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Abstract. In modern computer vision, images are typically represented
as a fixed uniform grid with some stride and processed via a deep convo-
lutional neural network. We argue that deforming the grid to better align
with the high-frequency image content is a more effective strategy. We
introduce Deformable Grid (DefGrid), a learnable neural network mod-
ule that predicts location offsets of vertices of a 2-dimensional triangular
grid, such that the edges of the deformed grid align with image bound-
aries. We showcase our DefGrid in a variety of use cases, i.e., by insert-
ing it as a module at various levels of processing. We utilize DefGrid
as an end-to-end learnable geometric downsampling layer that replaces
standard pooling methods for reducing feature resolution when feeding
images into a deep CNN. We show significantly improved results at the
same grid resolution compared to using CNNs on uniform grids for the
task of semantic segmentation. We also utilize DefGrid at the output
layers for the task of object mask annotation, and show that reasoning
about object boundaries on our predicted polygonal grid leads to more
accurate results over existing pixel-wise and curve-based approaches. We
finally showcase DefGrid as a standalone module for unsupervised im-
age partitioning, showing superior performance over existing approaches.
Project website: http://www.cs.toronto.edu/∼jungao/def-grid.

1 Introduction

In modern computer vision approaches, an image is treated as a fixed uniform
grid with a stride and processed through a deep convolutional neural network.
Very high resolution images are typically processed at a lower resolution for
increased efficiency, whereby the image is essentially blurred and subsampled.
When fed to a neural network, each pixel thus contains a blurry version of the
original signal mixing information from both the foreground and background,
possibly causing higher sensitivity and reliance of the network to objects and
their context. In contrast, in many of the traditional computer vision pipelines
the high resolution image was instead partitioned into a smaller set of super-
pixels that conform to image boundaries, leading to more effective reasoning in
downstream tasks. We follow this line of thought and argue that deforming the
grid to better align with the high-frequency information content in the input is
a more effective representation strategy. This is conceptually akin to superpixels

http://www.cs.toronto.edu/~jungao/def-grid
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Fig. 1: DefGrid is a neural module that represents an image with a triangular
grid. Initialized with an uniform grid, DefGrid deforms grid’s vertices, such
that grid’s edges align with image boundaries, while keeping topology fixed.

but conforming to a regular topology with geometric constraints thus still easily
amenable for use with deep convolutional networks for downstream tasks.

Furthermore, tasks such as object mask annotation naturally require the
output to be in the form of polygons with a manageable number of control points
that a human annotator can edit. Previous work either parametrized the output
as a closed curve with a fixed number of control points [27] or performed pixel-
wise labeling followed by a (non-differentiable) polygonization step [26,39,29].
In the former, the predicted curves typically better utilize shape priors leading
to “well behaved” predictions, however, the output is inherently limited in the
genus and complexity of the shape it is able to represent. In contrast, pixel-
wise methods can represent shapes of arbitrary genus, however, typically large
input/output resolutions are required to produce accurate labeling around object
boundaries. We argue that reasoning on a low-resolution polygonal grid that well
aligns with image boundaries combines the advantages of the two approaches.

We introduce Deformable Grid (DefGrid), a neural network module that
represents an image with a 2-dimensional triangular grid. The basic element of
the grid is a triangular cell with vertices that place the triangle in the image
plane. DefGrid is initialized with a uniform grid and utilizes a neural network
that predicts location offsets of the triangle vertices such that the edges and
vertices of the deformed grid align with image boundaries (Fig 1). We propose
several carefully designed loss functions that encourage this behaviour. Due to
the differentiability of the deformation operations, DefGrid can be trained end-
to-end with downstream neural networks as a plug-and-play module at various
levels of deep processing. We showcase DefGrid in various use cases: as a learn-
able geometric image downsampling layer that affords high accuracy semantic
segmentation at significantly reduced grid resolutions. Furthermore, when used
to parametrize the output, we show that it leads to more effective and accurate
results for the tasks of interactive object mask annotation. Our DefGrid can
also be used a standalone module for unsupervised image partitioning, and we
show superior performance over existing superpixel-based approaches.

