
iShop: A Continuously Context-Aware Shopping Assistant
Alaa Abdulaal

Dept. of Computer Science
University of Toronto

Toronto, Canada

alaa.abdulaal@mail.utoronto.ca

Jacqueline Bermudez
Dept. of Computer Science

University of Toronto
Toronto, Canada

jbermudez@cs.utoronto.ca

Jyotheeswar Arvind
Manickavasagar

Dept. of Computer Science
University of Toronto

Toronto, Canada

jyotheeswar@cs.toronto.edu

ABSTRACT

We present iShop, a continuously context-aware shopping

assistant mobile application that keeps track of the user’s

location, reminding them of the time spent at the store and

presenting the store membership cards. iShop has a user-

friendly interface allowing users to search for a store

location where the user would like to set a shopping timer.

Users can add timers, edit, and delete them. Also, users can

scan their loyalty or membership cards using the camera and

add them with the option of editing and deleting those cards

at any time. Two levels of evaluation were done with iShop:

a user study and a technical evaluation, with particular

concentration on the battery and network bandwidth

consumption. The user study results showed that 50% of

users would like to use iShop. Also, the technical evaluation

results showed that battery consumption was reduced by

lazily pre-populating geo-fences.

Categories and Subject Descriptors

C.5.3 [Microcomputers]: Portable devices; K.8 [Personal

Computing]: General

General Terms

Performance, Design, Reliability, Human Factors.

Keywords

Continuous tracking, context aware, digital wallet, location-based

services, GPS, Wi-Fi, time tracking.

1. INTRODUCTION
Current advancements in technology allows software

engineers and developers to build customizable applications

(apps) to address user needs. One such example, is the

development of apps designed to run on mobile devices such

as smartphones and tablets. Mobile apps have contributed in

many areas such as health, education, entertainment,

business and other fields. It is worth mentioning that some

of the best mobile apps that have succeeded, use the Global

Position System (GPS) navigation systems’ data. The most

common apps that include GPS functionality are generally

related to maps, calendars, social networks and trackers.

With the rat race of everyday life, people have become ever

busier and filled with activities. Thus, it is common for

people to be overloaded with information, leading them to

forget important but mundane tasks that they have to do.

Moreover, one of the most common problems that people

normally encounter is losing track of time in supermarkets

and shopping stores. Attempts have been made to solve this

problem by using notes, calendars, timers and alarms.

Although these solutions certainly help in some way, they

can be futile and easily forgotten. Another activity that

wastes user’s time and is inconvenient is looking for

membership and loyalty cards. Users either forget the card,

or lose time searching for one in their wallet. New

technology presents solutions to this problem, such as digital

wallet apps when using smartphones but those application

also make the user lose time by requiring the user to search

through the digital cards.

Motivated by solving those problems, we introduce iShop, a

shopping assistant mobile app that stores a digitized version

of a membership card and tags it to related store locations. It

also contextually identifies the location of a user, and pops

up the corresponding card, if it is already stored, to avoid

searching for a card manually. Finally, it keeps track of time

spent at a store, and sends a reminder if users have spent

more than the planned duration.

The rest of this paper explores this solution in detail. Section

2 describes the overall architecture of iShop. Section 3

delves into how iShop has been implemented. The core of

iShop, the tracking and predictor, is described in Section 4.

2. iSHOP SOLUTION

2.1 System Overview
The solution has five main hardware/software components:

2.1.1 GPS Receiver

Almost all modern smartphones have a built-in GPS receiver

that can receive radio signals from GPS satellites. Using the

readings from both the GPS and the mobile network/Wi-Fi

Internet reverse geocoding, the application can estimate the

user’s location.

2.1.2 Mobile Network/Wi-Fi internet connection

Smartphones can connect to the internet using either mobile

networks or Wi-Fi access points. The application connects

to the Google servers using the Google Maps API v2.0 [4]

over the internet, and does the geocoding needed to get the

map, store name, and location information.

2.1.3 Camera

All modern smartphones have a built-in camera making it

convenient for card scanning and digitization. The camera

scan the barcode from the card recognizing the white and

black stripes and generating the matching barcode number.

