-sorted language of
Zambella [Lei91; Ign95; Zam96] and corresponds to the comprehension axiom for
AC0 sets [Ngu08; CN10]. Theories and proof systems have been designed for various
computational complexity classes and to formalize results in computer science and
mathematics in them [Sol01; Jeř05; Kol05; Mor05; Ske06; Pit07; Ngu08; Aeh10; Lê14;
Pic14]. These theories are typically defined either using a descriptive complexity char-
acterizations or a complete problem for the complexity class. Our main reference for
descriptive complexity is [Imm99].

Bounded arithmetic theories have also been used as a framework to study and for-
malize the difficulty of proving lower bounds in computational complexity theory. The
natural proofs barrier [RR94] for circuit lower bounds was conceived in tandem with
attempts to formalize the existing circuit lower bounds in weak bounded arithmetic
theories [Raz95a] (which resulted in a significantly simpler proof of Håstad’s Switching
Lemma) and prove that strong circuit lower bounds are not attainable in those theories
[Raz95b; Pic15].

These bounded arithmetic theories correspond to uniform computational complex-
ity classes and Cook-Reckhow proof systems correspond to nonuniform models of
computation. There are connections between uniform and nonuniform proof complex-
ity parallel to computational complexity theory. We can consider a proof π of a formula
∀X ϕ(X) in a theory T as a family of proofs by fixing the size of the free variable
X: {π(n) : T ` ∀X = n ϕ(X)}n. We can translate these formulas to (quantified)
propositional formulas using propositional translation if ϕ(X) is a bounded formula.
Nonuniformity can be obtained by adding advice. We need to be careful since formulas
and proofs both can be uniform or nonuniform. See figures 1.3 and 1.4 for possible
combinations.

In the other direction, assume that theory T proves the soundness of a class of
nonuniform proofs F . If the nonuniform formulas and proofs can be generated uni-
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Uniform Tautology: ∀X ϕ(X)

Uniform Proof: π π: T `∀X ϕ(X)

Sectioned Tautology: {∀X = n ϕ(X)}n

Uniform Proof: π {π: T `∀X = n ϕ(X)}n

Sectioned Proof: {π(n)}n {π(n): T `∀X = n ϕ(X)}n

Proof with Advice: {π(n, G(n))}n {π(n, G(n)): T `∀X = n ϕ(X)}n

Nonuniform Proof: {πn}n {πn: T `∀X = n ϕ(X)}n

Tautology with Advice: {∀X = n ϕ(X, F(n))}n

Uniform Proof: π {π: T `∀X = n ϕ(X, F(n))}n

Sectioned Proof: {π(n)}n {π(n): T `∀X = n ϕ(X, F(n))}n

Proof with Advice: {π(n, G(n))}n {π(n, G(n)): T `∀X = n ϕ(X, F(n))}n

Nonuniform Proof: {πn}n {πn: T `∀X = n ϕ(X, F(n))}n

Nonuniform Tautology: {∀X = n ϕn(X)}n

Uniform Proof: π {π: T `∀X = n ϕn(X)}n

Sectioned Proof: {π(n)}n {π(n): T `∀X = n ϕn(X)}n

Proof with Advice: {π(n, G(n))}n {π(n, G(n)): T `∀X = n ϕn(X)}n

Nonuniform Proof: {πn}n {πn: T `∀X = n ϕn(X)}n

F and G are advice functions from natural numbers to binary strings.

Figure 1.4: Uniform and Nonuniform Proofs
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formly inside the theory and the theory uniformly proves the correctness of the gener-
ated proofs, we can obtain a uniform proof. See figures 1.5 and 1.6.

We have already mentioned that the bounded arithmetic theory for a complexity
class is obtained by adding a comprehension axiom. Moreover, the class of provably
total functions of the theory turns out to be exactly those computable in the complexity
class. Similarly, there are witnessing theorems in the reverse direction for nonuniform
proof complexity classes which are obtained by restricting the cuts to circuits from
the nonuniform complexity class[CN10]. Figure 1.7 states the connections for the
complexity classes AC0, NC1, and P.

1.2 Motivation for the Thesis

There are two underlying themes behind our work. First, we are interested in transfer-
ring tools and methods from computational complexity to proof complexity. Consider
lower bound results in nonuniform computational complexity. We know from [Ajt83;
FSS84; Hås87] that parity requires exponential-size bounded-depth circuits. [Ajt88;
BIK+92; Pit92; PBI93; KPW95] proved a corresponding result for bounded-depth Frege
proofs: the pigeonhole principle tautologies require exponential-size bounded-depth
Frege proofs. The result is obtained by proving a proof complexity version of Håstad’s
switching lemma for bounded-depth proofs. See [UF96] for a simplified exposition.
Here the pigeonhole principle tautologies correspond to the parity function. Trans-
ferring results from computational complexity to proof complexity is not a straight-
forward task. E.g. it is known for almost 30 years [Raz87; Smo87] that bounded-depth
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ΣB
0 = AltTime(O(1), O(lg n)) = AC0 AC0/poly

2Basic + ΣB
0 -CA = V0 Frege-DepthSize(O(1), nO(1))

AltTime(O(lg n), O(lg n)) = NC1 NC1/poly

V0 + MBBFE = VNC1 Frege-Size(nO(1))

P = DTime(nO(1)) P/poly

V0 + CV = VPV EFrege-Size(nO(1))

Cook + Advice

Comprehension Axiom Cuts

Circuit Evaluation + Uniformity

Propositional Translation + Advice

Provably Total Functions Witnessing

Soundness + Uniformity

Cook + Advice

Comprehension Axiom Cuts

Circuit Evaluation + Uniformity

Propositional Translation + Advice

Provably Total Functions Witnessing

Soundness + Uniformity

Cook + Advice

Comprehension Axiom Cuts

Circuit Evaluation + Uniformity

Propositional Translation + Advice

Provably Total Functions Witnessing

Soundness + Uniformity

Figure 1.7: Diagram of Correspondences for AC0, NC1, and P
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circuits with mod 2 gates require exponential size to compute the mod 3 function.
However, despite considerable effort, a similar result for bounded-depth Frege proofs
with formulas containing mod 2 gates remains elusive. The idea of using tools from
computational complexity theory in proof complexity can be achieved also by recasting
questions from proof complexity as pure complexity theory questions. This idea has
been developed in a systematic manner in [Kra10]. We still think transferring tools
from computational complexity to proof complexity can help us to achieve a better
understanding of proof complexity. Another example of this kind of connection is the
relation between the PH hierarchy in computational complexity and Buss’s S2 hierarchy
in bounded arithmetic [Bus86]. Yet another example is the connection between “natural
proofs” in complexity theory and unprovability of circuit lower bounds in bounded
arithmetic theories [RR94; Raz95b]. We are interested in uniform proof complexity
results because it seems plausible that we may be able to exploit uniformity, e.g. obtain
finer hierarchy results, and prove new separations in uniform proof complexity where
a nonuniform version is not known similar to the separation of PP from the uniform
class TC0 in computational complexity [All99].

Inside this theme our research was motivated by the result from [FPS15] that
subexponential-size bounded-depth Frege proofs simulate Frege proofs which provides
an alternative proof of non-automatizability of Frege under plausible cryptographic con-
jectures [BPR00; BDG+04]. Our goal was to obtain a uniform version of this simulation.
A uniform version would clarify the underlying concepts and essential requirements
for the result and would make it possible to extend it to new stronger proof systems
corresponding to other computational complexity classes like NL and SC. This would
allow us to use strong lower bounds against bounded-depth Frege proofs to prove
lower bounds against these stronger proof classes. Moreover, combining these results
with uniformity may lead to stronger lower bounds for the uniform proof classes. In
addition, the techniques developed may help towards proving a proof complexity
version of [AK10].

We were interested in obtaining a proof complexity version of [AK10] which shows
that if the Boolean formula evaluation problem (BFE) is inside TC0 then it has circuits
of size n1+ε for arbitrary small ε > 0. The contrapositive of this statement implies that
to separate TC0 from NC1, a difficult open problem, we only need a slightly superlinear
lower bound on the size of TC0 circuits for BFE. A corresponding proof complexity
statement would replace TC0, NC1, and BFE with TC0-Frege, Frege, and soundness
tautology for Frege.

The second underlying theme is clarifying and improving our understanding of the
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role played by uniformity and nonuniformity in computational and proof complexity.

1.3 Contributions of the Thesis

On the conceptual side, we clarify some notions and connections in proof complexity.
The objective is to develop proof complexity in a more organized and systematic
manner. For example, sometimes in the literature bounded-depth Frege is confusingly
called a proof system despite the fact that it is not really a proof system but a family
of proof systems. Polynomial-size bounded-depth Frege is a proof complexity class.
We define the notion of proof complexity class, which allows us to properly discuss
polynomial-size bounded-depth Frege and other interesting classes like subexponential-
size bounded-depth Frege. The notion of computational complexity class plays a
central role in computational complexity; the notion of proof complexity class is its
proof complexity sister. This also allows us to discuss the notion of the universality
of a class of formulas for a proof complexity class. Circuit evaluation problems and
soundness statements take an even more central role. Figure 1.7 demonstrates some
benefits of these conceptual clarifications.

Many interesting complexity classes like NP, polynomial-size DNF formulas, and
SubExp are not closed under composition. However, the classes of functions associated
with arithmetic theories are closed under composition. This is a major obstacle for
designing bounded arithmetic theories for these classes. We provide a novel frame-
work of io-types to develop theories for complexity classes which are not closed under
composition. We use this framework to design a class of theories nε-ioV∞ for com-
plexity classes AltTime(O(1), nε) with ε < 1, which correspond to uniform succinct
subexponential-size bounded-depth circuits.

We design a new proof system H for relativized quantified propositional formulas
with Boolean function symbols. We provide a propositional translation from our
theories to subsystems of H and transform the resulting proofs to bounded-depth Frege
proofs. Our translation framework is systematic and clean and can be easily adapted to
other axioms. It essentially reduces the problem of propositional translation to finding
suitable explicit witnessing formulas for axioms and providing propositional proofs
for the translation of axioms. See figure 1.8.

We prove and formalize the following containment between computational com-
plexity classes in our nε-ioV∞ theories:

NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1/δ), O(nδ))
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ΣB≤nε

∞ = AltTime(O(1), O(nε)) DepthSize(O(1), 2O(nε))

ioV0 + ΣB≤nε

∞ -CA = nε-ioV∞ Frege-DepthSize(O(1), 2O(nε))

Cook + Advice

Comprehension Axiom Cuts

Circuit Evaluation + Uniformity

Propositional Translation + Advice

Provably Total Functions Witnessing?

Soundness + Uniformity

The relations between uniform and nonuniform computational and proof complexity classes:

• Uniform computation complexity class: AltTime(O(1), O(nε)).

• Nonuniform computational complexity class: DepthSize(O(1), exp(O(nε))).

• Uniform proof complexity class: nε-ioV∞.

• Nonuniform proof complexity class: Frege-DepthSize(O(1), exp(O(nε))).

• An AltTime(O(1), O(nε)) algorithm can be transformed into a DepthSize(O(1), exp(O(nε))) circuit
family using Cook’s translation from Turing machines to circuits (chapter 7). This result also
holds when AltTime(O(1), O(nε)) algorithms are supplied with advice (advice is provided as an
oracle).

• The evaluation problem for DepthSize(O(1), exp(O(nε))) where circuits are given as oracles is
in AltTime(O(1), O(nε)) (chapter 7, theorem 17). A uniform DepthSize(O(1), exp(O(nε))) circuit
whose connection language is in DLogTime can be transformed into an AltTime(O(1), O(nε))

algorithm.

• nε-ioV∞ is obtain by adding a comprehension axioms for AltTime(O(1), O(nε)) functions (sec-
tion 8.1, definition 63).

• The class of provably total functions of nε-ioV∞ is AltTime(O(1), O(nε)) (section 8.1, theorem 19).

• A ΣB
0 formula can be translated into a polynomial-size bounded-depth propositional formula fam-

ily. An nε-ioV∞ proof of a ΣB
0 formula can be translated into a Frege-DepthSize(O(1), exp(O(nε)))

proof family of the translation of the ΣB
0 formula (section 8.1.2, theorem 20). The result also holds

in the presence of additional function symbols and axioms.

• The soundness of Frege-DepthSize(O(1), exp(O(nε))) proofs is provable in nε-ioV∞. The sound-
ness of polynomial-size nε-bdG∞ proofs is also provably in nε-ioV∞ (section 8.1.3, theorem 21). A
uniform polynomial-size nε-bdG∞ proof of the translation of a ΣB

0 formula can be transformed
into a nε-ioV∞ proof of the ΣB

0 formula.

Figure 1.8: Diagram of Correspondences for AltTime(O(1), O(nε))
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Table 1.1: Our Uniform Proof Complexity Result

Nonuniform Uniform
Computational

Complexity
NC1/poly ⊆ DepthSize(O(1/ε), 2O(nε))

(Folklore)
NC1 ⊆ AltTime(O(1), O(nε))

[AK10], (theorem 17)
Proof

Complexity
FregeSize(nO(1)) ⊆ O(1/ε)-FregeSize(2O(nε))

[FPS15]
ioVNC1 ⊆ nε-ioV∞

(theorem 26)

where δ > 0 is arbitrary. We use the formalization to show that our nε-ioV∞ theories
contain the bounded arithmetic theory ioVNC1 corresponding to complexity class NC1.
This gives a uniform version of [FPS15]. See table 1.1.

We use the fact that soundness tautologies for Frege are universal for polynomial-
size Frege proofs and are provable in ioVNC1. This allows us to transform polynomial-
size Frege proofs to subexponential-size bounded-depth Frege proofs.

We are aware that the correspondence between uniform and nonuniform com-
putational complexity and proof complexity is not perfect. The general notion of a
computational complexity class as an arbitrary set of computational tasks is too un-
structured to be useful. Even when the class has a nice and robust structure like P, BPP,
and P/poly, the correspondence is not one to one: the nonuniform versions of both P
and BPP with a polynomial amount of advice turn out to be P/poly. The situation in
proof complexity is not different. We need to clarify what we expect from a reasonable
correspondence. In section 9.1 we express our view that a category theoretical perspec-
tive may shed some light on the situation if we can find nice subcategories of uniform
and nonuniform proof classes with nice adjoint functors between them.

Regarding [AK10], we were unable to obtain a proof complexity version. See
question 6 and the following discussion in chapter 9 on issues involved.

Many of the results in this thesis originally appeared in [GC13].

1.4 Related Work

A major part of our work was motivated by the goal of obtaining a uniform version
of [FPS15]. We also reprove the main result from the uniform version. [Mül13] in-
dependently reproved the main result of [FPS15] through model-theoretic means by
interpreting VNC1 in polylogarithmic cuts of models of V0 and formalizing Nepomn-
jascij’s Theorem. Our results are proof-theoretic. In addition, we provide a theory for
AltTime(O(1), nε) and use it to provide a uniform version. [Mül13] does not provide a
uniform version. See table 1.1. Our method also applies to stronger theories like VNL
since we can prove and formalize a result stronger than Nepomnjascij’s theorem. The
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stronger containment means that theories corresponding to complexity classes NL and
SC are contained in our theory for AltTime(O(1), nε). Therefore, proof systems for them
can be converted to subexponential-size bounded-depth Frege proofs.

Our proof system H for relativized quantified propositional formulas is an extension
of quantified propositional proof system G of [KP90]. A similar proof system called
QPC(R) is introduced in [Coo12]. The proof system G and its subsystems are extensively
studied [Kra95; CS99; CM05; Per09; CN10]. A nice property of our proof system is that
it allows translated proofs to maintain the structure of proofs in bounded arithmetic
theories.

The notion of “safe” and “normal” variables is introduced in [BC92] in the context
of polynomial-time computable functions to control recursion and capture polynomial-
time computable functions without explicit bounds. Their goal was to design a function
algebra for FP. On the hindsight, it is possible to think of their algebra as an equational
arithmetic theory with safe and normal types. In this way, we can view input and
output types to correspond to normal and safe types. Alternatively, we can build an
equational theory from our io-typed theories and consider the resulting typed function
algebra. Another older related work is [CT86] where a bounded arithmetic theory
is designed for the k-fold exponential functions, k-ExpF, which is not closed under
composition. They achieve this by using k sorts and having an exponential function
from each sort to the next one. This is similar to our idea of control composition using
types. The issue of controlling the recursion and growth of functions comes up in
various topics, most recently in implicit complexity theory and substructural logics
[Dal12].

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides some preliminary
results we need from computational and proof complexity from the literature. Chap-
ter 3 introduces our io-typed bounded arithmetic theories. In chapter 4 we define
our relativized quantified propositional proof system H and its subsystems. The
chapter also introduces proof complexity classes and reductions between them and
discusses the universality of soundness statements. Chapter 5 is devoted to propo-
sitional translation from io-typed theories to proof families in H. This provides the
connection from bounded arithmetic theories to proof complexity classes. Chapter 6
is devoted to the reverse direction and its essential ingredient: the provability of
soundness of proof complexity classes in theories. Chapter 7 provides the proof for
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NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1/δ), O(nδ)). In chapter 8 we introduce our
theories nε-ioV∞ and ioVNC1 and show that the former contains the latter. Combining it
with the results from previous chapters we obtain an alternative proof of the result from
[FPS15]. Chapter 9 summarizes our contributions and discusses some open problems
for the future directions.



Chapter 2

Preliminaries

Notation 1. We use “X ” to refer to some fixed expression of a mathematical statementX inside
a language. E.g. “τ � ϕ” is a formula expressing that the truth assignment represented by
propositional variables denoted by τ satisfies the formula represented by propositional variables
denoted by ϕ. We use pX q where X is a mathematical object for some fixed encoding of X by
truth values > and ⊥. E.g. pπq is the binary encoding of the proof π.

Definition 1. The circuit evaluation problem for the circuit class DepthSize(d(n), s(n)) is
the problem of computing the output of a given circuit in DepthSize(d(n), s(n)) on a given
input, with the promise that the input is a circuit from the class. If C is defined as the union
of DepthSize classes, then the circuit evaluation problem for C is the set of circuit evaluation
problems for its members. We use C-Eval to denote the circuit evaluation problem for C.

Example 1. DepthSize(d, nk)-Eval is the problem of computing the output of a circuit of size
nk and depth d on an input of size n. AC0-Eval is the set of circuit evaluation problems, one
problem for each depth and each size.