2 Related Works

We focus on the most relevant work in several related categories.
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Deformable Structure: Deformable convolutions [10] predict position off-
sets of each cell in the convolutional kernel’s grid with the aim to better capture
object deformation. This is in contrast to our approach which deforms a tri-
angular grid which is then exploited in downstream processing. Note that our
approach does not imply any particular downstream neural architecture and
would further benefit by employing deformable convolutions. Related to our
work, [31,23] learn to deform an image such that the corresponding warped im-
age, when fed to a neural network, leads to improved downstream tasks. Our
DefGrid, which is trained with both unsupervised and supervised loss func-
tions to explicitly align with image boundaries, allows downstream tasks such as
object segmentation to perform reasoning directly on the low-dimensional grid.

Image Partitioning: Polygonal image partitioning plays an important role
in certain applications such as multi-view 3D object reconstruction [6] and
graphics-based image manipulation [22]. Existing works tried to polygonize an
image with triangles [6] or convex polygons [11]. [6] used Constrained Delaunay
triangulation to get the triangular mesh. However, their method heavily relies
either on having good key point locations or good edges in order to get boundary
aligned triangles. [11] also relies on the initial line segment detection. In [2], a
non-iterative method was proposed to obtain superpixels, followed by a polygo-
nization method using a contour tracing algorithm. Our DefGrid produces a
triangular grid that conforms to image boundaries and is end-to-end trainable.

Superpixels: Superpixel methods aim to partition the image into regions of
homogenous color while regularizing their shape and preserving image bound-
aries [12,32,28,17,5,1,2,25]. Many algorithms have been proposed mainly differ-
ing in the energy function they optimize and the optimization technique they
utilize [32,28,37,12,17,1,2,40,41]. Most of these approaches produce superpixels
with irregular topology, and the final segmentation map is often disconnected and
needs postprocessing. Note also that energy is often hand designed, and infer-
ence is optimization based. Recently, SSN [24] made clustering-based approaches
differentiable by softly assigning pixels to superpixels with the exponential func-
tion. SEAL [36] learns superpixels by exploiting segmentation affinities. Both of
these methods produce superpixels with highly irregular boundaries and region
topology, and thus they may not be trivially embedded in existing convolutional
neural architectures [13]. To produce regular grid-like topology, superpixel lat-
tices [30] partition the image recursively, finding horizontal and vertical paths
with minimal boundary cost at each iteration. Unlike their approach, DefGrid
utilizes differentiable operations to predict boundary aligned triangular grids and
is end-to-end trainable with both unsupervised and supervised loss functions.

3 Deformable Grid

Our DefGrid is a 2-dimensional triangular grid defined on an image plane.
The basic cell in the grid is a triangle with three vertices, each with a location
that position the triangle in the image. Edges of the triangle thus represent line
segments and are expected not to self-intersect across triangles. The topology of



4 J. Gao et al.

Low resolution

Higher resolution

Fig. 2: Different grid
topologies. We choose
the last column for its
flexibility in represent-
ing a variety of differ-
ent edge orientations.

the grid is fixed and does not depend on the input image. The geometric grid
thus naturally partitions an image into regular segments, as shown in Fig. 1.

We formulate our approach as deforming a triangular grid with uniformly
initialized vertex positions to better align with image boundaries. The grid is
deformed via a neural network that a predicts position offset for each vertex
while ensuring the topology does not change (no self-intersections occur).

Our main intuition is that when the edges of the grid align with image bound-
aries, the pixels inside each grid cell have minimal variance of RGB values (or
one-hot masks when we have supervision), and vice versa. We aim to minimize
this variance in a differentiable way with respect to the positions of the vertices,
to make it amenable to deep learning. We describe our DefGrid formulation
along with its training method in detail next. In Section 4, we show applications
to different downstream tasks.

3.1 Grid Parameterization

Grid Topology: Choosing the right topology of the grid is an important aspect of
our work. Since objects (and their parts) can appear at different scales in images,
we ideally want a topology that can easily be subdivided to accommodate for
this diversity. Furthermore, boundaries can be found in any orientation and
thus the grid edges should be flexible enough to well align to any real edge. We
experimentally tried four different topologies which are visualized in Fig. 2. We
found the topology in the last column to outperform alternatives for its flexibility
in representing different edge orientations. Note that our method is agnostic to
the choice of topology and we provide a detailed comparison in the appendix.