2.1.4 Database

The database (DB) is designed to store the timers saved by

the user, cards saved by the users, and locations saved by the

application.

2.1.5 Application & UI

The application user interface (UI) is designed to be user

friendly. The main page provides a direct access to the

application’s main functionalities. The “Add timer” is based

on a google map interface and a search box to find locations

where the user would like to add a timer. A sliding panel that

pops on top of the map is used to add the timer details easily,

without the need to open another page. The “My Timer”

enables the users to view the list of un-reminded timers, edit,

or delete them. The “Add card” is based on a simple camera

interface to scan the card barcode then enter the card store

name. Users also can easily edit and delete existing cards

from the “My cards” list.

2.2 System Architecture
Figure 1 shows our solution’s architecture, demonstrating all

the essential components and functions which will be

discussed in details in section 3.

Figure 1. iShop solution architecture

3. iSHOP IMPLEMENTATION
The application was developed on the Android Studio

development environment. During the development stage,

the application was debugged and tested on three devices,

each running Android 5.0: a LG Nexus 5, a Galaxy Core

Lite, HTC 1M8, and Motorola G (1st Generation).

3.1 Timer

3.1.1 Add Timer

The user sets the specific time they would like to spend at a

specific location by selecting “New Timer” button. If the

user chooses to save a new timer, the application will save

the information in the DB. After creating the timer, the app

will be included in a cycle of verification where each 10

seconds the app verifies if the user is at the location that was

set. Otherwise, the timer won’t start until the user arrives to

the specified location. The timer starts once the user arrives

at the correct location, and the user will receive a notification

when the countdown timer finishes.

Map environment

The application uses the Google Maps Android API v2[4].

The location can be placed on the map by typing the name

of the establishment. In order to make the map work on the

smartphone, it must be connect to Wi-Fi, or to a cellular data

service.

Store name Input

While the user types in the search box from the map,

autocomplete address suggestions open in a list with a

maximum number of 5 suggested addresses. Once an

address is selected from the list, a pin is dropped on the

geocoded geographic latitude and longitude of the selected

address. This autocomplete feature uses the Google Places

API [5] that provides detailed information about places

across a wide range of categories, in this case

establishments, from the DB of Google Maps and Google+.

Establishments in this study were from Ontario, Canada;

however, it could be modified for other places outside

Canada. One of the limitations of using this autocomplete

feature, is that the free version only allows 1,000 queries per

24 hours, and the establishments returned are limited.

3.1.2 Manage timer

A user interface is available, showing the list of timers

created. User are able to modify the timer and the description

of things that the user wants to do at a specific place. The

user is able to delete the chosen created timer if he desires.

This information will be either updated or deleted from the

local DB according to the user’s preferences.

3.2 Cards

3.2.1 Add cards

A new entity is created in the DB when a new card’s barcode

is scanned and saved by the user. The application uses an

open-source library, called Zxing ("zebra crossing"). Zxing

is multi-format 1D/2D barcode image processing library

implemented in Java, with ports to other languages. The

supported formats are UPC-A, Code 39, QR Code, UPC-E,

Code 93, Data Matrix, EAN-8, Code 128, Aztec (beta),

EAN-13, Codabar, PDF 417 (beta), ITF, RSS-14, and RSS-

Expanded [9].

3.2.2 Manage cards

The user is able to modify the cards either by deleting them

it or updating the name of the store. Based on the card ID

and the modification, the application will check the card

table in the DB for the matching card ID and update it. At

the same time, the application will check the Address table

in the DB to delete/ update the corresponding address entry

related to that card.

3.3 Application Database
The DB uses the SQLite framework standardized across

Android devices, and as such requires minimal setup and

administration of the DB. The DB has three main tables.

3.3.1 Timer table

The timer table saves the users’ added timers with the

attributes: Timer ID, Timer to-do list, isReminded - a flag to

indicate if this timer has been reminded already, latitude and

longitude of the selected location, and the timer duration the

users specify. Each attribute has an API that interacts with it.

The application will constantly read the location of the

timers stored in the DB and compares it with the user’s

current location, to figure out which timers need to be

triggered.