Remark 1. Note that we can reduce DepthSize(d, nk)-Eval to DepthSize(d, n)-Eval by padding
the input. In other words, the class of polynomial-size depth d circuits has a complete problem
under a rather weak class of reductions. Therefore, the restriction on the size of the circuit is
not required and we can simply consider the problem of evaluating a given depth d circuit on a
given input. However, the restriction on depth is necessary. Otherwise, we would be evaluating
polynomial circuits of arbitrary depth which is outside AC0. Moreover, AC0 does not have a
complete problem with respect to a class of fix-depth reductions.

Theorem 1. DepthSize(O(1), 2O(t(n)))-Eval are in AltTime(O(1), O(t(n))).

Proof. This follows from the fact that the AC0 circuit evaluation problems are in
DLogTime-uniformAC0 = AltTime(O(1), O(t(n))) by a padding argument.

15
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Definition 2 (Projections). A function family F = {Fn}n is called a projection if each output
bit of F depends on at most one bit of its input. If the size of |F| is polynomially bounded, then
it is called a p-projection.

Example 2. Every function whose output does not depend on its inputs is a projection.

Example 3. The identity function is a projection.

Theorem 2. DepthSize(O(d(n)), O(t(n))-Eval is complete for AltTime(O(d(n)), O(t(n)))
under first-order polynomial-projections.

Proof. The proof is similar to [Imm99, Prop. 11.10].

Complexity classes like AC0 and NC1 are uniform using their original definition.
Nonuniform versions are indicated as AC0/poly and NC1/poly.

Formulas in the language of two-sorted bounded arithmetic are closely connected
to formulas in descriptive complexity. E.g. FO formulas in descriptive complexity can
be converted to ΣB

0 formulas of two-sorted bounded arithmetic and vice versa: the
string length function | | of bounded arithmetic acts like max in descriptive complexity;
quantification over numbers with bound ≤ nk is equivalent to a block of k quanti-
fiers in descriptive complexity; quantification over strings of size nk is equivalent to
quantification over a k-ary relations in descriptive complexity; order corresponds to
order in descriptive complexity; string membership x ∈ Y with string Y of length nk

corresponds to a relation RY(ix
0 , . . . , ix

k−1) in descriptive complexity where RY is the
relation corresponding to Y and x = ∑j<k ix

j nj.
A search problem for a relation Q is the task of finding a π such that Q(π, ϕ) for

a given ϕ ∈ dom(Q). In multivalued function notation, given ϕ ∈ dom(Q) return a
π ∈ Q(ϕ).

A many-one reduction from a search problem Q to another search problem Q′ is a
pair of functions Ri and Ro such that

∀ϕ ∈ dom(Q)
[
Q′(Ri(ϕ)) 6= ∅ ∧ ∀π ∈ Q′(Ri(ϕ)) Ro(ϕ, π) ∈ Q(ϕ)

]
.

A reduction is polynomially bounded if Ri and Ro are polynomially bounded functions.
A reduction is polynomial time if Ri and Ro are computable in polynomial time.



Chapter 3

Uniform Proof Complexity:
Bounded Arithmetic Theories with
Input/Output Types

This chapter is devoted to setting up the framework for our first-order bounded
arithmetic theories. We define io-typed theories (section 3.1) and use them to provide
theories for complexity classes which are not closed under composition like bounded-
depth subexponential-size circuits. Our base theory will be ioV0 (section 3.3). The usual
framework for defining bounded arithmetic theories cannot deal with such classes
because the set of provably total functions of theories in the usual framework will be
closed under composition.

We start by defining an io-typed version of LK and the base theory 2Basic for two-
sorted bounded arithmetic in [CN10].

3.1 io-Typed Two-Sorted Bounded Arithmetics

We work with two-sorted theories with number and string types. The main idea of
io-typed theories is to restrict composition by distinguishing between input objects
and output objects. The intuition is that the input-type terms are going to be small
(of linear size) while the output-type terms can be large (of polynomial size, like the
original two-sorted theories of bounded arithmetic). We also think of strings as finite
sets of numbers with explicit upper bounds on their members (the size of the string). A
number is in a string if the corresponding bit in the string is 1. A unary string is a string
with a single 1 bit. In other words, a unary string contains a single number. We can

17
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stro

stri

numo numi

Figure 3.1: Venn Diagram of Sorts and Types

think of numbers as unary strings. Our semantics differs slightly from [CN10] where
the second sort objects are finite subsets of N, and technically are binary strings starting
with 1. Our second sort objects are finite binary strings, and the most significant bit
does not need to be 1. E.g. 00000100 represents a binary string of length 8 containing
only number 2. Since it only has a single 1 bit it also represents the number 2. The
string 0101 represents a binary string of length 4 containing numbers 0 and 2. It is not a
unary number because it has several 1 bits. See figure 3.1.

Remark 2. There is a bijection between our models and the models of the language of 2Basic in
[CN10]: Simply add a 1 to left side of each binary string. Because of this bijection, we can view
strings as binary numbers.

Remark 3. Note that although we can think of numbers as a subset of strings there is nothing
in the language L2 or our theories requiring that.

Notation 2. Lowercase letters denote numbers: a, b, c denote input-type numbers, and x, y, z
denote output-type numbers. Uppercase letters denote strings: A, B, C denote input-type
strings, and X, Y, Z denote output-type strings. We use f , g for number-valued functions; F, G
for string-valued functions; s, t for number-valued terms; S, T for string-valued terms; ϕ, ψ for
formulas; Γ, ∆, Σ, Π for formula sets; S for sequents; and T for sets of sequents, e.g. theories.

Definition 3 (Language of io2Basic). The language L2 has two sorts: num for (unary)
numbers, and str for (binary) strings; and two types: i for input type, and o for output type.
Each term in the language has a sort and a type. The input types are subtypes of the output
types, i.e. every object of input type is also an object of output type: numi ⊆ numo = num,
stri ⊆ stro = str.

The language L2 has function symbols 0, 1, + (addition), · (multiplication), pd (predeces-
sor), | | (length); and relation symbols = (equality), ≤ (comparison), and ∈ (membership/bit).
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The 0, 1, and the function symbols +, ·, pd act only on numbers and produce numbers. Strings
can only appear in ∈ and | |. The length function | | acts on strings and returns the length as
a number. The membership relation x ∈ Y is true when x < |Y| and the xth bit of the string Y
is 1. x ∈ Y is false when |Y| ≤ x.

Every number/string term in the language is an output-type term of the same sort. The
input-type terms of the language are a subset of output-type terms. Input-type variables are
input-type terms, and when functions 0, 1, | |, +, pd are applied to input-type terms, the result
is also of input-type. Formally, the input-type terms are defined inductively: input-type terms
include input-type variables and constants 0 and 1; input-type terms are closed under | |, +,
and pd.

Notation 3. We abbreviate x ≤ y ∧ x 6= y as x < y.

Notation 4. We abbreviate |Y| = x and |Y| ≤ x by Y = x and Y ≤ x. A bounded string
quantifier is a string quantifier with an explicitly given size e.g. ∃Y = x, ∀Y = x.

Notation 5. Equality for strings, X = Y, is an abbreviation for |X| = |Y| ∧ ∀x ≤ |X| (x ∈
X ↔ x ∈ Y).

Remark 4. Note that unlike [CN10] string equality is not part of the language. This simplifies
the propositional translation.

Notation 6. We abbreviate ∀x < |Y| (x ∈ Y → ϕ) as ∀x ∈ Y ϕ.

Definition 4 (ΣB
0 , ΣB

i , ΠB
i , ΣB

∞). Unless stated otherwise, by quantifiers we mean quantifiers
of both types. In one-sorted theories, the bounded formulas with at most i alternations of number
quantifiers comprise the union of the classes Σb

i and Πb
i . In two-sorted theories, these classes

are defined similarly and do not have any string quantifiers, but can have free string variables.
We will often be interested in the class of number bounded formulas ΣB

0 . A formula is ΣB
0 if it

does not have any string quantifiers and all number quantifiers in it are bounded by terms in
the language. Bounded formulas with at most i alternations of string quantifiers comprise the
union of the classes ΣB

i and ΠB
i . We define ΣB

∞ =
⋃

i ΣB
i .

Let Φ be a class of formulas. The formula class ∃BΦ consists of formulas starting with
bounded existential string quantifiers followed by a formula in Φ.

Definition 5 (Standard model N2 for L2 ). An L2 -structure has four sets for interpreting
num, numi, str, and stri, where numi ⊆ num and stri ⊆ str. The standard model N2 for
L2 is given by interpreting num and numi as 0∗10∗ and str and stri as {0, 1}∗ . Note that we
encode unary numbers using binary strings with a single 1 bit whose location index from
right determines the number. The operations and relations of L2 have the standard intended
interpretations as explained above.
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This more complex encoding of unary numbers is required since otherwise we
cannot consider nonconstant number-valued functions in nonuniform models of com-
putation. We need to be able to represent different unary numbers with the same
number of bits. The reason for choosing this particular encoding is its efficiency for
performing operations like checking the value of a given unary number. We discard
the leading zeros when considering these strings as numbers. For example, 00010 and
010 both represent number 1.

Notation 7. We use m and n for numbers and M and N for strings in the standard model.

Definition 6 (Size). The size of a number is the number itself. The size of a string is its length
as a number.

Definition 7 (Linear term). A linear term is a term built from constants 0 and 1, variables,
and +. A function has provably linear growth if the size of its output is provably bounded by
a linear term in the size of its inputs.

We adopt the sequent calculus LK of [CN10] with quantifier introduction rules to
respect the types. See tables 3.1 and 3.2. In the input-type quantifier introduction rules,
the target term must be an input-type term. Similarly, if the quantifier variable is of
output type, the eigenvariable must be an output-type variable. The intuition here is
that if we are deriving the existence of a small object with some property, we must have
a small object satisfying the property; or if we are deriving that a property holds for all
objects, the property must hold for an arbitrary object, not just small ones.

More formally, in ∃R and ∀L rules, if the quantification variable is of input type
then the target term must be also of input type. Similarly, in ∀R and ∃L rules, if
the quantification variable is of output type, then the eigenvariable must be also of
output type. These restrictions make sure that we cannot derive ∀a ϕ[x/a] ⇒ ∀x ϕ

and ∃x ϕ ⇒ ∃a ϕ[x/a]. The implications in the other direction are still provable
as expected: input types are subsets of output types, so ∀x ϕ ⇒ ∀a ϕ[x/a] and
∃a ϕ[x/a]⇒ ∃x ϕ are valid.

We write π : T ` ϕ for “π is an LK-proof of ϕ in the theory T ”, and T ` ϕ for “ϕ

has an LK-proof in the theory T ”.

Definition 8 (Parameters of a proof). We refer to the last sequent in a proof as its end-
sequent. Parameters of an LK proof are the free variables in its end-sequent.

Example 4. A proof of⇒ ∃X = |A| ∀x < |A| (x ∈ X ↔ x ∈ A) is given in figure 3.2.
The proof has a single parameter which is the variable A.
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⊥
⊥ ⇒

>
⇒ >

Id
ϕ⇒ ϕ

Γ⇒ ∆, ϕ
¬L

Γ,¬ϕ⇒ ∆
Not

Γ, ϕ⇒ ∆
¬R

Γ⇒ ∆,¬ϕ

Γ, ϕ, ψ⇒ ∆
∧L

Γ, ϕ ∧ ψ⇒ ∆
And

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ
∧R

Γ⇒ ∆, ϕ ∧ ψ

Γ, ϕ⇒ ∆ Γ, ψ⇒ ∆
∨L

Γ, ϕ ∨ ψ⇒ ∆
Or

Γ⇒ ∆, ϕ, ψ
∨R

Γ⇒ ∆, ϕ ∨ ψ

Γ⇒ ∆
WL

Γ, ϕ⇒ ∆
Weakening

Γ⇒ ∆
WR

Γ⇒ ∆, ϕ

Γ, ϕ, ϕ⇒ ∆
CL

Γ, ϕ⇒ ∆
Contraction

Γ⇒ ∆, ϕ, ϕ
CR

Γ⇒ ∆, ϕ

Γ1, ψ, ϕ, Γ2 ⇒ ∆
XL

Γ1, ϕ, ψ, Γ2 ⇒ ∆
Exchange

Γ⇒ ∆1, ψ, ϕ, ∆2
XR

Γ⇒ ∆1, ϕ, ψ, ∆2

Γ⇒ ∆, ϕ Γ, ϕ⇒ ∆
Cut

Γ⇒ ∆

Table 3.1: PK

⇒ |A| = |A|

x ∈ A⇒ x ∈ A
¬R

⇒ ¬x ∈ A, x ∈ A
∨R

⇒ x ∈ A→ x ∈ A

x ∈ A⇒ x ∈ A
¬R

⇒ ¬x ∈ A, x ∈ A
∨R

⇒ x ∈ A→ x ∈ A
∧R

⇒ x ∈ A↔ x ∈ A
WR

⇒ ¬x < |A|, x ∈ A↔ x ∈ A
∨R

⇒ x < |A| → (x ∈ A↔ x ∈ A)
∀R

⇒ ∀x < |A| (x ∈ A↔ x ∈ A)
∧R

⇒ |A| = |A| ∧ ∀x < |A| (x ∈ A↔ x ∈ A)
∃R

⇒ ∃X = |A| ∀x < |A| (x ∈ X ↔ x ∈ A)

Figure 3.2: LK Proof of⇒ ∃X = |A| ∀x < |A| (x ∈ X ↔ x ∈ A)
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Existential Quantifier Rules

Γ, ϕ⇒ ∆
∃L

Γ, ∃x ϕ⇒ ∆

Γ, ϕ⇒ ∆
∃L

Γ, ∃a ϕ⇒ ∆

Γ⇒ ∆, ϕ[x/t]
∃R

Γ⇒ ∆, ∃x ϕ

Γ⇒ ∆, ϕ[a/t]
∃R

Γ⇒ ∆, ∃a ϕ

Γ, ϕ⇒ ∆
∃L

Γ, ∃X ϕ⇒ ∆

Γ, ϕ⇒ ∆
∃L

Γ, ∃A ϕ⇒ ∆

Γ⇒ ∆, ϕ[X/T]
∃R

Γ⇒ ∆, ∃X ϕ

Γ⇒ ∆, ϕ[A/T]
∃R

Γ⇒ ∆, ∃A ϕ

Universal Quantifier Rules

Γ, ϕ[x/t]⇒ ∆
∀L

Γ, ∀x ϕ⇒ ∆

Γ, ϕ[a/t]⇒ ∆
∀L

Γ, ∀a ϕ⇒ ∆

Γ⇒ ∆, ϕ
∀R

Γ⇒ ∆, ∀x ϕ

Γ⇒ ∆, ϕ
∀R

Γ⇒ ∆, ∀a ϕ

Γ, ϕ[X/T]⇒ ∆
∀L

Γ, ∀X ϕ⇒ ∆

Γ, ϕ[A/T]⇒ ∆
∀L

Γ, ∀A ϕ⇒ ∆

Γ⇒ ∆, ϕ
∀R

Γ⇒ ∆, ∀X ϕ

Γ⇒ ∆, ϕ
∀R

Γ⇒ ∆, ∀A ϕ
Restrictions on variables:

• x, X, a, A in ∃L and ∀R are called eigenvariables and cannot appear freely in their bottom
sequent.

• t and T in ∀L and ∃R are called target terms and cannot have bound variables.

Restrictions on types:

• In the input-type quantifier rules, the target term must be of input-type.

• In the output-type quantifier rules, the eigenvariable must be of output-type.

Table 3.2: LK
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Definition 9 (Definability in the standard model). Let Φ be a set of formulas (for example
take Φ = ∃BΣB

0 ). We say that a relation P in the standard model is Φ-definable iff there
is a formula ϕ ∈ Φ with free variables ~x and ~X such that P = {(~n, ~N) ∈ N2 | N2 �

ϕ[~x, ~X/~n, ~N]}. The graph of a function f in the standard model is defined as {(~n, ~N, m) ∈
N2 | f (~n, ~N) = m}.

Remark 5 (ΣB
0 and AC0). The ΣB

0 definable relations comprise functions computable in
AltTime(O(1), O(lg n)) — which are the same as functions computable by AC0 circuits. See
[CN10, Theorem IV.3.6].

Definition 10 (Definability in a theory). Let f be a number-valued function. We say that a
function f is Φ-definable in T iff its graph is Φ-definable using a formula ϕ(~x, ~X, y) ∈ Φ and
T proves that ϕ defines a function, i.e. T ` ∃!y ≤ t(~x, ~X) ϕ(~x, ~X, y) for some term t(~x, ~X).

Let F be string-valued. The bit-graph of F is defined as {(~n, ~N, m) ∈N2 | m ∈ F(~n, ~N)}.
We say a string-valued function F is Φ-bit-definable in a theory T iff there is a formula
ϕ(~x, ~X, z) ∈ Φ and a number-valued term t(~x, ~X) such that

• t defines the length of F over the standard model, i.e. N2 � |F(~n, ~N)| = t(~n, ~N),

• ϕ defines the bit-graph of the function F over the standard model, and

• T proves that ϕ and t define a total function, i.e.

T ` ∃!Y = t(~x, |~X|) ∀z < t(~x, |~X|)
(

z ∈ Y ↔ ϕ(~x, ~X, z)
)

.

Remark 6. Note that in circuit complexity, the size of the output of a function must only
depend on the size of its inputs. Therefore, we require the size of F depends only on the size of
its arguments.

Definition 11 (io-typed provably total functions). We say that a function is provably
total in a theory T if the function is Φ-definable in T . The class of io-typed provably total
functions of a theory T consists of those functions that T can prove to be total when the inputs
to the functions are of input type. More formally, the free variables in ϕ corresponding to inputs
have input type.

Remark 7. Every provably total function is also io-typed provably total. However, the converse
need not be true. For a function to be io-typed provably total it is sufficient for the function to
be total over input-types. Therefore, the class of io-typed provably total functions of a theory
can be larger class than the usual class of its provably total functions.
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The class of io-typed provably total functions of a theory is the class of functions
we associate with the theory.

Remark 8. The appropriate class Φ of formulas in the definition above depends on the class
we want to capture. We want the provably total functions in T to be those in the complexity
class associated with T . For two-sorted theories associated with complexity classes contained in
polynomial time (such as ioV0 defined below), the right choice is Φ = ∃BΣB

0 [CN10]. For the
theory t(n)-ioV∞ defined in section 8.1 we choose Φ to be a larger class capable of expressing
functions computable in AltTime(O(1), O(t(n))).

Definition 12 (Extension by definition). When a function is provably total in a theory T ,
we can add a new function symbol to the language for it and include its definition as an axiom
in the theory to obtain an extension by definition of T .

When we extend the language by adding a new provably total function symbol, if we can
prove that the function has linear growth, then we can extend input-type terms to be closed
under the new function symbol.