Grid Representation: Let I be an input image. We denote each vertex of the
grid in the image plane as vi = [xi, yi]

T , where i ∈ {1, · · · , n} and n is the
total number of vertices in the grid. Since the grid topology is fixed, the grid
in the image is entirely specified by the positions of its vertices v. We denote
each triangular cell in the grid with its three vertices as Ck = [vak

, vbk , vck ], with
k ∈ {1, · · · ,K} indexing the grid cells. We uniformly initialize the vertices on
the 2D image plane, and define DefGrid as a neural network h that predicts
the relative offset for each vertex:

{∆xi, ∆yi}ni=1 = h(v, I). (1)
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We discuss the choice of h in Section 4. The deformed vertices are thus:

vi = [xi +∆xi, yi +∆yi]
T , i = 1, . . . , n. (2)

3.2 Training of DefGrid

We now discuss training of the grid deforming network h using a variety of un-
supervised loss functions. We want all our losses to be differentiable with respect
to vertex positions to allow for the gradient to be backpropagated analytically.

Differentiable Variance: As the grid deforms (its vertices move), the grid cells
will cover different pixel regions in the image. Our first loss aims to minimize the
variance of pixel features in each grid cell. Each pixel pi has a feature vector fi,
which in our case is chosen to contain RGB values. When supervision is available
in the form of segmentation masks, we can optionally append a one hot vector
representing the class of the mask. Pixel’s position in the image is denoted with
pi = [pxi , p

y
i ]T , i ∈ {1, · · · , N}, with N indicating the total number of pixels in

the image. Variance of a cell Ck is defined as:

Vk =
∑

pi∈Sk

||fi − fk||22, (3)

where Sk denotes the set of pixels inside Ck, and fk is the mean feature of Ck:

fk =
∑

pi∈Sk
fi∑

pi∈Sk
1 . Note that this definition of variance is not naturally differentiable

with respect to the vertex positions. We thus reformulate the variance function
by softly assigning every pixel pi to each grid cell Ck with a probability Pi→k(v):

Pi→k(v) =
exp(SignDis(pi, Ck)/δ)∑K
j=1 exp(SignDis(pi, Cj)/δ)

, (4)

SignDis(pi, Ck) =

{
−Dis(pi, Ck), if pi is outside Ck,

Dis(pi, Ck), if pi is inside Ck.
(5)

Dis(pi, Ck) = min(D(pi, vak
vbk), D(pi, vbkvck), D(pi, vckvak

)), (6)

where D(pi, vivj) is the L1 distance between a pixel and a line segment vivj , and
δ is a hyperparameter to control the slackness. We use Pi→k(v) to indicate that
the probability of assignment depends on the grid’s vertex positions, and is in
our case a differentiable function. Intuitively, if the pixel is very close or inside
a cell, then Pi→k(v) is close to 1, and close to 0 otherwise. To check whether
the pixel is inside a cell, we calculate the barycentric weight of the pixel with
respect to three vertices of the cell. If all the barycentric weights are between 0
and 1, then the pixel is inside, otherwise it falls outside the triangle.

We now re-define the cell’s variance as follows:

Ṽk(v) =
∑N

i=1
Pi→k(v) · ||fi − fk||22, (7)

which is therefore a differentiable function of grid’s vertex positions. Our variance-
based loss function aims to minimize the sum of variances across all grid cells:

Lvar(v) =
∑K

k=1
Ṽk(v) (8)
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Differentiable Reconstruction: Inspired by SSN [24], we further differentiably
reconstruct an image using the deformed grid by taking into account the proba-
bility of assignments: Pi→k(v). Intuitively, we represent each cell using its mean
feature fk, and “paste” it back into the image plane according to the positions of
the cell’s deformed vertices. Specifically, we reconstruct each pixel in an image
by softly gathering information from each grid cell using Pi→k(v):

f̂i(v) =
∑K

k=1 Pi→k(v) · fk, (9)

The reconstruction loss is the distance between the reconstructed pixel feature
and original pixel feature:

Lrecons(v) =
∑N

i=1 ||f̂i(v)− fi||1. (10)

We experimentally found that L1 distance works better than L2.