3.3.2 Cards table

The cards table saves the users added cards with the

attributes: cards ID, store name that the card will be used in,

and the generated barcode number from the scanned card.

Each attribute has an API that interacts with it.

3.3.3 Address table

The address table saves the user added cards address with

the following: store ID, store name that the card will be used

in, store location latitude and longitude.

In the initial version of iShop, this table was not present. The

application, at every 10 second time slot, uses the user’s

current location and makes a Google Maps v2.0. Nearby

Places API call to obtain the list of locations that are near to

the user. The 10 second time slot was chosen so that there

was sufficient time for the application to make the API call,

get the results and parse it before being refreshed. However,

in our initial testing, we found this to be a highly inefficient

solution, which led to major battery and bandwidth

consumption.

Optimization

In order to ameliorate this issue, we decided to lazily pre-

populate the latitudes and longitudes of all outlets of a

particular shop (e.g. if a user creates a membership card for

Sobeys, the application would immediately find the

locations of all Sobeys’ stores nearby), make a permanent

geo-fence, unlike Google’s geo-fences, and stores all the

information into the Address Table.

The application uses these locations mapped with a

particular card, and compares it with the user’s current

location in order to perform its functions. When the pop-up

is generated, the application maps this information to that in

the Cards table in order to generate the particular

membership card for the user.

3.4 Location service
The Location service was implemented using Android’s

Location & Places API. The application obtained the user’s

location using GPS data, and refreshed this every time the

user moves. This service also holds a cache so that the last

location is used by the application, in the case that GPS is

not available (e.g. while shopping indoors at malls).

3.5 Card Prediction & Time Calculation
The card prediction and Time calculation modules are

predominantly responsible for identifying and populating the

correct membership card for the user. The card prediction

module would populate the membership card upon the set

time being elapsed for the user, whereas if the user doesn’t

have a timer, but goes to a store where he/she has a card, the

application attempts to predict which store they are at. iShop

does this by initially checking that the user is not in the

vicinity of a timer (as timers have a higher priority because

of user-defined relations). If there are no timers, the

application predicts by comparing the user’s locations with

the geo-fences stored in the Address table to see if the user

is close to any of them.

When iShop identifies that the user is within a geo-fenced

region, it immediately starts timing the user. We have set a

threshold of 3 minutes for the prediction with no-reminder

case, as we found that any lesser time would lead to large

false positives. These false positives are triggered because

the user may be traveling (walking/biking/in public transit)

over a geo-fenced region without meaning to enter the store.

They may have stopped there due to traffic or red signs. A

low threshold would lead to the application repeatedly

identifying that the user is shopping at location, when he/she

is not. Repeated false reminders would make the application

irritable for the user.

3.6 Notification
The notification based on the information obtained from the

card predictor, the Notification module pushes a

notification/reminder to the user that they have a

membership card available at a particular location. When the

user clicks this card, the list of predicted cards is populated

and the user can click on the appropriate card to display it.

There are two types to this module: (i) Timer notification and

(ii) Predictor notification.

3.6.1 Timer notification

By design, the application considers timers to have higher

priority. If the notification is of a timer, then the application

would only pop-up the notification stating that the time the

user has set to shop has elapsed. On clicking the notification,

the user can access their membership card.

3.6.2 Predictor notification

The application tries to identify the user’s precise location.

This is non-trivial, as there are many stores that exist next to

each other and the user may have membership cards in two

or more of them. With the limited granularity of GPS

locations, the application may assume the user is in shop X,

whereas the user would actually be in shop Y next door.

iShop attempts to do this by fitting a linear model to user

shopping behavior. Whenever the user chooses a card, the

information is stored into the timer table in the DB with

status=reminded. Based on the user’s previous shopping

history, the application first identifies all the locations

nearby (radius of 125m) where the user has a membership

card. Based on user history, the application sorts these

locations and stores them in the order of maximum

probability of shopping. This calculation is analogous to the

Support and Confidence values used by the Apriori

Algorithm [1].

4. iSHOP TIMER & TRACKER MODULE
The iShop engine consists of a Location service and a

background service that serves as brain of the application.

Figure 2 shows the engine’s functionality.