Definition 13 (Substring). Consider the substring of X starting at bit y and of length z which
we denote by X[y, z]. It can be defined as follows:

• |X[y, z]| := z,

• x ∈ X[y, z] := x < z ∧ y + x ∈ X.

Example 5. Let X = 10110101, y = 5, and z = 3. The substring X[y, z] is the string 11.

Definition 14 (Fractional power). Consider the fractional power bx 1
d c, which we will write

simply as x
1
d , where d is a fixed positive integer. It can be defined as follows:

• x
1
d = y := yd ≤ x ∧ x < (y + 1)d.

Remark 9. The theory ioV0 defined later in this chapter is powerful enough to prove that the
fractional power function and substring are total and have linear growth. Therefore, we can add
them to the language and consider the input terms are closed under them when dealing with
theories containing ioV0.

Remark 10. When we extend the language of a theory by definitions the language will contain
new formulas. We have to check if the axiom schemes of the theory (e.g. comprehension) hold for
the enlarged class of formulas. For cases of interest like the ones above the techniques presented
in [CN10] suffice to show this is the case for our base theory ioV0. We will assume that the
axiom schemes for theories build upon our base theory are for formulas in the extended language.
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B1 x + 1 6= 0
B2 x + 1 = y + 1→ x = y
B3 x + 0 = x
B4 x + (y + 1) = (x + y) + 1
B5 x·0 = 0
B6 x·(y + 1) = x·y + x

B7 x ≤ y ∧ y ≤ x → x = y
B8 x ≤ x + y
B9 0 ≤ x
B10 x ≤ y ∨ y ≤ x
B11 x ≤ y↔ x < y + 1
B12 pd(0) = 0∧ (x 6= 0→ pd(x) + 1 = x)

L y ∈ X → y < |X|

Table 3.3: io2Basic

3.2 Theory io2Basic

We start by defining an io-typed version of 2Basic of [CN10].

Definition 15 (io2Basic). The theory io2Basic is given by axioms in table 3.3.

Remark 11. Note that unlike the original 2Basic in [CN10], our length function | | gives
only an upper bound on the size of binary numbers. In this sense, our axioms are similar to
the second-order theories in [Bus86]. A binary string is determined by its length and its bits.
This change does not make any essential difference in the presence of number induction for ΣB

0

formulas: the original version of the length function is definable.

3.3 Theory ioV0 for AC0

Our theory ioV0 is an io-typed version of the base theory V0 of [CN10] corresponding to
the complexity class AC0. Besides the axioms for io2Basic, we need an io-typed axiom
for induction, an io-typed axiom scheme for comprehension, and two type-conversion
axioms, one for each sort.

Definition 16 (The induction and comprehension axioms). The induction and comprehen-
sion axioms for io-typed theories are defined as follows:

• Ind := 0 ∈ X, ∀y < z (y ∈ X → y + 1 ∈ X)⇒ z ∈ X

• ϕ-CA :=⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ)

In the axiom ϕ-CA the formula ϕ can contain variables which are free in the axiom. However,
all variables which are free in the axiom must be of input type.

Remark 12. We could have used a stronger version of ΣB
0 -CA where the free variables have

output type. In that case, the input-type variable free part of the theory will be the same as V0.
The simpler axiom is sufficient and allows a conceptually and technically cleaner treatment.
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Although we do not want to allow arbitrary compositions, we may want to allow
some under specific conditions. The main condition of interest for us here is to avoid
increasing the size of the input strings. Therefore, we will add conversion axioms that
would allow us to create composition when the size of the computed intermediate
values are small.

Definition 17 (The conversion axioms). The conversion axioms for io-typed theories are
defined as follows:

• oiConvnum :=⇒ ∃b ≤ a ((b = x ∧ x ≤ a) ∨ (b = a ∧ a ≤ x))

• oiConvstr :=⇒ ∃B = a ∀z < a (z ∈ B↔ y + z ∈ X)

We refer to these two axioms together as oiConv. The first axiom tells us that the
minimum of two numbers is small when at least one of them is small, i.e. b = min(x, a)
is small. The second axiom tells us that a small substring of an output type string is
small. These axioms allow us to compose definable functions if the intermediate results
are small in some input variables.

There are stronger forms of conversion, e.g. a comprehension axiom from output
types to input types. However, these variations do not affect our results and we take
these weaker forms.

The theory ioV0 is obtained from io2Basic by adding the comprehension axiom for
ΣB

0 formulas, the induction axiom, and the conversion axioms.

Definition 18. The io-typed theory ioV0 is defined as follows:

• ioV0 := io2Basic + Ind + ΣB
0 -CA + oiConv.

As noted earlier the sets in AltTime(O(1), O(lg n)) = LH = FO = AC0 are pre-
cisely the sets definable by ΣB

0 formulas. Since ioV0 has comprehension for these sets,
polynomially-bounded functions with bit graphs in these sets are ∃BΣB

0 definable func-
tions in the theory. By a witnessing theorem, they are the only ∃BΣB

0 definable functions
in the theory. Thus the provably total functions in ioV0 coincide with the AC0 functions,
where we take the class Φ associated with this theory to be ∃BΣB

0 . As a general rule,
in our theories the comprehension axiom of the theory determines the computational
power of the theory.

Theorem 3. The class of provably total functions of ioV0 is AC0.
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Proof. We first prove the witnessing, i.e. every provably total function of ioV0 is in
AC0. We provide both a model-theoretic argument and a proof-theoretic argument to
illustrate the connection between io-theories with the two sorted theories of [CN10].

Let ψ be an arbitrary formula in the language of io2Basic. We can view ψ as a
formula in the language of 2Basic by ignoring the distinction between input and output
types. We show that V0 ` ψ. LetM be an arbitrary model of V0. We can viewM as a
model of ioV0 where stri = stro and numi = numo. It is straightforward to check that all
axioms of ioV0 hold in this model andM � ioV0. Therefore,M � ψ. SinceM was an
arbitrary model of V0 it follows that V0 ` ψ. Therefore, any provably total function of
ioV0 is in AC0.

Proof-theoretically, we can view any proof in ioV0 as a proof in V0 by ignoring the
distinction between input and output types.

We cannot directly rely on untyped theories of [CN10] for bootstrapping as io-
typed theories can be weaker. Let F be an AC0 function with a polynomial length
t(~n, ~N) = |F(~n, ~N)|. Since the bit-graph of any AC0 function can be represented by a ΣB

0

formula, there is a ϕ(~a, ~A, z) ∈ ΣB
0 that represents the bit-graph of F. We have to show

that ioV0 ` ∃!Y = t(~a, ~A) ∀z < t(~a, ~A) (z ∈ Y ↔ ϕ(~a, ~A, z)). The existence follows
from ϕ-CA. The uniqueness follows from the fact that two strings are equal if their
length and their bits are equal.

3.4 Theory ioVC

We can use ioV0 to define io-typed versions of other theories built upon V0. How-
ever, simply adding the same comprehension axiom used for VC in [CN10] might
not be sufficient. The io-typed version of these theories can be weaker than their
original version. The io-types do not allow arbitrary compositions of the provably
total functions of a theory. Therefore, adding the comprehension axiom for a problem
complete with respect to AC0 reductions might not capture the complexity class. This
is intentional and necessary since we are going to deal with complexity classes which
are not closed under composition (they are not closed even under composition with
AC0 reductions from the right; e.g. consider the subexponential-size bounded-depth
circuits where their AC0 closure contains all functions via padding). Therefore, we
cannot define an io-typed theory ioVC assuming that the provably total functions of
the theory are closed under composition. For example, the theory VTC0 captures TC0

because every TC0 function can be built by composing a finite number of MAJ and AC0
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functions1, i.e. TC0 = MAJ + AC0. This result is not useful for defining the io-typed
version of the theory. Another example is the theory VNC1, which captures NC1 be-
cause NC1 = MBBFE ◦ AC0 where MBBFE is the Monotone Balanced Boolean Formula
Evaluation problem.

With this in mind, we have to be careful about the representations of complexity
classes we use in the comprehension axiom. The main requirement for a reasonable
theory ioVC for computational complexity class C are as follows:

• ioVC has enough comprehension to evaluate problems in C.

• The provably total functions of ioVC are exactly the functions in C.

We use this framework to design theories for subexponential-size bounded-depth
Frege (section 8.1) and polynomial-size Frege (section 8.2) proof systems

1The function MAJ computes the majority for the rows of a given matrix, not a binary single string.
The result follows from the descriptive complexity result that TC0 is captured by language FOM, FO
with majority quantifiers. This does not hold for the majority function unless TC0 collapses.



Chapter 4

Nonuniform Proof Complexity:
Classes and Reductions

This chapter is devoted to nonuniform proof complexity. In this chapter we introduce
the notions of proof complexity classes (section 4.2) and proof reductions between them
(section 4.3), and prove the universality of the soundness of proof classes with respect to
suitable classes of proof reductions (theorem section 4.6). The soundness tautologies
for proof complexity classes are analogous to circuit evaluation problems for circuit
complexity classes.

The need for the notions of proof complexity classes and proof reductions arises
from the typically ad hoc treatment of proof classes like polynomial-size bounded-
depth Frege proofs — which is not a proof system — in the literature. We provide an
analogy to nonuniform computational complexity theory using these notions: a proof
system is akin to a model of computation; size and depth are complexity measures
over proofs as they are over circuits; a formula family belongs to a nonuniform proof
complexity class iff it has a proof family in that proof complexity class; nonuniform
proof classes like polynomial-size bounded-depth Frege are counterparts to circuit
complexity classes like AC0, the class of polynomial-size bounded-depth circuits; and
soundness formulas are universal for proof classes as circuit evaluation problems are
complete for computational complexity classes.

We will focus on relativized quantified propositional formulas with propositional func-
tion symbols (section 4.1) and the relativized quantified propositional proof system
H for them (section 4.2). The proof system H for relativized quantified propositional
formulas is obtained by extending Krajíček and Pudlák’s quantified propositional
proof system G [KP90] with propositional function symbols and by adding an exten-
sionality rule for those function symbols. A proof system similar to H called QPC(R)

29
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is introduced in [Coo12]. Our extensionality rule Ext corresponds to the axiom AX of
QPC(R).

4.1 Relativized Quantified Propositional Formulas

We first define the class of relativized quantified propositional formulas. The relativized
quantified propositional formulas are the nonuniform counterparts to relativized ΣB

∞

formulas representing functions in the relativized polynomial hierarchy.

Notation 8. The letters p, q, and r range over propositional variables; α, β and γ range over
propositional function symbols; ϕ and ψ range over formulas; Γ, ∆, Σ, and Π range over
sets/sequences of formulas. Each function symbol α has an arity denoted by |α|.

Definition 19 (Relativized quantified propositional formula). The logical symbols consist
of >, ⊥, ¬, ∨, ∧, ∃, and ∀. We have an infinite set of propositional variables denoted by V . Let
L be the set of propositional function symbols. The set of relativized quantified propositional
formulas of L, denoted by FormL, is defined inductively:

• Propositional constants: >,⊥ ∈ FormL.

• Propositional variables: V ⊆ FormL.

• Propositional functions: If α ∈ L and ~ϕ = ϕ0, . . . , ϕ|α|−1 ∈ FormL then α(~ϕ) ∈ FormL.

• Negation: If ϕ ∈ FormL then (¬ϕ) ∈ FormL

• Disjunction and conjunction: If ϕ, ψ ∈ FormL then (ϕ ∨ ψ), (ϕ ∧ ψ) ∈ FormL.

• Existential and universal propositional quantifiers: If ϕ ∈ FormL and p ∈ V then
(∃p ϕ), (∀p ϕ) ∈ FormL

Convention 1. When writing formulas we may omit some parentheses to enhance readability
as long as their omission does not cause ambiguity.

Definition 20 (Σq
i , Πq

i , Σq
∞). The set of relativized quantified propositions formulas with i

alternations of quantifiers starting with an existential (universal) quantifier are denoted by
Σq

i (L) (respectively Πq
i (L)), the set of quantifier-free formulas by Σq

0(L) = Πq
0(L), and the

set of all quantified propositional formulas by Σq
∞(L) = Πq

∞(L).

Notation 9. We use the following abbreviations:

• ϕ→ ψ for ¬ϕ ∨ ψ
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• ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ→ ϕ)

•
∨
~ϕ and

∨
i<n

ϕi for ((ϕ0 ∨ . . . ) ∨ ϕn−2) ∨ ϕn−1 where ~ϕ = ϕ0, . . . , ϕn−1.

•
∧
~ϕ and

∧
i<n

ϕi for ((ϕ0 ∧ . . . ) ∧ ϕn−2) ∧ ϕn−1 where ~ϕ = ϕ0, . . . , ϕn−1.

• ∃~p ϕ for ∃p0 . . . ∃pn−1 ϕ where ~p = p0, . . . , pn−1.

• ∀~p ϕ for ∀p0 . . . ∀pn−1 ϕ where ~p = p0, . . . , pn−1.

• ~ϕ↔ ~ψ for
∧

i<n
(ϕi ↔ ψi) where ~ϕ = ϕ0, . . . , ϕn−1 and ~ψ = ψ0, . . . , ψn−1

Definition 21 (Sequent). A sequent consists of a pair of (finite) formula sequences. Let S
be the sequent corresponding to the pair (Γ, ∆). We denote S by the Γ ⇒ ∆. The intended
meaning of Γ⇒ ∆ is

∨
ϕ∈Γ
¬ϕ ∨ ∨

ψ∈∆
ψ.

Definition 22 (Substitution). We say that a term is free in a formula iff all of its variables
are free in the formula. ϕ[p/ψ] denotes the formula resulting from substituting ψ for p in
ϕ. The usual restrictions on substitution apply: only free occurrences are replaced, and the
replacements must not become bound.

Definition 23 (Semantics for formulas). A truth assignment is a function τ : V →
{>,⊥}. A model for relativized quantified propositional formulas associates a propositional
function with each function symbol in L. We use τ,M � ϕ to express that the formula ϕ

is true under the truth assignment τ and the model M. When ϕ is true under all truth
assignments and all models we write � ϕ and say that ϕ is valid. We refer to the set of valid
formulas as tautologies and denote the set of tautologies by TautL.

Convention 2. We omit the model in case L is empty.

Definition 24 (Semantics for sequents). A sequent Γ ⇒ ∆ is true (under τ andM) iff
there is ϕ ∈ Γ which is false or there is ψ ∈ ∆ which is true. In other words, Γ⇒ ∆ if true iff∨
ϕ∈Γ
¬ϕ ∨ ∨

ψ∈∆
ψ is true.

Remark 13. The satisfiability problem for relativized quantified propositional formulas is
complete for NExpTime. The validity is complete for coNExpTime. See [Coo12].

Definition 25. A family of objects is an infinite sequence of objects. We call a family of
objects an object family.
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Example 6. A family of formulas is an infinite sequence of formulas. Let PHPn be the
formula

∧
i≤n+1

∨
k≤n

pik →
∨

i 6=j≤n+1

∨
k≤n

(pik ∧ pjk). Then the infinite sequence {PHPn}n is a

family of formulas. We use PHP to denote the formula family {PHPn}n.

Convention 3. We use the same symbols for objects as for families of objects. E.g. if {ϕn}n is
a family of formulas, we use ϕ for the family {ϕn}n.

Next, we define a number of complexity measures on formulas. The formula tree of
a formula is its construction tree where nodes are labeled with propositional variables,
nonlogical symbols, logical symbols, or quantifiers. For a tree T with labeled nodes, and
a set of labels L, the L-depth of T is the maximum number of labels from L in any branch
of T. For

∧
(also

∨
, ∃, and ∀) we ignore the consecutive repetitions of ∧ (respectively

∨, ∃, and ∀). The L-depth of a formula is the L-depth of its construction tree. We define
the following complexity measures over quantified propositional formulas:

Definition 26 (Size, logical depth, quantifier depth). Let ϕ be a quantified propositional
formula.

• Size: size(ϕ) is the number of symbols in ϕ.

• Logical depth: ldepth(ϕ) is the {¬,
∨

,
∧}-depth of ϕ.

• Quantifier depth: qdepth(ϕ) is the {∃, ∀}-depth of ϕ.

We extend these to sets of formulas, sequences of formulas, sequents, etc. The size of a
collection of objects is the total sum of the sizes of objects in it. The depth of a collection of
objects is the max depth of the objects in it.

Let µ be a complexity measure. The µ complexity of the family {ϕn}n is the function
n 7→ µ(ϕn).

Definition 27 (Formula complexity class). Let C be a class of formulas, e.g. relativized
quantified propositional formulas. A C formula complexity class is a set of C-formula families.

Typically a formula complexity class is defined by putting restrictions on the com-
plexity of formulas w.r.t. complexity measures. We will study subclasses of relativized
quantified propositional formulas with size, logical depth, and quantifier depth restric-
tions. We will consider the following bounds O(1), nε, nO(1), 2O(nε) where ε = 1

d .

Example 7. The formula family PHP from example 6 belongs to the formula complexity class
polynomial-size bounded-depth propositional formulas.
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Definition 28 (Concrete substitution instance). A concrete instance of a formula is ob-
tained by substituting (some of) its free variables with > and ⊥. We denote the set of concrete
instances of a set of formulas Γ by Γ.

4.2 Relativized Quantified Propositional Proof System H

Definition 29 (Proof system). LetQ be a relation on two binary string inputs. We say π is a
Q-proof for ϕ iff Q(π, ϕ) accepts, in which case we write π : Q ` ϕ. We say ϕ is provable
in Q iff ϕ has a Q-proof. A relation Q is a(n efficient) proof system for TautL iff it satisfies
the following conditions:

• efficiency: Q is computable in polynomial time, i.e. Q ∈ P.

• completeness: every L-tautology is provable in Q.

• soundness: every L-formula provable in Q is an L-tautology.

We are interested in families of proofs for families of formulas.

Definition 30 (Proof family). We say a proof family {πn}n is a Q-proof for a formula family
{ϕn}n and write {πn}n : Q ` {ϕn}n iff for all n, πn : Q ` ϕn.

Definition 31 (Frege-style proof system). A Frege-style proof systemQ is given by a finite
set of rules. A rule is given by a bottom sequent and a finite list of top sequents. The
list of top sequents can be empty, in which case we call it an axiom. An instance of a rule
is a substitution instance of the rule obtained by substituting formulas for free propositional
variables in it. A Q-proof for a sequent S is a finite labeled rooted dag where the labels for each
node and its parents form an instance of a rule in Q, and the label of the root is S . We refer to
S as the end-sequent of the proof. A proof for the formula ϕ is a proof for the sequent⇒ ϕ.