Regularization: To regularize the shape of the grid and prevent self-intersections,
we introduce two regularizers. We employ an Area balancing loss function that
encourages the areas of the cells to be similar, and thus, avoids self-intersections
by minimizing the variance of the areas:

Larea(v) =
∑K

j=1
||ak(v)− a(v)||22, (11)

where a is the mean area and ak is the area of cell Ck. We also utilize Laplacian
regularization following works on 3D mesh prediction [38,8]. In particular, this
loss encourages the neighboring vertices to move along similar directions with
respect to the center vertex:

Llap(v) =
∑n

i=1
||∆i −

1

||N (i)||
∑

j∈N (i)
∆j ||22, (12)

where ∆i = [∆xi, ∆yi]
T is the predicted offset of vertex vi and N (i) is the set

of neighboring vertices of vertex vi.
The final loss to train our network h is a weighted sum of all the above terms:

Ldef = Lvar + λreconsLrecons + λareaLarea + λlapLlap, (13)

where λrecons, λarea, λlap are hyperparameters that balance different terms.

4 Applications

Our DefGrid supports many computer vision tasks that are done on fixed image
grids today. We discuss three possible use cases in this section. DefGrid can be
inserted as a plug-and-play module at several levels of processing. By inserting
it at the input level we utilize DefGrid as a learnable geometric downsampling
layer to replace standard pooling methods. We showcase its effectiveness through
an application to semantic segmentation in Section 4.1. We further show an ap-
plication to object mask annotation in Section 4.2 where we propose a model
that reasons on the boundary-aligned grid output by a deep DefGrid to pro-
duce object polygons. Lastly, we showcase DefGrid as a standalone module for
unsupervised image partitioning in Section 4.3.
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Fig. 3: Feature pooling in fixed grid versus DefGrid. DefGrid can easily be
used in existing deep CNNs and perform learnable downsampling.
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Fig. 4: Object mask an-
notation by reasoning on
a DefGrid’s boundary-
aligned grid. We support
both pixel-wise labeling
and curve-based tracing.

4.1 Learnable Geometric Downsampling

Semantic segmentation of complex scenes typically requires high resolution im-
ages as input and thus produces high resolution feature maps which are com-
putationally intensive. Existing deep CNNs often take downsampled images as
input and use feature pooling and bottleneck structures to relieve the memory
usage [18,19,42]. We argue that downsampling the features with our DefGrid
can preserve finer geometric information. Given an arbitrary deep CNN archi-
tecture, we propose to insert a DefGrid using a shallow CNN encoder to pre-
dict a deformed grid. The predicted boundary-preserving grid can be used for
geometry-aware feature pooling. Specifically, to represent each cell we can apply
mean or max pooling by averaging or selecting maximum feature values within
each triangular cell. Due to the regular grid topology, these features can be di-
rectly passed to a standard CNN. Note that the grid pooling operation warps
the original feature map from the image coordinates to grid coordinates. Thus
the final output (predicted semantic segmentation) is pasted back into the image
plane by checking in which grid’s cell the pixel lies. The full pipeline is end-to-
end differentiable. We can jointly train the model in a multi-task manner with
a cross-entropy loss for the semantic segmentation branch and grid deformation
loss in Eq. 13. The DefGrid module is lightweight and thus bears minimal
computational overhead. The architecture is illustrated in Fig 3.

4.2 Object Mask Annotation

Object mask annotation is the problem of outlining a foreground object given a
user-provided bounding box [7,3,27,29,39]. Two dominant approaches have been
proposed to tackle this task. The first approach utilizes a deep neural network
to predict a pixel-wise mask [29,39,26]. The second approach tries to outline the
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boundary with a polygon/spline [20,14,7,3,27]. Our DefGrid supports both ap-
proaches, and improves upon them via a polygonal grid-based reasoning (Fig. 4).

Boundary-based segmentation: We formulate the boundary-based seg-
mentation as a minimal energy path searching problem. We search for a closed
path along the grid’s edges that has minimal Distance Transform energy1:

Q = arg min
Q∈Q

∑M

i=1
DT (vQi , vQ(i+1)%M

), (14)

where Q denotes the set of all possible paths on our grid, and M is the length
of path Q. We first predict a distance transform energy map for an object using
a deep network trained with the L2 loss. We then compute the energy in each
grid vertex via bilinear sampling. We obtain the energy for each grid edge by
averaging the energy values for the points along the line defined by two vertices.
Note that directly searching on the grid may result in many local minima. We
employ Curve-GCN [27] to predict 40 seed points and snap each of these points
to the grid vertex that has the minimal energy among its top-k closest vertices.
Then for each neighboring seed points pair, we use Dijkstra algorithm to find
the minimal energy path between them. We provide algorithm details in the
appendix. Our approach improves over Curve-GCN in two aspects: 1) it better
aligns with image boundaries as it explicitly reasons on our boundary-aligned
grid, 2) since we search for a minimal energy path between neighboring points
output by Curve-GCN, our approach can handle objects with more complex
boundaries that cannot be represented with only 40 points.