Algorithm:

Figure 2. iShop engine

The Google Places API has a restriction of only returning 20

locations at a particular instance. iShop deals with this by

obtaining the location when a card is created. When the user

moves out of the boundary from which the initial 20

locations have been obtained, iShop makes another API call

in-order to expand its list of locations. The drawback of this

approach would be that if the user deviates from his/her

usual route in the beginning, the list of locations may grow

to be very large. iShop attempts to alleviate this problem by

dropping stale location rows. Although this may cause the

application to show non-ideal behavior in certain situations,

we believe it to be a fair trade-off. Further evaluation is

needed to see if this approach would work in a wider setting.

5. EVALUATION
Our application has been evaluated in two parts: (i) User

study and (ii) Technical evaluation, with concentration on

the battery and network bandwidth consumption.

5.1 User study
10 participants between the ages of 22-61 were recruited

from Toronto, ON and Jordan, ON Canada. They were

drawn from a variety of professions to ensure a wide

audience for testing the application. We performed a

qualitative study on the application, with questions targeted

to get feedback on the usability of the application, on how

accurate the prediction worked, on how accurate the

reminders worked, and the accuracy of the timers.

As mentioned in [10], the qualitative study provided us with

the information we required. The application was installed

on the participants’ mobiles, running Android, and were

given an initial demo of the application. Users were then

allowed to test the application over two days, while

continuing with their daily routine. After testing, participants

filled an online form with their responses. Figure 3

graphically represents the user’s feedback.

With regards to how many users would use our application,

we received a positive feedback of about 50% of users

stating they would like to use our application, albeit with a

few of them requesting additional functionalities. Some of

the free-text constructive feedback received from users

included: “It would be useful to track indoor shops”,

“include track of the balance of each card after the customer

uses”, “include store profiled, shopping list and hours”.

Figure 3. User Survey Results

5.2 Technical evaluation
The application was evaluated on the battery and network

bandwidth consumed by the application, and the radius

threshold for the geo-fencing of the application. The

application was evaluated on a Nexus 5 smartphone

(Android 5.0, Qualcomm Snapdragon 800 processor, Wi-Fi

802.11 a/b/g/n/ac, dual-band) using Wi-Fi and a Motorola G

1st Generation (Android 5.0, Qualcomm Snapdragon 400

processor) using 3G network.

5.2.1 Battery Consumption

The battery consumption was tested using Power Tutor 1.4.

iShop was run on Wi-Fi using the Nexus 5 and over the 3G

network on the Moto G. It was run for approximately 5 hours

and 7 hours on the phones respectively, storing 3 cards,

setting 2 reminders and walking into a shop where the user

has a card stored. The battery consumption has been

normalized for 12 hours and are shown in Figures 4 and 5.

The application power consumption was compared with the

optimization and without optimization. The nearest

application that had similar functionality was Google Maps,

which showed power consumption similar to the optimized

application while running on the foreground. Without

optimization, iShop consumed ~34.8% of the phone’s

battery while over 3G. With optimization, the power

consumption was ~3.6%.

5.2.2 Network Bandwidth consumption

The application bandwidth consumption was evaluated

using ONAVO COUNT 2.2.2-3. This evaluation was done

with the Moto G phone over the 3G network. As shown in

Figure 6, with optimization, the application only consumed

about 2MB per day whereas without optimization, it was

around 33MB. Google Maps, while running on the

foreground, consumed about 12MB per day. We attribute the

reduction of bandwidth consumption due to the fact that pre-

populating at periodic intervals drastically reduces the API

calls and only requires CPU processing with the GPS data.

Figure 4. The battery consumption has been normalized for 12 hours

Figure 5. Battery consumption

5.2.3 Radii threshold

For the scope of our application, it is vital for the geo-fencing

to be of sufficient radius so that the application can detect an

appropriate number of stores for it to predict properly.

However, this involves making a trade-off. Having a small

radius would make the application detect only a limited

number of useful stores, possibly leading to false negatives,

whereas a large radius would lead to false positives and a lot

of noise. To this effect, we evaluated on the ideal threshold

for our application. This was done by varying the radius and

walking around different localities in downtown Toronto to

identify which radius provided a fair balance between the

number of shops identified and the noise. Figure 7 shows the

chart obtained by plotting this information.