Definition 32 (Frege-style proof system with axioms). Let Γ be a set of formulas. We use
Γ,Q to denote the proof system obtained from Q by adding the sequents in Γ as axioms. We
write Γ,Q ` S when there is a Q-proof for S using sequents in Γ as axioms.

Next, we define some complexity measures on proofs.

Definition 33 (Size, logical depth, quantifier depth). Let Q be a Frege-style proof system.
Let π be a Q-proof.

• Size: size(π) := ∑ϕ∈π size(ϕ).
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• Logical depth: ldepth(π) := maxϕ∈π ldepth(ϕ).

• Quantifier depth: qdepth(π) := maxϕ∈π qdepth(ϕ).

• Restriction on formulas: if R is a rule, we can put restrictions on the class of formulas
that the rule can be applied to. E.g. we can restrict the cut formula in the cut rule to
belong to bounded-depth formulas.

In addition, we defined the proof depth of a proof π, denoted by depth(π), as the depth of
π’s construction dag. We can extend these complexity measures to proof families in a point-wise
manner, e.g. size({πn}n) is the function that maps n to size(πn).

We will be mainly interested in the relation of these measures to the size of the
formulas being proven.

Definition 34 (The proof systems PK, Frege, d-Frege). Table 3.1 lists the rules for PK. We
also use Frege to refer to PK. For d ∈ N, d-Frege is the subsystem of Frege obtained by
restricting the cut formulas in the cut rule Cut to formulas of depth at most d. We call a d-Frege
proof system a bounded depth proof system and denote them collectively as bdFrege.

Definition 35 (The proof system G). The proof system G is obtained from Frege by adding
the propositional quantifier introduction rules listed in table 4.1.

Gi is the subsystem of G where the cuts are restricted to formulas of quantifier depth i. G0 is
the subsystem of G where the cuts are quantifier-free. We call the Gi proof systems G∞ proof
systems.

For d ∈N, the proof system d-G is the subsystem of G where the depth of the quantifier-free
part of cut formulas is bounded by d. We call these proof systems bdG proof systems. For
d, i ∈N, the proof system d-Gi is the subsystem of Gi where the depth of the quantifier-free part
of cut formulas is bounded by d. We call the d-Gi proof systems bdGi proof systems. A bdG0

proof system means a d-G0 proof system for some d. A bdG∞ proof system means a d-Gi proof
system for some d and i.

Remark 14. bdG0, bdG∞, G∞ are not proof systems themselves. Viewed as the collection of
proof families from their member proof systems they become proof complexity classes, see
definition 37.

In the rules ∀R and ∃L, p is a free variable called eigenvariable and does not appear
in the bottom sequent. In the rules ∀L and ∃R, ϕ[q/ψ] is the result of substituting
ψ for q in ϕ. The formula ψ is called the target formula of the rule. We require the
target formula to be ⊥ or >. Following [CN10], we use the definition of G (and its
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ϕ[~q/~ψ], Γ⇒ ∆
∀L

∀~q ϕ, Γ⇒ ∆

Γ⇒ ϕ[~q/~p], ∆
∀R

Γ⇒ ∀~q ϕ, ∆

ϕ[~q/~p], Γ⇒ ∆
∃L

∃~q ϕ, Γ⇒ ∆

Γ⇒ ϕ[~q/~ψ], ∆
∃R

Γ⇒ ∃~q ϕ, ∆

G is obtained by adding the propositional quantifier rules to PK (table 3.1).

Table 4.1: G

{ϕi, Γ⇒ ψi, ∆}i {ψi, Γ⇒ ϕi, ∆}i
Ext

α(~ϕ), Γ⇒ α(~ψ), ∆

H is obtained by adding the Ext rule to G (table 4.1).

Table 4.2: H

subsystems) that restricts only the cut formulas. The formulas ∃q ϕ and ∀q ϕ are called
the principal formulas and the corresponding ϕ[q/ψ] or ϕ[q/p] formulas on top are
called the auxiliary formulas.

Remark 15. It is conservative to extend the class of target formulas to a larger class Γ in the
presence of cut for formulas in Γ and Ext rule (table 4.2) if there are function symbols. The proof
is similar to [CN10, §VII.3.6, p. 176] and follows from the fact that there are polynomial-size
cut-free Frege proofs for ψ⇒ ϕ[p/>]↔ ϕ[p/ψ], ¬ψ⇒ ϕ[p/⊥]↔ ϕ[p/ψ]. The only new
case that needs to be considered is the function symbol case which follows from the Ext rule.

In our systems, we allow the introduction of a quantifier over multiple propositional
variables in a single step. For example, we can derive ∃~p ϕ in a single step from ϕ[~p/~ψ].
Similarly, we allow the introduction of conjunction/disjunction of multiple formulas
in a single step. These modifications do not change the power of the proof systems,
but will be convenient to assume for obtaining a nicer correspondence with first-order
proofs.

Definition 36 (The proof system H). The proof system H is the extension of G obtained by
allowing propositional function symbols and including the extensionality rule Ext given in
table 4.2 for function symbols.

Theorem 4. H is a complete and sound proof system for relativized quantified propositional
formulas.

Proof. The proof is similar to the completeness and soundness proof for QPC(R) in
[Coo12].
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The soundness of the proof system follows from the soundness of the rules and
axioms by induction on the structure of the proof. We only need to check the soundness
of Ext. If a formula in Γ is false or a formula in ∆ is true we are done. Otherwise, the
interpretation of ~ϕ and ~ψ have the same value. Therefore, the interpretation of α(~ϕ)

and α(~ψ) have the same value.
Note that by induction on the structure of formulas we can show that p, ϕ(>)⇒

ϕ(p), p, ϕ(p)⇒ ϕ(>), ¬p, ϕ(⊥)⇒ ϕ(p), and ¬p, ϕ(p)⇒ ϕ(⊥) have H proofs. If ϕ is
a propositional variable it follows from the axioms and weakening. If ϕ is an application
of a function symbol then it follows from Ext. The induction step is straightforward.
As a result both ∀p ϕ(p)⇔ ϕ(>)∧ ϕ(⊥) and ∃p ϕ(p)⇔ ϕ(>)∨ ϕ(⊥) have H proofs.
Therefore, we can replace quantifiers with conjunctions and disjunctions. If ~ψ is a
sequence of n formulas then {τ ↔ ~ψ → α(τ)}τ∈{>,⊥}n ⇔ α(~ψ) also has an H proof.
Therefore, we can restrict over attention to formulas where function symbols are only
applies to > and ⊥. Note that such a formula with no variables is essentially like a
propositional variable.

The completeness follows by induction on the structure of the valid sequents. In
the base case there are no logical connectives. If S is a valid sequent then either its
succedent contains > or its antecedent contains ⊥ or a formula appears in both of them.
In all cases we can derive S from axioms and weakening rules.

In the induction step there has to be at least a logical connective or a function
symbol. If there is a logical connective then we can use the rule for the connective in the
reverse direction as the rules for connectives preserve validity in both directions.

We define the notion of proof complexity class in a similar way to nonuniform circuit
complexity classes in computational complexity.

Definition 37 (Proof complexity class). Let Q be a Frege-style proof system. A Q proof
complexity class is a set of Q proof families. Let F be a Q proof complexity class. We say a
proof family {πn}n is an F -proof for a formula family {ϕn}n and write {πn}n : F ` {ϕn}n

iff for all n, πn : Q ` ϕn and {πn}n ∈ F . We write F ` {ϕn}n when {ϕn}n has an F -proof.

Size, depth, and quantifier depth are the main measures we use to define proof
complexity classes.

Definition 38 (Q-Size(s), Q-DepthSize(d, s)). LetQ be a subsystem of H and s and d be two
functions over natural numbers.

• The proof complexity class Q-Size(s) is defined as the set of Q-proof families {πn}n :
Q ` {ϕn}n where size(πn) ≤ s(size(ϕn)).
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• The proof complexity class Q-DepthSize(d, s) is defined as the set of Q-proof families
{πn}n : Q ` {ϕn}n where size(πn) ≤ s(size(ϕn)) and the depth of the cut formulas in
πn is at most d(size(ϕn)).

Remark 16. Note that the classes defined above are also proof systems.

Convention 4. We write Frege(d, s) for Frege-DepthSize(d, s).

Example 8. The set of Frege proof families is a proof complexity class.

Example 9. The set of bdFrege proof families is a proof complexity class. Similarly, the set of
bdG0, bdG∞, and G∞ proof families are proof complexity classes.

Example 10. The set of polynomial-size Frege proof families is a proof complexity class.

Example 11. The set of polynomial-size bounded-depth Frege proof families is a proof complex-
ity class.

Example 12. The set of subexponential-size bounded-depth Frege proof families is a proof
complexity class.

The notion of an arbitrary proof class is very general and hard to work with as is the
notion of an arbitrary complexity class. Similar to computational complexity theory, we
focus on complexity classes which are obtained by restricting nice complexity measures
like those mentioned above.

Definition 39 (Nice proof complexity class). We say a proof class is nice if it is a union of
Q-DepthSize classes of some Frege-style proof system Q.

We define the following nice proof classes:

Definition 40 (Frege(O(1), nO(1))). The class of polynomial-size bounded-depth Frege proofs
is defined as

Frege(O(1), nO(1)) =
⋃

s∈poly,d∈N

Frege(d, s).

Remark 17. The proof complexity class polynomial-size Frege is also referred to as NC1-Frege
in the literature. We will reserve NC1-Frege to refer to the subclass of CFrege [Jeř05] where lines
in the proof are NC1 circuits. An important subclass of polynomial-size Frege is polynomial-size
bounded-depth Frege, which is obtained by restricting the depth of cut formulas in the proof to
be O(1). It is also referred to as AC0-Frege in the literature, however, we will reserve AC0-Frege
to refer to the subclass of CFrege where lines in the proof are AC0 circuits.

Remark 18. Note that nice proof complexity classes are closed under a concrete substitution,
i.e., if we replace all occurrences of a free variable in a proof family that belongs to a nice proof
complexity class with ⊥ (or >), then the resulting family also belongs to that proof class.
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4.3 Proof Reductions and Universal Tautologies

Definition 41 (Proof reduction). Let R be a Frege-style proof complexity class, Γ a set of
formula families, and {ϕn}n a formula family. We say {ϕn}n isR-reducible to Γ and write
{ϕn}n ≤R Γ when Γ,R ` {ϕn}n.

In this way, we can associate with every proof class a proof reduction class.

Remark 19. The reductions defined above are similar to the oracle Turing reductions in
computational complexity which are defined using a reduction function. As in complexity
theory, it is possible to define more general notions of reducibility that work for more general
proof systems. For example, we define many-one reductions in computational complexity
theory. Similarly, we can define a weaker more general form of reduction for arbitrary proof
systems where anR-reduction from {ϕn}n to {ψn}n is a proofR ` {ϕ f (n) → ψn}n for some
polynomially-bounded function f .

Definition 42 (Simulation). We say that a proof system Q′ f -simulates another proof system
Q iff for every proof inQ there is proof inQ′ for the same tautology and the size of theQ′ proof
is at most f of the size of the Q proof. We say that a proof system Q′ (effectively) p-simulates
another proof system Q iff there is a polynomial-time computable function that maps the proofs
in Q to proofs of the same tautology in Q′.

Remark 20. Effective proof reductions are similar to Levin’s reductions [Lev73] in compu-
tational complexity theory: a Levin reduction from an NP problem with verifier Q to an NP
problem with verifier Q′ is a polynomial-time function Ri such that for all ϕ and π, Q accepts
ϕ and π iff Q′ accepts ϕ and Ri(π).

We also have the many-one reductions between search problems. Let Q and Q′ be two
NP search problems. We say that Q is many-one reducible to Q′ if there are functions Ri

and Ro such that for all ϕ ∈ dom(Q), Ri(ϕ) ∈ dom(Q′) and for all π ∈ Q′(Ri(ϕ)),
Ro(ϕ, π) ∈ Q(ϕ). If we add the condition that Ri and Ro are polynomially bounded, we
essentially obtain the general definition of p-simulation between proof systems from [Rec76, pp.
113–114]. Reckhow considers additional conditions on the query Ri(ϕ) to Q′: it needs to be
logically equivalent to ϕ and preserve the logical structure of the formula by commuting with
substitution [Rec76, pp. 124–125, 138–139].

These reductions are still many-one. We can define reductions between search problems
even more generally. See e.g. [BCE+95] which considers more general oracle reductions using
type-2 complexity theory [KC96]. All of these reductions can be used to compare proof systems
since a proof system can be viewed as a proof search problem.
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We will define universality as an analog of completeness in computational complex-
ity theory:

Definition 43 (Universal formula family). Let Γ be a set of formula families, F a proof
complexity class, andR a class of proof reductions. We say Γ is universal in F w.r.t. R iff

• Γ belongs to F : All formula families in Γ are provable in F .

• Γ is universal for F : Any formula family in F is R-reducible to concrete instances
(definition 28) of Γ.

Remark 21. In general, we can get an (effective) p-simulation of a system P by a sufficiently
strong proof system Q when Q has polynomial-size proofs of a universal class of formula
families for P .

4.4 Definability of Truth in Proof Classes

Let C be a formula complexity class. Let p.q : C → {0, 1}∗ be an encoding of formulas
in C similar to [CN10]. We use “τ � ϕ” to denote a polynomial-size formula expressing
that the truth assignment encoded by τ satisfies the formula encoded by ϕ, possibly
using helper variables to encode the computation of a suitable evaluation algorithm
[Kra12]. See chapter 6 for a demonstration in the uniform setting. A similar construction
works in the nonuniform setting.

Definition 44. We say that the truth for formula complexity class C is definable in a proof
complexity class F iff there is a formula family {“τ �n,m ϕ”}n,m such that F proves the
inductive Tarski definition of truth for encoded formulas of size n in C. In other words, F
proves the conjunction of:

“ϕ = >”→ (“� ϕ”)

“ϕ = ⊥”→ (“2 ϕ”)

“ϕ = p”→ (“τ � ϕ”↔ “τ(p) = >”)

“ϕ = α(~p)”→ (“τ � ϕ”↔ “α(τ(~p)) = >”)

“ϕ = ¬ϕ0”→ (“τ � ϕ”↔ “τ 2 ϕ0”)

“ϕ = ϕ0 ∧ ϕ1”→ (“τ � ϕ”↔ “τ � ϕ0”∧ “τ � ϕ1”)

“ϕ = ϕ0 ∨ ϕ1”→ (“τ � ϕ”↔ “τ � ϕ0”∨ “τ � ϕ1”)
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“ϕ = ∃p ϕ0”→ (“τ � ϕ”↔ ∃p “τ[p 7→ p] � ϕ0”)

“ϕ = ∀p ϕ0”→ (“τ � ϕ”↔ ∀p “τ[p 7→ p] � ϕ0”)

where ϕ stands for a member of C, α stands for a member of L, and p for a member of V .

Remark 22. Some of the cases above can be unnecessary if C does not need them.

4.5 Soundness Tautologies

In this section we prove that the soundness statements for nice proof complexity classes
are universal for them. This is similar to the completeness of the circuit evaluation
problems for nice circuit complexity classes. We first show that it is possible to derive
the truth of a formula in a proof class from the soundness statement for the proof class.
In the second step, we derive a formula from its truth. The arguments in this and
following sections are similar to the classical arguments about the relation of proof
systems extending EFrege and their soundness [Kra95, §14.1].

Definition 45 (Soundness of a nice proof class). Let the formula Snd(Q-DepthSize(d, s))n

denote the soundness of Q-DepthSize(d, s) proofs of size n:

“π : Q-DepthSize(d, s) ` ϕ”⇒ “τ � ϕ”

where π, ϕ, and τ each denotes n free propositional variables. Let Snd(Q-DepthSize(d, s))
stand for the family {Snd(Q-DepthSize(d, s))n}n, the soundness formula family for proof
families in Q-DepthSize(d, s).

Let F be a nice proof class obtained from taking the union of some Q-DepthSize(d, s) proof
classes. The soundness of F , denoted by Snd(F ) is defined as

{Snd(Q-DepthSize(d, s)) | Q-DepthSize(d, s) ∈ F}.

Example 13. Consider Frege(O(1), nO(1)). Snd(Frege(O(1), nO(1))) stands for the set of
soundness formula families of Snd(Frege(d, s)) where d ∈N, s ∈ poly(n):

Snd(Frege(O(1), nO(1))) = {Snd(Frege(d, s)) | d ∈N, s ∈ poly(n)}.
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4.6 Universality of Soundness

Definition 46 (Closure under cuts). We say a proof class R is closed under Φ-cuts iff
whenever there areR-proofs for Γ⇒ ϕ, ∆ and Σ, ϕ⇒ Π and ϕ ∈ Φ, there is anR proof for
Γ, Σ⇒ ∆, Π.

Definition 47. LetR denote a class of proof reductions. We sayR is reasonable iff

• Every closed Σq
0 formula family has a polynomial-size proof family inR.

• R is closed under composition, i.e. T ,R ` S whenever T ,R ` T ′ and T ′,R ` S .

If in additionR is closed under Φ-cuts, we say thatR is Φ-reasonable.

Note that the proof class polynomial-size cut-free PK is reasonable. We will generally
be interested in classes containing polynomial-size cut-free PK so we only need to check
if they are closed under composition.

Definition 48 (Weak universality). A class of formula families Γ is weakly universal for a
proof class F w.r.t. a class of proof reductionsR iff the truth of every formula provable in F
has an R proof from concrete instances of formulas in Γ. In other words, for every {ϕn}n, if
F ` {ϕn}n then Γ +R ` {“� ϕn”}n.

Definition 49 (Strong universality). A class of formula families Γ is (strongly) universal
for a proof class F w.r.t. a class of proof reductions R iff the every formula provable in F
has an R proof from concrete instances of formulas in Γ. In other words, for every {ϕn}n, if
F ` {ϕn}n then Γ +R ` ϕ.

Remark 23. Weak universality is an important notion and has the essence of universality. It is
sometimes required to prove an equivalent formula in place of the original formula because it is
not possible to express the formula directly in the language of the stronger system or it is not
possible to prove the equivalence of the formula and its truth. The simulation of a Frege system
using {↔,⊥} by one using {¬,∧}. The method of indirect translations in [Rec76] essentially
evaluates formulas in the second language using Spira’s method [Spi71] to express them in the
first language. The argument is simpler if we first define the truth of formulas from the second
language in the first language.

Remark 24. We can use a notion of reasonable reductions which is weaker than polynomial-
size bounded-depth PK. However, since the weakest class we consider here is polynomial-size
bounded-depth PK corresponding to AC0 we use this simpler definition.