Pixel-wise segmentation: Rather than producing a pixel-wise mask, we
instead predict the class label for each grid cell. Specifically, we first use a deep
neural network to obtain a feature map from the image. Then, for every grid cell,
we average pool the feature of all pixels that are inside the cell, and use a MLP
network to predict the class label for each cell. The model is trained with the
cross-entropy loss. As the grid boundary aligns well with the object boundary,
pooling the feature inside the grid is more efficient and effective for learning.

4.3 Unsupervised Image Partitioning

We can already view our deformed triangular cells as “superpixels”, trained with
unsupervised loss functions. We can go further and cluster cells by using the
affinity between them. In particular, we view the deformed grid as an undirected
weighted graph where each grid cell is a node and an edge connects two nodes if
they share an edge in the grid. The weight for each edge is the affinity between
two cells, which can be calculated using RGB values of pixels inside the cells.

Different clustering techniques can be used and exploring all is out of scope
for this paper. To show the effectiveness of DefGrid as an unsupervised im-
age partitioning method, we here utilize simple greedy agglomerative clustering.
We average the affinity to represent a new node after merging. Clustering stops
when we reach the desired number of superpixels or the affinity is lower than a

1 The DT energy for each pixel is its distance to the nearest boundary.
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Downsampling Ratio 1/4 1/8 1/16 1/32

Metric mIoU F (4px) F (16px) mIoU F (4px) F (16px) mIoU F (4px) F (16px) mIoU F (4px) F (16px)

Strided Convolution 65.76 60.59 73.97 59.18 53.80 70.14 51.02 47.33 60.41 41.03 44.12 51.05
Max Pooling 66.32 60.92 74.18 59.83 54.22 70.71 52.93 49.00 63.59 42.44 45.23 52.47
Average Pooling 66.53 61.09 74.39 59.45 0.5361 70.67 52.01 47.58 61.33 43.54 45.37 53.39

Grid Max Pooling 67.87 64.37 75.10 64.75 61.02 72.95 55.87 53.98 66.62 47.20 48.74 60.73
Grid Average Pooling 67.91 64.99 75.43 65.36 61.12 73.03 56.94 53.77 66.38 48.30 48.67 60.62

Table 1: Learnable downsampling on Cityscapes Semantic Segm benchmark.

threshold. Note that our superpixels are, by design, polygons. Note that super-
vised loss functions are naturally supported in our framework, however we do
not explore them in this paper.

5 Experiments

We extensively evaluate DefGrid on downstream tasks. We first show appli-
cation to learnable downsampling for semantic segmentation. We then evaluate
on the object annotation task with boundary-based and pixel-wise methods. We
finally show the effectiveness of DefGrid for unsupervised image partitioning.

5.1 Learnable Geometric Downsampling

To verify the effectiveness of our DefGrid as an effective downsampling method,
we compare it with (fixed) image grid feature pooling methods as baselines,
namely max/average pooling and stride convolution, on the Cityscapes [9] se-
mantic segmentation benchmark. The baseline methods perform max/average
pooling, or stride convolution on the shallow feature map, while our grid pooling
methods apply the max/average pooling on deformed triangle cells. We compare
our grid pooling with baselines when the height and width of the feature map
is downsampled to 1/4, 1/8, 1/16 and 1/32 of the original image size. We use a
modified ResNet50 [18] which is more lightweight than SOTA models [35].

Evaluation Metrics: Following [39,26,27], we evaluate the performance using
mean Intersection-over-Union (mIoU), and the boundary F score, with 4 and 16
pixels threshold on the full image. All metrics are averaged across all classes.