6. RELATED WORK
Location-based task reminders function when users are able

to establish personal-meaningful locations and create

location-based task reminders. Given the desired

information, the application triggers the reminder when user

is at the predefined location [7]. Another type of apps that

are finding increasing usage among users are digital wallets

[2, 3]. These apps allows the user to digitally store

loyalty/membership card data [6], electronic cash and

receipts. This is a good solution to avoid filling user’s

wallets with cards but user still lose time searching through

the stored digital cards. Both type of apps, digital wallet and

location-based reminders, are combined in our solution to

make life easier for people when shopping in stores. It hasn’t

been found any official research study that introduce this

combined idea.

Figure 6. Network Bandwidth consumption

Figure 7. # of shops returned with different radius radii Toronto

7. FUTURE WORK
With limited number of shops in a vicinity, the linear

prediction model used by our application is sufficient.

However, when the application is extended to include indoor

location information, particularly in the scenario of shopping

in a shopping mall, this would be less than ideal taking into

account the large granularity in obtaining the user’s position.

Future work should be focused on improving this prediction

model to better fit the user’s data. In addition, currently in

the application the radius used to check the user’s location

against the store name is fixed (125 meters) for all stores. A

future enhancement would be working on making the

application modify the radius threshold dynamically based

on the type of establishment and using architecture

information from TSA databases. This has been shown to

better user-experience with similar apps [8]. Finally, the

application can be enhanced by taking advantage of the

cloud, pushing the data to a web server and analyzing it.

8. CONCLUSION
We have thus created iShop, a continuously context-aware

shopping assistant that digitizes loyalty or membership cards

and predicts user shopping behavior. The initial version of

iShop involved obtaining a list of nearby locations every 10

seconds and trying to match it with the list of reminders or

membership cards. However, this was highly inefficient and

thus the application was re-engineered to optimize this

process by lazily pre-populating the list of stores. We show

that this optimization leads to a tremendous decrease in

battery and bandwidth consumption, while the CPU usage

difference is negligible. With our user study, we find that

there is a potential market for this application.

9. REFERENCES
[1] Agrawal, R., Imielinski, T., and Swami, A. Mining association

rules between sets of items in large databases. ACM SIGMOD,

1993.

[2] Bradley, Michael. Digital Wallets Executive Briefing.

Information Technology Association of Canada (ITAC) Digital

Commerce Forum: How Your Wallet is Going Digital, 2013.

[3] Crowe, M., and Tavilla, E. (2012). Mobile Phone Technology:

“Smarter” Than We Thought. Federal Reserve Bank of Boston,

136-149.

[4] Google developers. 2015. Google Maps API. Google Maps

Android API v2.

https://developers.google.com/maps/documentation/android/

[5] Google developers. 2015. Google Places API. Google Places

Android API v2.

https://developers.google.com/places/

[6] Hopken, W., Deubele, P., Holl, G., Kuppe J., Schorpp, D.,

Licones, R., and Fuchs, M. Digitalizing Loyalty Cards in

Tourism. Information and Communication Technologies in

Tourism, 2012.

[7] Lin, C. and Hung, M. A location-based personal task reminder

for mobile users. Personal Ubiquitous Comput. 18, (2), 2014,

303-314. http://dx.doi.org/10.1007/s00779-013-0646-2.

[8] Ludford J. P, Frankowski, D., Rilyey, K., Wilms, K., and

Terveen, L. Because I Carry My Cell Phone Anyway: Functional

Location-Based Reminder Applications. ACM SIGCHI 2006,

Montreal.

[9] Owen, S. ZXing—Multi-format 1D/2D barcode image

processing library with clients for Android, Java, 2009.

[10] Ravasio, P., Guttormsen-Schar, S., and Tscherter, V. The

Qualitative Experiment in HCI: Definition, Occurances, Value

and Use. Transactions on Computer-Human Interaction, 2004,1-

24. http://pamela.shirahime.ch/QualExp.pdf

.

https://developers.google.com/maps/documentation/android/
https://developers.google.com/places/
http://pamela.shirahime.ch/QualExp.pdf