Recall that a closed formula is a formula with no free variables.
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Lemma 1. Every closed quantifier-free propositional tautology has a polynomial-size cut-free
Frege proof.

Proof. By induction on the structure of the formula.

Theorem 5 (Soundness is weakly universal). Let F be a nice proof class. Then Snd(F ) is
weakly universal for F with respect to polynomial-size bounded-depth Frege reductions.

Proof. Let F be a nice proof class and R be poly-size bounded-depth Frege. Assume
that F ` {ϕn}n. We want to show that Snd(F ),R ` {“� ϕn”}n.

Since F ` {ϕn}n there is Q ∈ F such that Q ` {ϕn}n. Therefore, there is a
{πn}n such that {πn}n : Q ` {ϕn}n. Now by lemma 1 R ` {“pπnq ` pϕnq”}n

as it is a closed formula. Now since R is closed under bounded-depth cuts and
{“pπnq ` pϕnq”}n is a bounded-depth formula we can cut it with the soundness for
πn and ϕn: Snd(Q)[π, ϕ/pπnq, pϕnq] which is in Snd(F ). Therefore, we obtain a proof
of Snd(F ),R ` {“� ϕn”}n.

Strong universality is obtained if we can prove that the truth of formulas implies
them.

Definition 50 (Semantic reflection property). We say a proof class R has the semantic
reflection property for Φ-formulas when there is an R-reduction from “~r � pϕq” to ϕ[/~r]
for every ϕ ∈ Φ.

Corollary 1. LetR be a reasonable class of proof reductions and Γ be weakly universal for F .
IfR has the semantic reflection property, then Γ is strongly universal for F w.r.t. R.

Remark 25. If a proof class can prove Tarski’s inductive definition for a truth formula, we
can use structural induction on the structure of the formulas to prove the semantic reflection
property of the truth formula.

Next, we turn our attention to the question of provability of the soundness formulas.

Definition 51 (Soundness of a rule). Let R be a rule of a proof system with k top sequents.
The soundness of R states that if π is an instance of R and the top sequents in R are true under
a truth assignment τ, then the bottom sequent in R is true under τ. We say F proves the
soundness of R when there is an F proof for “τ � bot(π)” from “π ∈ R” and “τ � top(R)”.

Lemma 2. Polynomial-size bounded-depth PK proves the soundness of the rules of cut-free
PK.

Proof. The proof is essentially a case analysis.
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Lemma 3. Polynomial-size bounded-depth PK proves the soundness of the depth d cut rule.

Proof. The proof again is by case analysis based on the truth of falsity of the cut
formula.

Theorem 6. Polynomial-size bounded-depth Frege proves its own soundness.

Proof. The truth of depth d formulas can be expressed using bounded-depth formulas.
The construction of the proof proceeds by induction over the structure of the proof
using the provability of the soundness of the rules.

For other proof classes we only need to prove the soundness of the appended rules.
This will be usually a cut rule. However, the real key to proving the soundness of
a proof is the ability to express the truth of the formulas in the proof under a given
truth assignment for the parameters of the proof. If we can express the truth of the
lines in the proofs, we can carry out induction on the structure of the proof using them.
Limiting the cut rule restricts the class of formulas that can appear in the proof since
every formula in a proof is a subformula of either a cut formula or the end-sequent.

Definition 52. We say that proof complexity class F weakly contains proof complexity class
F ′ and write F ′ ≤ F when for every {ϕn}n, F ′ ` {ϕn}n implies F ` {“� ϕn”}n.

Theorem 7. Let F be a proof complexity class containing R. Let LOF′ be a nice proof
complexity class. If F proves Snd(F ′), then F ′ ≤ F .

Proof. Assume that F ′ ` {ϕn}n. By theorem 5, Snd(F ′) is weakly universal for F ′ with
respect to R. Therefore, Snd(F ′),R ` {“� ϕn”}n. Since F ` Snd(F ′) and F ` R we
have F ` {“� ϕn”}n.



Chapter 5

From Uniform to Nonuniform:
Propositional Translation

In this chapter we provide propositional translations from proofs in uniform io-typed
theories (chapter 3) to propositional proof families in nonuniform H-proof complexity
classes (chapter 4). Propositional translations were introduced in [Coo75]. We extend
the propositional translation of two-sorted theories from [CN10] to our io-typed theo-
ries. The concept of propositional translations is analogous to the Cook-Levin theorem
[Coo71] in computational complexity theory which connects the uniform computation
model of Turing machines to the nonuniform computation model of circuits.

A propositional translation consists of translating formulas and proofs of formulas.
We begin by defining a propositional translation from first-order formulas to relativized
quantified propositional formulas in section 5.1. In section 5.2 we define the propo-
sitional translation of proofs. Our focus will be on proofs in ioV0. In section 5.3 we
discuss the translation of theories built upon ioV0. The essential idea of our translation
is that to translate a theory built on top of ioV0 we can first Skolemize the theory and
then translate proofs to proof families in H plus axioms. Afterward, we can provide
explicit witnessing formulas for the function symbols of the axioms and explicit proof
families for axioms with function symbols replaced with explicit witnesses. The first
part is general and independent of particular theories being translated.

5.1 Translating Formulas

We first define the propositional translation for (io-type two-sorted) first-order terms. A
first-order term will be translated into a family of sequences of propositional formulas.

44
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The family is indexed by the size of the free variables in the term. The number of
formulas in each sequence is determined by the size of the term. Each formula in the
sequence corresponds to one bit of the term. A first-order bounded formula will be
translated to a family of relativized quantified propositional formulas.

The terms are translated recursively. The main difference from the usual proposi-
tional translations is that we have function symbols that we translate to propositional
function symbols. We translate a function symbol into a sequence of propositional
function symbols. Each of these propositional function symbols will correspond to a
bit of the first-order function symbol. The number of propositional function symbols is
the length of the first-order function symbol.

Definition 53. If X is a sequence, (X )i denotes the ith item in the sequence X . If ~p =

(p0, . . . , pk−1) is a sequence of propositional variables, then (~p)i is pi for i < k. We consider
(~p)i to be ⊥ when i ≥ k.

Definition 54 (Translation context). Let V be the set of variables. A translation context is
a function σ : V →N that determines the size of variables by assigning a natural number to
each variable.

Remark 26. For a number variable, the translation context determines the value of the variable.

Definition 55 (Function modification). If σ is a translation context, then σ[~x 7→ ~n] denotes
the function obtained from σ by mapping ~x to~n:

σ[~x 7→ ~n](y) =

ni y = xi

σ(y) o.w.

Notation 10. A propositional translation is a function that maps first-order terms and formulas
with a translation context σ to (a sequence of) propositional formulas. Let [[·]] be a translation
function and σ a translation context. The translation of a first-order term t under [[·]] and σ

denoted by [[t]]σ is a sequence of propositional formulas where each formula in the sequence
corresponds to one bit of t. The translation of a first-order formula ϕ under [[·]] and σ is a
propositional formula denoted by [[ϕ]]σ.

Convention 5. We may simply write [[t]]~n and [[ϕ]]~n in place of [[t]][~x 7→~n] and [[ϕ]][~x 7→~n] when
it is clear which variables are being mapped to~n.

The translation context determines the size of the variables. We need to extend the
translation context to all terms in the language. We will use σ to determine the size of
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σ(0) := 0

σ(1) := 1

σ(|T|) := σ(T)

σ(t + s) := σ(t) + σ(s)

σ(t·s) := σ(t)·σ(s)

σ(pd(t)) := pd(σ(t))

σ( f (~t,~T)) := | f |(σ(~t), σ(~T))

σ(F(~t,~T)) := |F|(σ(~t), σ(~T))

Table 5.1: Extended Translation Context

sequences used for the translation of the terms. The number of bits used for translating
a term may only depend on the size of its variables. Note that function symbols in our
first-order languages have explicit sizes in terms of the size of their inputs1. The size of
a k-ary function symbol is a function from Nk to N. We denote the size of a function
symbol F by |F|. We also extend the translation context over sequences in a point-wise
manner, i.e. σ(tk, . . . , t0) := σ(tk), . . . , σ(t0).

Definition 56 (Extended translation context). The extended translation context of σ is
given in table 5.1. For a k-ary term t, σ(t) is a function from Nk to N.

Recall that each function symbol in our language has a size bound and the size of
function symbol F is denoted by |F|. In our theories the size of function symbols are
polynomially bounded.

Lemma 4. Assume that all function symbols of the language have polynomial size. For any
term t, σ(t) is bounded by a polynomial in σ of variables in t.

Proof. By induction over the structure of the terms.

Terms are translated recursively: a number term t is translated to a sequence of size
σ(t) + 1, and a string term T is translated to a sequence of size σ(T). A unary number
n is represented by >⊥n, i.e. a sequence of size n + 1 where only the nth bit is >. We
index bits from the right, e.g. the rightmost bit has index 0. We extend the translation
to sequences in a point-wise manner, i.e. [[tk, . . . , t0]]σ := [[tk]]σ, . . . , [[t0]]σ.

We can use any reasonable AC0 formula for the translation of the functions of
L2 . The main requirement is that the translated axioms of io2Basic must have simple
propositional proofs.

1See definition 10 and the discussion following it.
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[[0]]σ:=(>)

[[1]]σ:=(>,⊥)

[[x]]σ:=(>,

σ(x) times︷ ︸︸ ︷
⊥, . . . ,⊥) ([[x]]σ)k:=

> k = σ(x)

⊥ o.w.

[[|T|]]σ:=(>,

σ(T) times︷ ︸︸ ︷
⊥, . . . ,⊥) ([[|T|]]σ)k:=

> k = σ(T)

⊥ o.w.

[[X]]σ:=(pX
σ(X)−1, . . . , pX

0 ) ([[X]]σ)k:=pX
k

[[s + t]]σ:=(oσ(s+t), . . . , o0) where ok is ([[s + t]]σ)k:=
∨

i≤σ(s)
j≤σ(t)
i+j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[s·t]]σ:=(oσ(s·t), . . . , o0) where ok is ([[s·t]]σ)k:=
∨

i≤σ(s)
j≤σ(t)
i·j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[pd(t)]]σ:=(oσ(pd(t)), . . . , o0) where ok is ([[pd(t)]]σ)k:=


(
∨

i=0,1
[[t]]σ)i k = 0

([[t]]σ)k+1 o.w.

[[ f (~t,~T)]]σ:=(α f ,σ,σ( f (~t,~T))([[~t]]σ, [[~T]]σ), . . . , α f ,σ,0([[~t]]σ, [[~T]]σ)) ([[ f (~t,~T)]]σ)k:=α f ,σ,k([[~t]]σ, [[~T]]σ)

[[F(~t,~T)]]σ:=(αF,σ,σ(F(~t,~T))−1([[~t]]σ, [[~T]]σ), . . . , αF,σ,0([[~t]]σ, [[~T]]σ)) ([[F(~t,~T)]]σ)k:=αF,σ,k([[~t]]σ, [[~T]]σ)

Table 5.2: Propositional Translation of Terms
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Definition 57 (Translation of terms). The translation of terms under σ is given in table 5.2.

Remark 27. Note that our translation is slightly more complicated than the translation in
[CN10] where the value of number terms is determined by σ. This is not true in general. E.g.
consider a number-valued function of strings like msb(X) the most significant bit. The value
of msb(X) depends not only on σ but also on the value of X’s bits.

Example 14. Consider the term x + y with the translation context σ = [x 7→ 3][y 7→ 5].

• [[x]]σ = (>,⊥,⊥,⊥).

• [[y]]σ = (>,⊥,⊥,⊥,⊥,⊥).

• ([[x + y]]σ)2 =
∨

i≤3,j≤5
i+j=2

([[x]]σ)i ∧ ([[y]]σ)j = (⊥∧⊥)∨ (⊥∧⊥)∨ (⊥∧⊥)∨ (⊥∧⊥).

• ([[x + y]]σ)3 =
∨

i≤3,j≤5
i+j=3

([[x]]σ)i ∧ ([[y]]σ)j = (⊥∧⊥)∨ (⊥∧⊥)∨ (⊥∧⊥)∨ (>∧⊥).

• ([[x + y]]σ)8 =
∨

i≤3,j≤5
i+j=8

([[x]]σ)i ∧ ([[y]]σ)j = (>∧>).

Lemma 5 (Size and depth of translated terms). For any term t, size([[t]]σ) is bounded by a
polynomial in σ. In addition, the translation of terms have a constant depth, i.e. ldepth([[t]]σ) =
O(1).

Proof. By induction over the structure of the terms.

Remark 28. Let F be a string-valued function defined by a monotone non-decreasing term t
for its size and formula ϕ for its bit-graph (section 3.2):

• |F(~x, ~X)| := t(~x, |~X|),

• y ∈ F(~x, ~X) := ϕ(~x, ~X, y).

We can translate F directly without using new propositional function symbols:

• σ(F(~t,~T)) := t(σ(~t), σ(~T)),

• ([[F(~t,~T)]]σ)k := [[ϕ(~t,~T, y)]]σ[y 7→k].

Example 15. If we include the substring function T[s, t] in the language defined in defini-
tion 13, we can translate it using:

• σ(T[s, t]) := σ(t),
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• ([[T[s, t]]]σ)k := [[x < t ∧ s + x ∈ T]]σ[x 7→k].

Remark 29. Let f is a number-valued function defined by a monotone non-decreasing term t
and a formula ϕ:

• f (~x) ≤ t(~x),

• f (~x) = y := ϕ(~x, y).

We can translate f directly without using new propositional function symbols:

• σ( f (~t)) := t(σ(~t)),

• ([[ f (~t)]]σ)k := [[ϕ(~t, y)]]σ[y 7→k].

The translation works because in our treatment of unary numbers the size of a unary number
by itself does not determine its value. In the propositional setting the size of the output is
determined by the size of the input. If the size of a unary number determined its value, the
output of a number-valued function could depend only on the size of its inputs. However, in
our treatment, a unary number of size n + 1 can correspond to any natural number from 0 to n.
Therefore, we can include in our language number function like msb (the most-significant bit)
whose value is not determined by the size of its inputs.

Example 16. If we include the most significant bit function msb in the language, we can
translate it using:

• σ(msb(T)) := σ(|T|),

• ([[msb(T)]]σ)k := [[y ∈ T ∧ ∀x < |T| (x ∈ T → x ≤ y)]]σ[y 7→k].

Example 17. If we include the fractional power function x
1
d in the language defined in defini-

tion 14, we can translate it using:

• σ(t
1
d ) := σ(t),

• ([[t
1
d ]]σ)k := [[yd ≤ t ∧ t < (y + 1)d]]σ[y 7→k].

Formulas are also translated recursively: atomic formulas are translated directly
to AC0 formulas such that the axioms about them have simple propositional proofs.
Logical connectives are translated to themselves. Bounded number quantifiers are
translated to

∧
and

∨
. Bounded string quantifiers are translated to propositional

quantifiers. The number of quantified propositional variables will be equal to the
bound. Recall that bounded string quantifiers of the form ∃X ≤ t ϕ and ∀X ≤ t ϕ are
equivalent to ∃y ≤ t ∃X = y ϕ and ∀y ≤ t ∀X = y ϕ, and will be translated as such.
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[[s = t]]σ :=
∨

i≤min(σ(s),σ(t))
([[s]]σ)i ∧ ([[t]]σ)i

[[s ≤ t]]σ :=
∨

i≤σ(s)
i≤j≤σ(t)

([[s]]σ)i ∧ ([[t]]σ)j

[[t ∈ T]]σ :=
∨

i≤min(σ(T),σ(t))
([[T]]σ)i ∧ ([[t]]σ)i

[[⊥]]σ := ⊥

[[>]]σ := >

[[¬ϕ]]σ := ¬[[ϕ]]σ
[[ψ ∧ ϕ]]σ := [[ψ]]σ ∧ [[ϕ]]σ

[[ψ ∨ ϕ]]σ := [[ψ]]σ ∨ [[ϕ]]σ

[[∃x ≤ t ϕ]]σ :=
∨

i≤σ(t)
[[x ≤ t ∧ ϕ]]σ[x 7→i]

[[∀x ≤ t ϕ]]σ :=
∧

i≤σ(t)
[[x ≤ t→ ϕ]]σ[x 7→i]

[[∃X = t ϕ]]σ := ∃[[X]]τ [[X = t ∧ ϕ]]τ

[[∀X = t ϕ]]σ := ∀[[X]]τ [[X = t→ ϕ]]τ
In the translation of string quantifiers τ = σ[X 7→ σ(t)].

Table 5.3: Propositional Translation of Formulas

Definition 58 (Translation of formulas). The translation of bounded formulas under σ is
given in table 5.3.

Lemma 6. For any formula ϕ, size([[ϕ]]σ) is bounded by a polynomial in σ. In addition,
the translation of bounded formulas have a constant depth, i.e. ldepth([[ϕ]]σ) = O(1) and
qdepth([[ϕ]]σ) = O(1). Furthermore, the number of quantified propositional variables is equal
to the sum of σ of the bounding terms for the bounded string quantifiers.

Proof. By induction over the structure of the formulas.

Remark 30. Later we will look at the relation between the size of the proofs and the size of
the formulas. We would consider the size of a translated formula ϕ with a free variable x to
be at least σ(x): size([[ϕ]]σ) ≥ σ(x). To ensure this we will pad formulas with ∨⊥. Note
that if formulas are translated in a succinct manner we may not be able to prove them in the
corresponding propositional proof system.

Theorem 8. The translation [[ϕ]]σ is a tautology iff ~x = σ(~x), |~X| = σ(~X)⇒ ϕ is true in the
standard model.

Proof. By induction on the structure of the formulas.
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5.2 Translating Proofs

In this section we provide a translation from proofs in the theories built over ioV0

by adding bounded axioms – possibly in an extended language with new function
symbols – to polynomial-size constant-depth H proofs with additional axioms. The
sizes are measured with respect to the σ.

Definition 59 (Skolemization). Let ϕ be a bounded formula, Y be the outer-most existentially-
quantified string variable in ϕ, and t be the bound on Y. The Skolemization of the variable Y
of ϕ is obtained by replacing Y with a string function FY(~X,~x) where (~X,~x) is the list of free
variables in the subformula starting with the quantifier ∃Y. The size of the Skolem function FY

is t. The type of the value returned by Skolem function FY is the type of variable Y which FY is
witnessing.

Remark 31. Note that Skolemization does not remove all string quantifiers.

Example 18 (Skolemization of the comprehension axiom). Consider the ϕ-CA axiom:

⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ(x, A))

We Skolemize Y using a function Fϕ-CA(z, A) with an output-type result and |Fϕ-CA(z, A)| =
z. The resulting Skolemized axiom ϕ̂-CA is:

⇒ |Fϕ-CA(z, A)| = z ∧ ∀x < z
(

x ∈ Fϕ-CA(z, A)↔ ϕ(x, A)
)

Remark 32. The formula ϕ can contain string quantifiers and those quantifiers will remain
intact in ϕ̂-CA.