Results: Performances (mIoU and boundary F scores) are reported in Table 1.
Our DefGrid pooling methods consistently outperform the baselines, especially
on the boundary score. We benefit from the edge-aligned property of the De-
fGrid coordinates. At 1/8 with 1/4 downsampling ratios, the baseline perfor-
mance drops significantly due to missing the tiny instances, while our DefGrid
pooling methods cope with this issue more gracefully. We also outperform base-
lines when the downsampling ratio is small, showing an efficient usage of limited
spatial capacity. We visualize qualitative results for the predicted grids in Fig. 5.
Our DefGrid better aligns with boundaries and thus what the downstream
network “sees” is more informative than the fixed uniform grid.
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Fig. 5: Illustration of learnable downsampling: We show DefGrid and its
reconstructed image (left), comparing it to FixedGrid (right). [Please zoom in]

Model Bicycle Bus Person Train Truck Mcycle Car Rider mIoU F1 F2

Curve-GCN [27] 75.40 86.02 79.87 82.89 86.44 75.69 90.21 76.61 81.64 59.45 75.43

Pixel-wise 74.95 86.19 80.35 81.10 86.10 75.82 89.78 77.14 81.43 60.25 74.49

FixedGrid 75.10 85.73 79.84 84.35 86.02 75.97 89.76 76.56 81.67 59.01 74.77
DefGrid 75.46 86.29 80.40 84.91 86.58 76.13 90.42 77.20 82.17 61.94 77.04

Table 2: Boundary-based object annotation on Cityscapes-Multicomp.

Fig. 6: Deformed Grid: We show examples of predicted grids both on in-domain
(Cityscapes) and cross-domain images (Medical, Rooftop, ADE, KITTI). Orange
line is the obtained minimal energy path along the grid’s edges.

5.2 Object Annotation

Dataset: Following [7,3,27,39,26], we train and test both of our instance seg-
mentation models on the Cityscapes dataset [9]. We assume the bounding box
of each object is provided by the annotator and the task is to trace the bound-
ary of the object. We evaluate under two different settings, depending on the
model. To compare with pixel-wise methods, we follow the setting proposed in
DELSE [39], where an image is first cropped with a 10 pixel expansion around the
ground truth bounding box, and resized to the size of 224×224. This setting is
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Method Metrics KITTI ADE Rooftop Card.MR ssTEM

Curve-GCN [27]
mIoU 87.43 76.71 81.11 86.18 68.97
F1 64.90 39.37 30.99 62.73 44.74
F2 78.40 52.86 45.08 78.22 59.85

Pixel-wise
mIoU 86.99 78.23 80.81 88.00 69.37
F1 62.73 42.88 28.44 62.63 46.07
F2 77.17 56.15 42.01 77.94 59.77

DefGrid
mIoU 88.05 78.54 83.10 89.01 71.82
F1 66.70 43.54 34.39 65.31 50.31
F2 80.23 57.20 49.79 81.92 65.14

Table 3: Cross-Domain
Results for boundary-
based methods. DefGrid
significantly outperforms
baselines, particularly
evident in F-scores.

referred to as Cityscapes-Stretch. Our boundary-based annotation model builds
on top of Curve-GCN which predicts a polygon that is topologically equivalent
to a sphere. To compare with the baseline, we thus assume that the annotator
creates a box around each connected component of the object individually. We
process each box in the same way as above, and evaluate performance on all
component boxes. We refer to this setting as Cityscapes-Multicomp.

Boundary-based Object Annotation

Network Architecture: We use the image encoder from DELSE [39], and
further add three branches to predict grid deformation, Curve-GCN points and
Distance Transform energy map. For each branch, we first separately apply one
3×3 conv filter to the feature map, followed by batch normalization [21] and
ReLU activation. For grid deformation, we extract the feature for each vertex
with bilinear interpolation, and use a GCN to predict the offset for each vertex.
For predicting spoints, we follow Curve-GCN [27]. For the DT energy, we apply
two 3×3 conv filters with batch normalization and ReLU activation.

Baselines: For Curve-GCN [27], we compare with Spline-GCN, as it gives bet-
ter performance than Polygon-GCN in the original paper [27]. We use the official
codebase but instead use our image encoder to get the feature map (with negli-
gible performance gap) for a fair comparison. We also compare with pixel-wise
methods, where we add two conv filters after the image encoder, which is similar
to DELSE [39] and DEXTR [29] but without extreme points. We further compare
to our version of the model where the grid is fixed, referred to as FixedGrid.