Example 19 (Skolemization of the conversion axiom). Consider the oiConvstr axiom:

⇒ ∃B = a ∀z < a (z ∈ B↔ y + z ∈ X)

We Skolemize B using a function FoiConv(a, y, X) with an input-type result and with size
|FoiConv(a, y, X)| = a. The resulting Skolemized axiom ̂oiConvstr is:

⇒ |FoiConv(a, y, X)| = a ∧ ∀z < a (z ∈ FoiConv(a, y, X)↔ y + z ∈ X)

Definition 60 (îoV0). The theory îoV0 is obtained by Skolemizing the comprehension and
conversion axioms of ioV0 as given in examples 18 and 19.
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Definition 61 (Polynomially-bounded theory). A theory is polynomially-bounded iff all
function symbols provably have polynomial bounds and all axioms are ΣB

∞ formulas.

Theorem 9 (Propositional Translation). Let T = ioV0 ∪ Γ be a polynomially-bounded
theory, Γ̂ some Skolemization of Γ, and ϕ ∈ ΣB

0 a formula provable in T . Then [[ϕ]]σ has a
polynomial-size bounded-depth H-proof from [[Γ̂]]σ.

If ϕ is provable then so is ϕ[~x, ~X/~a, ~A], which has the same translation. Therefore,
without loss of generality, we will assume that all free variables in ϕ have input type.
We refer to~n = σ(~a, ~A) as translation parameters where~a and ~A are ϕ’s free variables.

Proof. The propositional translation has three steps:

Step 1: Skolemization lemma: If ioV0 + Γ ` ϕ then îoV0 + Γ̂ ` ϕ.

Step 2: Translation to H plus translated axioms lemma: If îoV0 + Γ̂ ` ϕ then [[ϕ]]σ has a
polynomial-size bounded-depth H-proof from [[ôiConv]]σ + [[ĈA]]σ + [[Ind]]σ + [[Γ̂]]σ.

Step 3: Explicit witnessing lemma: We remove the Skolem function symbols Fϕ-CA

and FioConv by providing explicit polynomial-size bounded-depth propositional
formulas. We remove the translated axioms [[ôiConv]]σ, [[ĈA]]σ, and [[Ind]]σ by
providing explicit polynomial-size bounded-depth H proofs for them.

Lemma 7 (Step 1). If ioV0 + Γ ` ϕ, then îoV0 + Γ̂ ` ϕ.

Proof of Step 1. We only need to derive the axioms of T in T̂ . The original axioms are
derivable from the Skolemized versions using string quantifier introduction rules.

Lemma 8 (Step 2). If îoV0 + Γ̂ ` ϕ, then [[ϕ]]σ has a polynomial-size bounded-depth H-proof
from [[ôiConv]]σ + [[ĈA]]σ + [[Ind]]σ + [[Γ̂]]σ.

Lemma 9. The translated axioms of io2Basic have polynomial-size bounded-depth H-proofs.

Proof. We need to prove the translation of axioms of io2Basic. The proof is similar to
the proof for the translation of 2Basic to bounded-depth Frege in [CN10, §VII.2.3, p.
168].

Proof of Step 2. Without loss of generality, we assume that π is a proof in free-variable
free-cut free normal form. If it is not, we can first normalize it to remove any free-cuts
and make sure every variable in the proof is either a free variable in the end-sequent or
an eigenvariable for a ∀L or ∃R rule.
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The proof π only contains subformulas of ϕ and the axioms. Since ϕ does not have
any string quantifier, all cut formulas with string quantifiers are subformulas of the
axioms. îoV0 has no string quantifiers, therefore, all string quantifiers in the proof are
from Γ̂.

We translate the proof to a propositional proof in H recursively starting from the
end-sequent. The translation is straightforward. The rules of H correspond to the rules
of LK. The only interesting cases are the number quantifier introduction rules which
need to be replaced by

∨
and

∧
introduction rules. For ∃L and ∀R, we extend the

translation context to assign values to the eigenvariable for all possible values of the
size of the bounding terms. All terms have a polynomial size in the size of their free
variables. Therefore, we will construct a polynomial number of subproofs.

For example, consider ∀R.

Γ⇒ ∆, ∀x ≤ t ψ 7−→ [[Γ]]σ ⇒ [[∆]]σ,
∧

i≤σ(t)

[[x ≤ t→ ψ]]σ[x 7→i].

We recursively obtain the proofs for the translations of Γ ⇒ ∆, x ≤ t → ψ under
translation contexts σ[x 7→ i] for all i ≤ σ(t) and use

∧
R to obtain

Γ⇒ ∆, x ≤ t→ ψ
∀R

Γ⇒ ∆, ∀x ≤ t ψ
7−→

{[[Γ]]σ ⇒ [[∆]]σ, [[x ≤ t→ ψ]]σ[x 7→i]}i≤σ(t) ∧
R

[[Γ]]σ ⇒ [[∆]]σ,
∧

i≤σ(t)

[[x ≤ t→ ψ]]σ[x 7→i]

The axioms are translated to non-logical relativized quantified propositional axioms.
It is easy to check that the depth and quantifier depth of the proof are O(1) and size of
the proof is O(poly(~n)).

The translations of the axioms of io2Basic have polynomial-size H proofs by lemma 9.

Remark 33. The translated proof satisfies the following conditions:

• size([[π]]~n) = O(poly(~n)),

• ldepth([[π]]~n) = O(1),

• qdepth([[π]]~n) = O(1).

• depth([[π]]n) = depth(π), the depth of the proof tree,

• all function symbols in [[π]]n come from the Skolemized axioms,
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• all string quantified cut formulas come from Γ̂.

Lemma 10 (Step 3: ϕ-CA). There are polynomial-size bounded-depth propositional formulas
ϕϕ-CA,σ,k such that when we replace the propositional function symbols αFϕ-CA,σ,k with ϕϕ-CA,σ,k

the translated Skolemized axiom [[ϕ̂-CA]]σ has polynomial-size bounded-depth H-proofs.

Proof. Recall that the Skolemized axiom ϕ̂-CA is

⇒ |Fϕ-CA(z, A)| = z ∧ ∀x < z
(

x ∈ Fϕ-CA(z, A)↔ ϕ(x, A)
)

We will use the defining formula of the comprehension axioms to witness the
comprehension function symbols. To remove the comprehension function symbols, we
replace αFϕ-CA,σ,k with [[ϕ]]σ[x 7→k]. The comprehension axioms become

⇒ [[z = z]]σ ∧
∧

i≤σ(t)

(
[[ϕ(x, A)]]σ[x 7→i] ↔ [[ϕ(x, A)]]σ[x 7→i]

)

which have bdG0 cut-free proofs of polynomial size.

Lemma 11 (Step 3: ϕ-ioConv). There are polynomial-size bounded-depth propositional formu-
las ϕioConv,σ,k such that when we replace the propositional function symbols αFioConv,σ,k with
propositional formulas ϕioConv,σ,k the translated Skolemized axiom [[ôiConv]]σ has polynomial-
size bounded-depth H-proofs.

Proof. Recall that the Skolemized ôiConv is:

⇒ |FoiConv(a, y, X)| = a ∧ ∀z < a (z ∈ FoiConv(a, y, X)↔ y + z ∈ X)

We use the substring function to replace the function symbol αFioConv,σ,k in the con-
version axiom. To remove the conversion axiom, we replace αFioConv,σ,k(a, y, X) with
([[X[y, a]]]σ)k. The axiom becomes

⇒ [[a = a]]σ ∧
∧

i≤σ(a)

[[x ∈ X[y, a]↔ y + x ∈ X]]σ[x 7→i]

which has a bdG0-proof of polynomial size and bounded depth.

Lemma 12 (Step 3: Ind). The axiom [[Ind]]σ also has polynomial-size bounded-depth H proof.

Proof. Recall that the Ind is

0 ∈ X, ∀y < z (y ∈ X → y + 1 ∈ X)⇒ z ∈ X
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The translation of the induction axiom becomes

[[0 ∈ X]]σ,
∧

i≤σ(z)

[[y ≤ z]]σ[y 7→i] → ([[y ∈ X]]σ[y 7→i] → [[y + 1 ∈ X]]σ[y 7→i])⇒ [[z ∈ X]]σ

Note that we have polynomial-size bounded-depth proofs for:

• [[0 ∈ X]]σ ⇒ [[y ∈ X]]σ[y 7→0]

• [[y ≤ z]]σ[y 7→i] for i ≤ σ(z)

• [[y + 1 ∈ X]]σ[y 7→i] ⇒ [[y ∈ X]]σ[y 7→i+1]

We can combine these σ(z) times with [[0 ∈ X]]σ and

[[y ≤ z]]σ[y 7→i], [[y ∈ X]]σ[y 7→i] ⇒ [[y + 1 ∈ X]]σ[y 7→i]

with i ≤ σ(z) using Cut and ∧R to obtain [[z ∈ X]]σ.

Remark 34 (Computability of the translation). With the exception of the normalization in
Step 2 the translation of a proof is computable in polynomial time. Normalization requires the
elimination of free cuts which in general is not computable in polynomial time. As mentioned
the size of the translated proof is polynomial. However, the polynomial bounding the size of
the resulting proof depends on the terms inside the proof and therefore the translation is not
uniformly polynomial-time computable even when restricted to proofs in normal form. E.g.
consider the formula ∃X = t ϕ. We need t existentially quantified propositional variables
to translate this NP predicate. This can be avoided if we use a more succinct encoding for
quantified formulas. If we further restrict the size of the bounding terms in the proof to O(nk)

for some fixed k, then the translation is uniformly computable in polynomial time.

Next, we prove a lemma about the bounds on input-type variables in a proof which
will be used in chapter 8.

Lemma 13 (Linear bounds). Let π be a free-variable free-cut free normal proof of formula ϕ in
an io-theory T . Assume that all input-type quantifiers in T and ϕ are bounded by input-type
terms. Then all input-type variables in π can be bounded by input-type terms in the parameters
of the proof.

Proof. Assume that the proof is in free-cut free free-variable normal form. Therefore,
each formula in the proof is either a subformula of the end-sequent or an axiom, and
each free variables in the proof is either an eigenvariable or a parameter.
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An easy argument shows that if a variable is quantified in some formula in the
proof it is bounded by a linear term in the free variables of that formula because the
formula is either a subformula of an axiom or the end-sequent. Therefore, we only need
to consider variables which are not quantified anywhere in the proof. But variables
which are not quantified in the proof are the parameters of the end-sequent and bound
themselves.

5.3 Extending Propositional Translation to ioVC

We have shown how to remove the translated axioms of ioV0 from the translated proofs.
However, the translations of the axioms of Γ are still part of the translated proofs. To
remove these remaining axioms from the translated proofs we will follow a similar
strategy:

• Find suitable formulas to substitute for the propositional function symbols.

• Provide propositional proofs for the resulting axioms.



Chapter 6

From Nonuniform to Uniform:
Soundness

In chapter 5 we provided a propositional translation that maps io-typed theories to
propositional proof complexity classes. The propositional translation provides an
upper bound on the propositional proof complexity class corresponding to a theory.
In this chapter we will provide a kind of converse by using soundness tautologies for
proof complexity classes defined in section 4.5. The propositional proof complexity
system corresponding to a theory is minimal:

• The theory proves the soundness of the corresponding proof complexity class.

• The corresponding proof complexity class polynomially simulates any proof
complexity class that the theory proves its soundness.

6.1 Maximal Proof Complexity Class Corresponding of

Theory

We will use Snd(F ) for both first-order formulas and their propositional translations
expressing the soundness ofF . Note that section 4.5 can be taken to be the propositional
translation of first-order soundness formulas.

Theorem 10. Let T be a theory extending ioV0. Let F ′ be a nice proof complexity class whose
soundness is provable in T . Let F be a proof complexity class which containsR (polynomial-
size bounded-depth Frege) and is closed under substitution and proves the translation of
ΣB

0 theorems of T . Then F weakly contains F ′, i.e. for every {ϕn}n if F ′ ` {ϕn}n then
F ` {“� ϕn”}n.

57
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Proof. It follows from T ` Snd(F ′) and Snd(F ′) being ΣB
0 that F ` Snd(F ′). F is

closed under substitution; therefore, F ` Snd(F ). It follows from theorem 7 that F
weakly contains F ′.

6.2 Evaluation of Bounded-depth Formulas in ioV0

Theorem 11. For every d there is a ΣB
0 formula �d expressing the evaluation of depth d

formulas such that ioV0 proves �d respects the structure of the formulas, i.e. ioV0 proves
Tarski’s inductive definition for �d.

Proof. The existence of the formula follows from the fact that we can evaluate depth d
formulas in AC0 and therefore can express it as a ΣB

0 formula. We need to show that it
respects the inductive definition of truth, e.g. if Z and Zis are depth d formulas and Z
is the conjunction of Zis for 0 ≤ i < k, then Z is true iff for all i < k, Zi is true.

We use the connection language for the encoding of circuits. Let Z be a string
that encodes a depth d formula with m gates on n inputs. We represent a formula
as a labeled dag. We refer to the gates in circuits by numbers. We encode the input
gate number i as the number i. We write i → j when gate i is a child of gate j. Let
gi ∈ {p∧q, p∨q, p¬q, p⊥q, p>q, 0, . . . , n − 1} be the type of gate i. Let I be a string
encoding the input for a formula. Note that we can express that the depth of a gate is
at most d by stating that there is no path of length d + 1 in the dag:

depthd(Z, i) := ∀j0, . . . , jd ¬(j0 → j1 ∧ j1 → j2 ∧ · · · ∧ jd−1 → jd ∧ jd → i).

We define the formula �d inductively. We I �d Z, i if gate i is true in the formula
encoded by Z on input given by I. In the base case where d = 0 we only have ⊥, >,
and input gates. We can define I �0 Z, i as

gi = p>q∨ (0 ≤ gi < n ∧ gi ∈ I).

For depth d + 1 we define I �d+1 Z, i as

(¬depthd(Z, i) ∧ gi = p∧q∧ ∀j→ i (I �d Z, j))∨

(¬depthd(Z, i) ∧ gi = p∨q∧ ∃j→ i (I �d Z, j))∨

(¬depthd(Z, i) ∧ gi = p¬q∧ ∃!j→ i ¬(I �d Z, j))∨

(depthd(Z, i) ∧ (I �d Z, i)).
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Now I �d Z can be defined as I �d Z, 0. Proving that �d respects the inductive
definition of the truth is straightforward.

Remark 35. Note that �d does not need to check that the input really encodes a formula, i.e.
this is a promise problem.

6.3 ioV0 Proves the Soundness of Bounded-depth Frege

Theorem 12. ioV0 proves the soundness of polynomial-size cut-free Frege.

Proof. We argue inside ioV0 using the fact that we can compute AC0 functions and use
induction on AC0 properties of objects. Let π be a cut-free Frege proof of a propositional
formula ϕ of depth d with free variables ~p. We put the proof in free-variable normal
form by replacing any propositional variable which is not free in ϕ with ⊥. It is easy to
check that this is still a valid proof.

We can prove the subformula property for the rules. Since there are no cuts in the
proof every formula in the proof is a subformula of ϕ. Therefore, all formulas have
depth ≤ d.

Let τ be an arbitrary assignment to ϕ. We want to show that τ �d ϕ. We do so by
induction on the truth of sequents in the proof. It is easy to verify the truth of axioms
and structural rules. For the logical connective introduction rules, we use the fact that
truth respects the structure of the formulas.

Theorem 13. ioV0 proves the soundness of bounded-depth Frege proofs.

Proof. The proof is similar to the proof of theorem 11. The only difference is that we
now have the cut rule over depth ≤ d formulas. The subformula property holds: every
formula is either a subformula of ϕ or a cut formula. Since all cut formulas have depth
≤ d every formula in the proof has depth ≤ d.

We only need to check the induction step for the cut rule for depth ≤ d formulas.

Γ⇒ ∆, ψ Γ, ψ⇒ ∆
Cut

Γ⇒ ∆

The truth assignment τ satisfies the top sequents in the cut rule and ψ is a depth d
formula. We have to show that τ satisfies Γ⇒ ∆. This is straightforward case analysis:
either τ �d ψ or τ 2d ψ. In the first case, the truth of top right sequent implies that
Γ ⇒ ∆ is true. In the second case, the truth of top left sequent implies that Γ ⇒ ∆ is
true.



Chapter 7

Nondeterministic Time Space and
Alternating Time

In this chapter, we prove that functions computable by nondeterministic Turing
machines in polynomial time and fractional space (NTimeSpace(nO(1), nε)) can be
computed by alternating Turing machines in fractional time with constant number
of alternations (AltTime(O(1), O(nε))), which we view as a uniform version of un-
bounded fan-in propositional circuit families of subexponential size and bounded
depth (DepthSize(O(1), 2nε

)). We use a formalization of this result in chapter 8 about
our theory nε-ioV∞ for AltTime(O(1), O(nε)).

The result is based on the general theme of trading time for alternations when space
is small [FLM+05; AK10; Gol12] and goes back to Nepomnjascij’s theorem [Nep70].

Theorem 14 (Nepomnjascij’s theorem). For all k > 0 and ε < 1:

NTimeSpace(nk, nε) ⊆ AltTime(O(1), O(n)) = LTH = ΣB≤n
∞

where LTH stands for Linear Time Hierarchy.

Note that by alternating Turing machines we mean the modified version of alter-
nating Turing machines used in the literature [Ruz79; Imm99; Vol99; CN10] for small
classes where the input tape is read only and has both ends marked by a special symbol
and there is a special tape for writing the index of input bits and reading them like a
random access memory.

Let d be a natural number and t(n) ∈ Ω(lg n) be a term. Let ΣB≤t(n)
d be the class of

first-order formulas with at most d alternations of string quantifiers with bound O(t(n))
where n is the size of its free variables. Similarly, Σq≤t(n)

d is the class of quantified

60
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propositional formula families of polynomial size with at most d quantifier alternations
(including the AND and OR gates) and each propositional quantifier quantifies over at
most O(t(n)) propositional variables. We use d = ∞ for the union of these classes over
all d ∈N.

Note that [Ruz79; Imm99; CN10]

ΣB≤lg n
∞ = ΣB

0 = FO = LH = AltTime(O(1), O(lg n)) = AC0

and

ΣB≤nO(1)

∞ = ΣB
∞ = SO = PH = AltTime(O(1), nO(1)) = DLogTime-uniform Σq

∞.

More generally it is not difficult to see the following holds for constructable t(n) ∈
Ω(lg n):

Theorem 15. ΣB≤t(n)
∞ = AltTime(O(1), O(t(n))) = DLogTime-uniform Σq≤t(n)

∞ .

Proof. The proof is similar to the proof of FO = AltTime(O(1), O(lg n)) = AC0. See
[Imm99, Theorem 5.30] and [Vol99, Theorem 4.69 and Theorem 4.73].

Remark 36. The class NCk = AltSpace(O(lgk n), O(lg n)) is generalized in [BCP83] to
define the class NCk(R(n)) = AltSpace(O(lgk R(n)), O(lg R(n))). E.g. NC(2nO(1)

) =

AltSpace(nO(1), nO(1)) = PSpace.
In a similar way we can generalize the class AC0 = AltTime(O(1), O(lg n)) to define

the class AltTime(O(1), O(lg R(n))). Using this definition with R(n) = 2t(n) we ob-
tain AC0(2t(n)) = AltTime(O(1), O(t(n))), an alternative argument through for the class
AltTime(O(1), O(t(n))) with t(n) = nε being a uniform version of subexponential-size
bounded-depth circuits.

Theorem 16. Σq≤t(n)
∞ ⊆ DepthSize(O(1), 2O(t(n))).

Proof. We only need to remove the propositional quantifiers. We can do so by replacing
∃ and ∀ quantifiers with OR and AND gates of fan-in 2t(n). The resulting propositional
circuits have a constant depth. Let the size of the original circuit be s ∈ nO(1). The
size of the resulting circuit is s2O(t(n)) = 2O(t(n))+lg s = 2O(t(n)) since t(n) ∈ Ω(lg n) ⊆
Ω(lg s).

Therefore, in the rest of this chapter we will work mainly with ΣB≤t(n)
∞ formulas as

a uniform version of subexponential-size bounded-depth circuits.



C H A P T E R 7 . N T I M E S PA C E A N D A LT T I M E 62

Theorem 17 (Main theorem). Nondeterministic polynomial-time no(1)-space functions can
be computed by subexponential-size constant-depth circuits. More formally, for all δ > 0 we
have

NTimeSpace(nO(1), no(1)) ⊆ ΣB≤nδ

O(1/δ)

= AltTime(O(1/δ), O(nδ))

⊆ DepthSize(O(1/δ), 2O(nδ)).

Compared to Nepomnjascij’s theorem the class AltTime(O(1/δ), O(nδ)) with δ < 1
is sublinear-time and is contained in AltTime(O(1), O(n)) of Nepomnjascij’s theo-
rem. Moreover, the class AltTime(O(1/δ), O(nδ)) with δ < 1 corresponds to uniform
subexponential-size bounded-depth circuits as discussed above.

Theorem 17 with the dependence between constants is explicitly stated is as follows:

Theorem 18 (Restatement of theorem 17). For all k, ε(n) = o(1), and δ > 0 we have

NTimeSpace(nk, nε) ⊆ ΣB≤nδ

4k
δ +1

.

We obtain theorem 18 as a corollary of the following more general simulation
lemma. In the following, t(n) = O(nk) is the original time complexity of the algorithm,
s(n) = O(nε) is the original space complexity of the algorithm, the constant d is
essentially the string alternation depth of the formula (more exactly, it is the number of
layers in the layered brute-force technique [AK10]), and string quantifiers are bounded
by O(nδ) where 0 < δ can be chosen arbitrarily.

Lemma 14. For all positive k, ε(n), d, δ such that (k + ε− δ/2)/d + ε + lg d/ lg n ≤ δ/2
we have

NTimeSpace(nk, nε) ⊆ ΣB≤nδ

2d+1 .

Assume that we want to verify the output of a machine M in NTimeSpace(t, s).
Each configuration of M has size O(s). Therefore, the computation of M has size
O(st). We use divide and conquer to guess and verify the computation. We divide
the computation into f blocks and check the computation in each block. We repeat
this recursively for d levels. This gives an f -ary tree of depth d. The size of each
computation block in the last level is O(st/ f d) which we guess and verify directly
in NTime(O(st/ f d)). Along each path in the recursive division, we have to guess f d
starting and ending configurations (one for each block along the path). See figure 7.1.

In total we guess f sd bits along each path in the tree. The resulting algorithm is in

AltTime(2d + 1, O(st/ f d + f sd))
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Rt
M(A, B)

Rt/ f
M (C0, C1)

Rt/ f 2

M (C0,0, C0,1)

Rt/ f d

M (C00...0, C00...1)

Rt/ f 2

M (C0, f -1, C0, f )

Rt/ f
M (C f -1, C f )

Rt/ f 2

M (C f -1,0, C f -1,1) Rt/ f 2

M (C f -1, f -1, C f -1, f )

Rt/ f d

M (C f -1, f -1,..., f -1, C f -1, f -1,..., f )

. . .

. . . . . .

. . . . . .

Rt/ f d

M (Ci1, . . . , id︸ ︷︷ ︸
d

, Ci1 ,...,id+1) Base

2

1

0

In this figure, Rt
M(A, B) denotes the fact that configuration B can be reached from configuration A in t steps. We use divide and

conquer to break down the computation into smaller pieces that can be guessed and verified independently through the

following procedure which is repeated d times:

Rt
M(A, B) :≡ ∃C0, . . . , C f = s

(
C0 = A ∧ C f = B ∧ ∀i < f (Rt/ f

M (Ci , Ci+1))
)

Figure 7.1: Divide and Conquer Algorithm for Configuration Reachability
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This gives two competing terms containing d: f sd and st/ f d. To obtain our target result
we have to make both of these terms smaller than O(nδ). The conditions stated in
lemma 14 reflect these requirements.

We first prove the following brute-force theorem that we will later use for the last
step in our proof of lemma 14 where st will be o(n):

Lemma 15. NTimeSpace(t, s) ⊆ ΣB≤st
1

Proof. We have to provide a ΣB
1 (st) formula Rt,s

M(A, B) expressing that configuration B
can be reached from configuration A in t steps, a ΣB

0 formula Accept(B) which expresses
that B is an accepting configuration, and a ΣB

0 formula Init(A, X) which expresses that
A is an initial configuration with input x. The resulting formula is

∃A, B = s
(

Init(A, X) ∧ Accept(B) ∧ Rt,s
M(A, B)

)
.

The latter two conjuncts are standard FO functions and therefore expressible in ΣB
0 . For

Rt,s
M(A, B) we use the following formula:

∃C = s(t + 1) (C[0, s] = A ∧ C[ts, s] = B ∧ ∀i < t ∀j < s

TransM(C[is + j− 1], C[is + j], C[is + j + 1], C[(i + 1)s + j]))

where TransM expresses the finite function which verifies that jth symbol of ith config-
uration C[is + j] has been computed correctly from the previous configuration (as in
Cook-Levin theorem).

Now we can continue with the proof of lemma 14.

Proof of lemma 14. Note that we can reduce the running time by a factor of f by using
two quantifiers: guess f intermediate configurations and check that each follows from
the previous one.

Let A `m
M B mean that M can reach configuration B starting from configuration A

in m steps. Then A `m
M B is equivalent to

∃C = ( f + 1)s
(

C[0, s] = A ∧ C[ f s, s] = B ∧ ∀i < f C[is, s] `dm/ f e
M C[(i + 1)s, s]

)
Repeating this trade-off of time for alternation d times on A `t

M B, we end up with 2d

quantifier blocks (2d alternation) followed by C[is, s] `dt/ f de
M C[(i + 1)s, s] and the last

part is in ΣB≤st/ f d

1 by lemma 15. This shows that Init(X) `t
M Accept is in ΣB≤st/ f d+ f sd

2d+1 .
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Next, we have to fix the values of f and d. Note that we want to get the bounds to
be O(nδ). Let f = nb, s = nε, and t = nk. Then we obtain the result since we assumed
f sd = nbnεd = dnε+b ≤ nδ/2 and st/ f d = nεnk/nbd = nε+k−bd ≤ nδ/2.

Now we derive theorem 18 from lemma 14.

Proof of theorem 18. Let L ∈ NTimeSpace(nO(1), no(1)). Let ε = o(1) and constant k such
that L ∈ NTimeSpace(nk, nε). We want to show that L ∈ ΣB≤nδ

O(1/δ)
. Let δ > 0 be arbitrary.

We will fix the values of other parameters such that the conditions for lemma 14 are
satisfied. Because of choice of b = (k + ε− δ/2)/d we only need to make sure that

b + ε + lg d/ lg n ≤ δ/2

The term lg d/ lg n is o(1) and since we only care about large enough n we can drop
it and use a strict inequality. We need to show that

b + ε < δ/2

Replacing the value of b and rearranging the terms we obtain

k/(d + 1) < δ/2− ε

But ε = o(1) so we only need to show

k/(d + 1) < δ/2

Equivalently
2k/δ < d + 1

So we can take d = 2k/δ. Note that d = O(1/δ).

As a corollary of theorem 17 we prove that NL has subexponential-size bounded-
depth circuits [Gol12].

Corollary 2. NL and SC have subexponential-size bounded-depth circuits.

Proof. Since NL = NTimeSpace(nO(1), lg n) and SC = TimeSpace(nO(1), lgO(1) n) by the-
orem 17 we have
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NL, SC ⊆ NTimeSpace(nO(1), no(1))

⊆ ΣB≤nδ

O(1/δ)
(theorem 17)

= AltTime(O(1/δ), O(nδ))

⊆ DepthSize(O(1/δ), 2O(nδ)).



Chapter 8

Theories for Uniform Subexponential
Bounded-depth Circuit Families and
NC1

In this chapter we define io-typed theories t(n)-ioV∞ for AltTime(O(1), O(t(n))) for
t(n) = nε with ε < 1 (section 8.1) and ioVNC1 for NC1 (section 8.2). We show that
the former contains the latter by formalizing the complexity class containment NC1 ⊆
AltTime(O(1), O(t(n))) of chapter 7 inside t(n)-ioV∞ (section 8.3, theorem 26). This
provides a uniform version of the result in [FPS15] that polynomial-size Frege proofs
can be translated to subexponential-size bounded-depth Frege proofs.

Finally, we derive the nonuniform result as a corollary of our uniform result
(section 8.4, corollary 7) by combining t(n)-ioV∞ ` ioVNC1 (theorem 26), ioVNC1 `
Snd(Frege) (theorem 25), the universality of Snd(Frege) for polynomial-size Frege (theo-
rem 7), and the propositional translation from t(n)-ioV∞ to polynomial-size t(n)-bdG∞

and subexponential-size bounded-depth Frege (theorem 20).

Convention 6 (t(n) = nε). Throughout this chapter, t(n) = nε where ε = 1
d < 1 for some

fixed d.

8.1 Theory t(n)-ioV∞ for Subexponential-size Bounded-

depth Frege

In this section we introduce an io-typed theory that corresponds to the class of func-
tions computable by uniform subexponential-size bounded-depth circuits. As dis-
cussed in chapter 7 we consider AltTime(O(1), O(t(n))) as our uniform version of

67
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subexponential-size bounded-depth circuits DepthSize(O(1), 2O(t(n))): the circuit eval-
uation problem for circuit families in DepthSize(O(1), 2O(t(n))) where the circuit is
given using a random access tape can be computed in AltTime(O(1), O(t(n))), and
AltTime(O(1), O(t(n))) ⊆ DepthSize(O(1), 2O(t(n))).

We use the following subclass of bounded formulas.

Definition 62 (ΣB≤t(n)
∞ ). We call a formula ΣB≤t(~n)

∞ iff it is ΣB
∞ and all of its string quantifiers

are bounded by number terms of size O(t(~n)) where~n is the size of its free variables. We often
refer to this class simply as ΣB≤t(n)

∞ in place of ΣB≤t(~n)
∞ . In such cases, n can be considered to be

the total size of the free variables.

The class of ΣB≤t(n)
∞ formulas captures exactly the functions which are computable in

AltTime(O(1), O(t(n))) by theorem 15 in chapter 7. Therefore, we use a comprehension
axiom for ΣB≤t(n)

∞ formulas to define the theory, as we used ΣB
0 comprehension for

defining our theory for AC0.

8.1.1 Theory t(n)-ioV∞

We define the theory t(n)-ioV∞ for the complexity class AltTime(O(1), O(t(n))) by
adding the comprehension axiom ΣB≤t(n)

∞ -CA to provide the necessary computational
power. Note that t(n) is a term of number sort which bounds the quantified string
variables in ϕ and only contains input-type variables. We will consider cases where
t(n) is not a term in the original language but an AC0 function definable in the base
theory ioV0. The language is extended to contain the new function and the theory
contains the defining axiom of the function. We include t(n) = n

1
d from definition 14.

We define our theory t(n)-ioV∞ as follows:

Definition 63. The io-typed theory t(n)-ioV∞ is defined as

• t(n)-ioV∞ := ioV0 + ΣB≤t(n)
∞ -CA.

Remark 37. It is not difficult to show that ioV0 is equivalent to lg n-ioV∞. Using ΣB
0 -CA

and definability of Bit in ioV0 we can prove ΣB≤lg n
∞ = ΣB

0 in ioV0. The function lg x and
the relation Bit(x, y) are definable in ioV0 (see [CN10, §III.3.3] and [Imm99, §1.2.1]). Using
comprehension on Bit(x, a) and lg a we can convert unary numbers to binary numbers of
logarithmic size in ioV0. Similarly, using comprehension and |.| we can convert a binary
number of size lg a to a unary number of size a.

We take the provably total functions in t(n)-ioV∞ to be the Φ-definable functions,
where Φ = ΣB≤t(n)

∞ .
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Theorem 19 (Provably Total Functions of t(n)-ioV∞). The provably total functions of the
theory t(n)-ioV∞ are exactly functions computable in AltTime(O(1), O(t(n))) where n is the
size of the arguments.

Proof. The proof is similar to the proof for V0: functions in AltTime(O(1), O(t(n)))
are definable and provably total using the comprehension axiom for ΣB≤t(n)

∞ . On
the other hand, by witnessing every provably total function of t(n)-ioV∞ belongs to
AltTime(O(1), O(t(n))).

8.1.2 Propositional Translation

Next, we discuss the propositional translation of proofs in t(n)-ioV∞ to polynomial-size
proof families in t(n)-bdG∞ and from there to subexponential-size bounded-depth G0

proofs.

Definition 64 (Σq≤t(n)
∞ ). Let Σq≤t(n)

∞ denote the class of those Σq
∞ quantified propositional

formula families with a bounded number of alternations (including AND and OR gates) where
the number of quantified propositional variables is bounded by O(t(n)).

Definition 65 (t(m)-bdG∞). The proof class t(m)-bdG∞ is the subclass of bdG∞ proofs where
cuts are restricted to Σq≤t(m)

∞ formulas where m is the size of the end-sequent. In addition, the
total number of eigenvariables in each sequent of t(m)-bdG∞ proofs must be O(t(m)).

Note that the result of propositional translation of a ΣB≤t(n)
∞ formula is a Σq≤t(n)

∞

formula family.

Theorem 20 (Propositional Translation). If ϕ ∈ ΣB
0 is provable in t(n)-ioV∞, then {[[ϕ]]~n}~n

has polynomial-size t(n)-bdG∞ proofs and subexponential-size bounded-depth G0 proofs.

Proof. The proof follows the argument in section 5.2. We first Skolemize the compre-
hension axiom. Given a proof in the Skolemized theory, we translate it to a proof family
in H with translated axioms. Note that we only have a fixed number of axioms in the
translated proofs. We remove the axioms of ioV0 as discussed step 3. The only remain-
ing axioms in the translated proof are the translations of the Skolemized ΣB≤t(n)

∞ -CA
axioms, which can be removed as the translations of ΣB

0 -CA axioms were removed. The
result is a proof in H with no axioms or function symbols.

Furthermore, the only quantified propositional variables in the proof are from the
translated ΣB≤t(n)

∞ formulas in the translated ΣB≤t(n)
∞ -CA axioms. By lemma 13 the

input-type terms are bounded by linear terms in parameters. The free variables in the
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ΣB≤t(n)
∞ -CA axioms were of input-type. Therefore, the bounding terms for quantifiers

are O(t(n)). As a result, we have a polynomial-size t(n)-bdG∞ proof family.
Since there are only a fixed number of axioms there are at most O(t(n)) quantified

propositional variables. To obtain a subexponential-size bounded-depth G0 proof we
simply replace existential and universal propositional quantifiers with

∧
and

∨
of

possible values for those variables and quantifier introduction rules with
∧

and
∨

introduction rules.

8.1.3 Soundness

First, note that as a corollary of theorem 13 we have

Corollary 3. The soundness of bdFrege is provable in t(n)-ioV∞.

Theorem 21. The soundness of t(n)-bdG∞ is provable in t(n)-ioV∞.

Proof. The argument follows the same structure of provably of soundness results. By
the subformula property, all formulas in the proof are Σq≤t(n)

∞ whose truth can be
formalized in t(n)-ioV∞. The rest follows from induction on the truth of sequents in
the proof on a given truth assignment for parameters of the proof.

8.2 Theory ioVNC1 and Polynomial-size Frege proofs

We define an io-typed version of the theory VNC1 from [CN10]. As discussed in
section 3.4, since we do not have the usual composition we need a more powerful
comprehension axiom. Note that the monotone balanced Boolean formula evaluation
problem MBBFE is complete for NC1 under AC0 reductions [CN10, Theorem IX.5.2].

8.2.1 Theory ioVNC1

Let us encode an MBBFE instance for a formula ϕ as a string Z of size 2s where the
first half of Z encodes the formula tree and the second half of Z encodes the inputs. A
string Y of size s is a computation of Z if it assigns correct values to the gates of Z.

Definition 66. The formula MBBFE-Comp(Y, Z) states that Y is a computation of Z and is
defined as:

• Comp(Y, Z) := ∀z < |Y|
[(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y))∧
(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y))]
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Definition 67. The comprehension axiom for the ΣB
0 closure of MBBFE (ΣB

0 (MBBFE)) denoted
by ΣB

0 (MBBFE)-CA is defined as:

• ΣB
0 (MBBFE)-CA := ∃Y = s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x, A)) ∧ Comp(Y, Z)]

where ϕ ∈ ΣB
0 .

Definition 68. The theory ioVNC1 is defined as:

• ioVNC1 := ioV0 + ΣB
0 (MBBFE)-CA

The theory ioVNC1 corresponds to NC1. We have the following theorem about the
∃BΣB

0 definable functions:

Theorem 22. The provably total functions of ioVNC1 are precisely NC1 functions.

Proof. The proof is similar to the proof for VNC1 in [CN10]. For one direction we note
that the witnessing theorem still applies. Model theoretically, we can show that any
model of VNC1 can be viewed as a model of ioVNC1 by interpreting input and output
types the same way.

For the other direction, consider any NC1 function. It can be obtained by composing
MBBFE with an AC0 function. Let ϕ be a ΣB

0 formula that represents the AC0 function.
We can define the NC1 function using a ∃BΣB

0 formula as ΣB
0 (MBBFE) with this ϕ

(without the leftmost Y quantifier for the computation). This formula defines the
NC1 function. By the comprehension axiom for ΣB

0 (MBBFE) the function is provably
total.

8.2.2 Propositional Translation

We can translate a proof in ioVNC1 to a family of polynomial-size Frege proofs. This can
be achieved directly using the method in chapter 5. After translation we need to provide
explicit formulas witnessing ΣB

0 (MBBFE) and prove the result of this replacement on
the comprehension axiom.

Remark 38. Alternatively, we can use the fact that any provable theorem of our theory is also
provable in VNC1 and use the translation for VNC1 from [CN10].

8.2.3 Formalizing Truth for Boolean Formulas

It is easy to define truth for balanced Boolean formulas in ioVNC1. We need to balance
formulas and provably so in ioVNC1 to define truth for unbalanced Boolean formulas. It



C H A P T E R 8 . U N I F O R M DepthSize(O(1), 2O(t(n))) A N D NC1 72

turns out that ioVNC1 can prove Buss’s result [Bus87; Bus93] that (unbalanced) Boolean
formulas can be evaluated in ALogTime (which is equivalent to uniform NC1). Buss’s
proof [Bus93] is formalized in VNC1, see [CN10, pp. 410-424]. We can check that the
argument in VNC1 only uses intermediate values of linear size.

Theorem 23. ioVNC1 proves the totality and correctness of Buss’s ALogTime algorithm
[Bus93] for unbalanced Boolean formula evaluation problem.

Proof. The goal is to prove that we can evaluate unbalanced formulas, i.e. for a formula
and a truth assignment given in A and B, there is a Y which is a computation of A
on B. Note that the computation does not need to encode the values obtained for the
gates, the evaluation is correct, i.e. it distributes over logical operations and correctly
computes the value of > and ⊥. We can use an AC0 function to build a balanced
formula Z from A using Buss’s algorithm, and then apply MBBFE to Z and obtain a
computation Y of it. Note that the ΣB

0 (MBBFE)-CA axiom allows this. The game tree
of Buss’s algorithm only depends on the size of the formula. The part of the balanced
formula that depends on the formula is a TC0 function that given a game play and a
formula decides the winner. We attach a balanced Boolean formula computing this TC0

function to the leaves of the game tree.
Note that for correctness we do not need to compute any global function of output-

type objects. So the argument in [CN10] still works.

Corollary 4. The (unbalanced) Boolean formula evaluation is provably total in ioVNC1.

Corollary 5. There are ∃BΣB
0 and ∀BΣB

0 formulas provably equivalent in ioVNC1 formalizing
the satisfaction relation � for propositional formulas respecting its inductive definition.

8.2.4 Proving Soundness

We can prove the soundness of polynomial-size Frege proofs in ioVNC1. The comprehen-
sion axiom of ioVNC1 can be used to evaluate balanced formulas and therefore ioVNC1

can prove the soundness of Frege proofs where formulas in the proof are balanced.

Theorem 24. ioVNC1 ` Snd(BalancedFrege).

Using the formalization of truth for unbalanced formulas in the previous section
we can prove the soundness of (unbalanced) Frege in ioVNC1.

Theorem 25. ioVNC1 ` Snd(Frege).
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Proof. Let π : Frege ` ϕ be a Frege proof of ϕ. We show that ϕ is true. Let τ be an
arbitrary truth assignment for the formulas in π. We show by induction on the size of
π that the sequents in π are true under τ. For the base case, we have to verify that the
axioms are true which is straightforward. For the induction step, we have to show that
the rules preserve the truth of sequents. The correctness of all rules can be verified by
case analysis as before.

8.3 ioVNC1 ⊆ t(n)-ioV∞

In this section we prove that t(n)-ioV∞ ` ioVNC1 where t(n) = nε by providing and
proving the correctness of an AltTime(O(1), O(t(n))) algorithm for ΣB

0 (MBBFE). This
is essentially formalizing the argument for NC1 ⊆ AltTime(O(1), O(t(n))) in chapter 7.

Remark 39. The following results about NC1 can be generalized to other nice uniform com-
plexity classes inside NTimeSpace(nO(1), no(1)) like NL.

Theorem 26. The theories t(n)-ioV∞ contain the theory ioVNC1.

Proof of theorem 26. We only need to derive ΣB
0 (MBBFE)-CA in t(n)-ioV∞. Our goal is

to show that every instance of ΣB
0 (MBBFE)-CA can be proven in t(n)-ioV∞. Let ϕ be

an arbitrary ΣB
0 formula, s a term, and A the free variable in ϕ from an instance of

ΣB
0 (MBBFE)-CA. Recall that ϕ represents the graph of an AC0 function. Abusing the

notation, we use ϕ(A) to denote this function. We can prove the existence of the
Z = ϕ(A) using the comprehension axiom in ioV0. Note that s is a number term
bounded by a polynomial in |A|. Let n = |A|. We show that there is a ΣB≤t(n)

∞ formula
ψ(x, A) which provably gives the bit graph of the computation Y of circuit Z in that
instance of ΣB

0 (MBBFE)-CA for ϕ and s. In other words, ψ(x, A) holds iff the value
computed for gate x of the circuit Z is one. It is straightforward to show that Z is
unique if it exists. The existence of Z follows from applying ΣB≤t(n)

∞ -CA for ψ which
describes the computation of the circuit Z.

Let Z be a balanced Boolean formula of size s and x a gate in Z. Formula ψ is similar
to Buss’s ALogTime algorithms for the Boolean Formula Evaluation problem [Bus87;
Bus93]. We describe it as a d-round game between two players where d is a natural
number we will fix later. The goal of the first player is to show that the correct value of
gate x in Z is 1 while the second player’s goal is to show that is not the case. We refer
to them as P(rover) and C(hallenger).

We divide Z into d levels of equal height. This results in subformulas of size O(s1/d).
We look at each of these small subformulas as a possible round in the game. The game
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tree has depth d and branching factor O(s1/d). Each of these small formulas can be
described by a path from the root to it. We index the subformulas, their inputs, and
their computation using sequences of numbers w = (i1, i2, . . . , il) where 0 ≤ l < d and
each number in the sequence is less than s1/d. For example, the subformula in the root
is indexed as Z(). The subformulas below it are indexed as Z(1), Z(2), . . . . Each round is
played in one of these subformulas, starting at the root subformula. After each step we
will move to one of the subformulas below the current one. The game is finished when
we reach a leaf.

The game starts with P giving a computation of the top subformula including the
inputs to it. If the computation is not correct, P loses. Otherwise, C challenges one of
the inputs to the subformula whose output is the challenged input for the previous
subformula. The game continues by moving to that subformula. The game ends when
we reach the original input bits. At that point we can check if all claims by P are correct:

• The values for gates in each subcircuit are consistent.

• The value of the output gate of each subcircuit is equal to the value of the chal-
lenged input bit of the upper subcircuit.

If all claims by P were correct, P wins; otherwise, C wins.

The player P represents existential string quantifiers of size O(s1/d). The player C
represents universal number quantifiers of size O(s1/d). Note that given a circuit, an
input, and a computation, the fact that computation is correct is expressible as a ΣB

0

formula as in definition 66. We have d blocks of these quantifier blocks followed by a
ΣB

0 formula that checks if the claims are correct:

• For each subformula in a game, the computation given for that subformula is
compatible with the gates for that subformula.

• The value of the root for each subformula is equal to the value of the leaf chal-
lenged in the previous round by C.

• Gate x belongs to one of the subformulas in the game.

• The value of gate x is 1.

If we pick d =
lg s

ε lg n , then s1/d ≤ nε = t(n) and ψ is a ΣB≤t(n)
∞ formula. Note that ϕ is

a ΣB
0 formula giving the bit graph of Z and we can easily replace membership in and

length of Z by ϕ and s.
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Now that we have defined our ΣB≤t(n)
∞ formula for ϕ and s, we have to show that it

gives the bits of the computation of Z according to the definition in ΣB
0 (MBBFE)-CA, i.e.

the value for each gate should be compatible with the type of the gate and the values
for its children. This is achieved by case analysis: either the gate is inside a subformula,
in which case the claim holds, or it is on the border between two levels, in which case
it is assigned the same values in both subformula computations. This completes the
proof.

8.4 Simulating Frege by Bounded-depth Frege

In this section we combine the results from previous sections to provide an alternative
proof of [FPS15] that polynomial-size Frege proofs can be simulated by subexponential-
size bounded-depth Frege proofs. In other words, Frege(nO(1)) ⊆ Frege(2O(t(n)), O(1))
and subexponential-size bounded-depth Frege proofs simulate polynomial-size Frege
proofs. Recall that t(n) = nε.

Theorem 27. t(n)-ioV∞ ` Snd(Frege).

Proof. Combine t(n)-ioV∞ ` ioVNC1 from theorem 26 with ioVNC1 ` Snd(Frege) from
theorem 25.

Corollary 6. The proof class polynomial-size t(n)-bdG∞ proves the soundness of the Frege
proof system.

Proof. This follows from the fact that a t(n)-ioV∞ proof can be translated into a proof
family in t(n)-bdG∞ by theorem 20. By the previous theorem t(n)-ioV∞ proves the
soundness of Frege; therefore, t(n)-bdG∞ proves the propositional translation of the
soundness of Frege.

Corollary 7. The proof class polynomial-size t(n)-bdG∞ contains the proof class polynomial-
size Frege. G effectively simulates Frege by polynomial-size t(n)-bdG∞ proofs.

Proof. This follows from corollary 6 and the weak universality of soundness from
theorem 7.



Chapter 9

Conclusion

9.1 Open Problems and Future Directions

In this section we mention a few directions that can be pursued.

Question 1. Design theories for complexity classes inside AC0 like AC0
2 or polynomial size

CNFs.

The interest in these classes comes from their connections to heuristic SAT algo-
rithms used in industry. Note that these classes are not closed under composition. The
io-typed framework can prove a foundation to design theories for these classes.

Question 2. Design a theory for NP.

If NP 6= coNP, then NP is not closed under composition. Again the io-typed
framework may provide a foundation to design a theory.

Question 3. What makes a propositional translation reasonable?

Note that when translating from uniform proof complexity to nonuniform proof
complexity we have to translate both formulas and proofs. The usual interest in proof
complexity is to study the relationship between the size of the proof and the size of
tautologies. If we translate formulas in an unusual way to be large, the translation of
proofs will still work. However, the relationship between the size of the proofs and
the size of the tautologies will be very different. The reductions between proof search
problems seem a more appealing venue than the general p-simulation definition in
[Rec76].

Question 4. Can we obtain proof complexity lower bounds when the structure of the proofs
are restricted?

76
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The typical restriction is requiring the proof to be a tree in place of a dag. But it looks
like that there can be more restrictions on the structure of the proof that may lead to
new lower bounds for proof complexity classes that we do not have lower bounds for,
the prime example being AC0[p]-Frege. Note that we have exponential lower bounds for
the corresponding complexity class. The intuition here is that a proof builds a formula
requiring a high complexity function to witness by composing functions through cut
rules. The restriction on cut rules limits the functions we can compose but it might
not be sufficient to restrict the proof enough for them to correspond to the complexity
classes of interest like AC0[p]. A first idea might be to bound the length of “dependent
cut chains” in the proof. However, the naive way of imposing such a restriction does
not work by itself as several cuts can be replaced with a single cut:

Γ⇒ ϕ ϕ⇒ ψ
Cut

Γ⇒ ψ ψ⇒ ∆
Cut

Γ⇒ ∆

================
⇒ (ϕ→ ϕ) ∧ (ψ→ ψ)

Γ⇒ ϕ ϕ⇒ ψ

Γ, ϕ→ ϕ⇒ ψ ψ⇒ ∆

Γ, ϕ→ ϕ, ψ→ ψ⇒ ∆

Γ, (ϕ→ ϕ) ∧ (ψ→ ψ)⇒ ∆
Cut

Γ⇒ ∆

Question 5. Can we transfer diagonalization arguments to the context of proof complexity?

Consistency statements can be used for separating theories, e.g. I∆0 + Superexp can
prove the consistency of I∆0 [HP93, Theorem 5.20] while I∆0 + Exp and weaker theories
cannot prove the consistency of I∆0 [WP87]. This can be considered diagonalization
results in the context of proof complexity. However, this and similar results are rather
weak. Can we have hierarchy results corresponding to time, space, and depth hierarchy
in proof complexity? A restricted form of soundness for proofs whose lines can be
evaluated in the theory can be a good candidate. Buss’s BQCon [Bus86; Pud90] does
not bound the terms and therefore the formulas in such a proof cannot be evaluated
uniformly since the running time would not be bounded. However, for proofs with a
fixed polynomial upper bound on the size of their terms, we can evaluate formulas in
the proofs. A more restricted form of consistency statements related to subsystems of G
was studied in [KT92]. See [Kra95, §10.5] for an exposition.

This is also interesting since it implies that the main obstacle that prevents a system
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from proving its own consistency in Gödel’s incompleteness theorem is the undefin-
ability of a global truth for the formulas in the proofs. In fact, even in the case of
PA if we restrict the quantifier complexity of the formulas in the proofs to Σk we can
define truth and prove their soundness inside PA. In this sense, what is behind Gödel’s
incompleteness theorems is Tarski’s undefinability of (global) truth theorem.

It seems possible that if we pick complexity classes corresponding to the time
hierarchy theorem and design theories for them, a restricted form of soundness can
separate them and give a fine hierarchy of bounded arithmetic theories. A finer
diagonalization proof complexity result can lead to the transfer of other more advanced
tools from computational complexity theory to proof complexity.

Another direction for obtaining a proof complexity version of diagonalization is to
use finitistic consistency statements [Pud85; Pud86]. See [Pud96] and [Kra95, §14.1] for
a survey of results and [Kra04a] for further developments in this direction.

Question 6. Is there a counterpart to Allender-Koucký for TC0-Frege and NC1-Frege? Can we
prove that to separate polynomial-size TC0-Frege from polynomial-size NC1-Frege it suffices to
prove an n1+ε (or a similar fixed polynomial) lower bound on the size of TC0-Frege proofs of the
soundness of Frege? Can we provide a self-reducibility argument for the soundness of Frege?
Can we prove such a result assuming plausible complexity conjectures like TC0 6= NC1?

The key idea behind the result in [AK10] is exploiting the self-reducibility of BFE:
There is a linear-size TC0 circuit with BFE√n oracles for BFEn. Repeating this d times
we obtain a linear-size TC0 circuit with BFE 2d√

n
oracles and the result follows from

choosing a suitable constant d.

Soundness statements for proof classes can be considered as counterparts to cir-
cuit evaluation problems. The goal is to prove a self-reducibility argument for the
soundness of Frege similar to the self-reducibility of BFE. The first attempt to show that
soundness tautologies are self-reducible fails because it involves cuts over the truth of
NC1 formulas which are not available in TC0-Frege. We can show that a derivational
form of soundness is strongly self-reducible with respect to the number of lines (not
total size). This cannot reduce the size of the proof below the size of a line and there-
fore we need a self-reduction for the rules. In particular, we need a linear-size strong
self-reduction for the NC1-cut rule in TC0-Frege.

Note that a single step of cut elimination process is not a strong self-reduction.
Moreover, we may need to duplicate the side formulas (because of contractions in
the proof). We see this as the main blocking obstacle to a proof complexity version of
[AK10].
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Another class of proof systems is based on algebra and geometry objects, e.g.
Nullstellensatz, CP, LS, SA, SoS.

Question 7. Design uniform systems for algebraic proof systems and establish a similar
correspondence between the uniform and nonuniform versions.

In our translation we assumed that the size of the translation of the formulas is at
least linear in the size of their free variable by padding the formulas with disjunctions
with ⊥. This was required to make the general theorem about the relation of the size
of translated proofs and the size of the translated formulas hold. It seems that we
need some conditions on the translation of the formulas to make sure they are not so
succinct that the translation of axioms about them are useless, e.g. we do not end up
with a formula ϕ containing a function symbol f whose proof requires an axiom about
f while the translation of the axiom is significantly larger than the translation of the
formula. However, we have not been able to come up with such an example.

Question 8. Is there a bounded arithmetic theory T extending V0 with a propositional transla-
tion such that there is a provable formula in T whose translation does not have polynomial-size
bounded-depth H proofs from the translation of the additional axioms of T ?

As we discussed in section 1.3, the correspondence between uniform and nonuni-
form systems is not perfect. Several uniform theories may correspond to the same
nonuniform class. One way of dealing with this issue might be to find suitable cate-
gories on each side and show that the correspondence is an adjunction between the two
categories. For example, it is possible to define a category of bounded arithmetic theo-
ries and a category of proof complexity classes such that the propositional translation is
a functor from the former to the latter. Is it possible to do so in a way that propositional
translation has a left adjoint? In other words, is there a consistent mapping of proof
complexity classes to bounded arithmetic theories?

Question 9. Explore various proof complexity constructions from a category-theoretic perspec-
tive.

Proving the soundness of proofs with larger size is easier. This seems unsatisfactory.
Similar to computational complexity, it would be interesting to see if we can prove
the soundness of proofs when the proof is given as an oracle (i.e. function symbol).
We may still evaluate the formulas in the proof, however, our induction might not be
strong enough to go over a large proof. Can we restrict these large proofs in such way
that their soundness in oracle form becomes provable? Is there a connection to implicit
proofs of [Kra04b]?
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Question 10. Define a nice subclass of subexponential-size bounded-depth Frege proofs con-
taining polynomial-size nε-bdG∞ and show that their soundness is still provable even when the
proofs are given as oracles.

Finally, I would like to state an informal question in proof complexity with Kreiselian
motifs which I find most fascinating:

Question 11. What do we gain from having a proof of a tautology in addition to knowing that
it is true? What do we gain from having a proof which uses a restricted class of concepts aside
from its mathematical and philosophical appeal?

The provability of the correctness of an algorithm in a proof system is an implicit
limitation on the power of the algorithm. E.g. a SAT algorithm which is provably
sound in a proof system cannot solve tautologies which are hard for the proof system
[Kra12]. Is there a positive side to the provability of the soundness of an algorithm in a
weak proof system? E.g. can we use such proofs for automatic failure detection and
recovery?
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