20 30 40
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Fig. 7: Object anno-
tation for Cityscapes:
FixedGrid vs Def-
Grid.

Results: Table 2 reports results. Our method outper-
forms baselines in all metrics. Performance gains are
particularly significant in terms of F-scores, even when
compared with pixel-wise methods. Since network de-
tails are the same across the methods, these results
signify the importance of reasoning on the grid. Com-
pared with FixedGrid at different grid sizes in Fig. 7,
DefGrid achieves superior performance. We attribute
the performance gains due to better alignment with
boundaries and more flexibility in tracing a longer contour. We show qualitative
results in Fig. 6 and 8.



12 J. Gao et al.

Round 0 (Automatic) Round 1 Round 2 Round 3 Round 4 Round 5

Dataset Model mIoU F1 F2 mIoU F1 F2 mIoU F1 F2 mIoU F1 F2 mIoU F1 F2 mIoU F1 F2

CityScapes [9]
CurveGCN [27] 80.74 58.01 73.67 83.04 60.47 76.35 84.58 64.42 79.42 85.56 67.41 81.40 86.27 69.87 82.94 86.79 71.91 84.12
DefGrid 81.98 61.43 76.56 84.48 66.59 80.96 85.73 69.98 83.41 86.41 72.05 84.71 86.81 73.60 85.51 87.12 74.84 86.20

ADE [43]
CurveGCN [27] 76.71 39.37 52.86 79.26 42.43 56.62 81.09 46.04 60.51 82.47 49.61 64.00 83.44 52.56 66.61 84.38 55.42 69.00
DefGrid 78.54 43.54 57.20 80.67 48.57 62.76 82.27 52.33 66.45 83.43 55.60 69.37 84.23 58.22 71.79 84.69 60.03 73.29

KITTI [15]
CurveGCN [27] 87.43 64.90 78.40 89.41 69.20 82.84 90.50 73.11 85.84 91.22 75.94 87.73 91.67 78.16 89.20 92.00 79.90 90.21
DefGrid 88.05 66.70 80.23 89.94 70.80 84.16 90.90 74.65 87.12 91.45 77.08 88.81 91.70 78.67 89.78 91.87 79.72 90.33

Rooftop [34]
CurveGCN [27] 81.11 30.99 45.08 83.94 34.00 49.24 85.53 37.42 53.39 86.72 41.39 57.85 87.68 45.29 61.88 88.28 48.96 65.60
DefGrid 83.10 34.39 49.79 85.37 39.60 56.04 86.77 43.74 60.73 87.53 47.30 64.51 88.19 49.95 67.50 88.55 52.20 69.66

Card.MR [33]
CurveGCN [27] 86.18 62.73 78.22 89.22 68.26 84.91 90.42 73.10 89.16 91.25 76.94 91.94 92.00 80.67 94.45 92.45 83.45 95.99
DefGrid 89.01 65.31 81.92 91.01 72.28 88.83 91.90 77.64 92.74 92.55 81.03 94.89 92.96 83.24 95.98 93.31 85.47 96.96

ssTEM [16]
CurveGCN [27] 68.97 44.74 59.85 71.66 47.81 63.21 74.75 52.78 68.82 76.57 56.88 72.99 78.06 60.67 76.50 79.22 63.84 79.17
DefGrid 71.82 50.31 65.14 73.51 55.43 70.44 75.25 60.64 75.69 77.28 65.18 79.72 78.46 68.44 82.24 78.89 70.59 83.62

Table 4: Interactive annotation results on both in-domain (first two lines)
and cross domain datasets. Our DefGrid starts with a higher automatic per-
formance and keeps this gap across (simulated) annotation rounds.

Model Bicycle Bus Person Train Truck Mcycle Car Rider mIoU F1 F2

DELSE* [39] 74.32 88.85 80.14 80.35 86.05 74.10 86.35 76.74 80.86 60.29 74.40
PolyTransform [26] 74.22 88.78 80.73 77.91 86.45 74.42 86.82 77.85 80.90 62.33 76.55
OurBack + SLIC [1] 73.88 85.47 79.80 77.97 86.32 72.62 87.85 76.14 80.01 57.95 72.17

DefGrid 74.82 87.09 80.87 81.05 87.52 73.44 89.19 77.36 81.42 63.38 76.89

Table 5: Pixel-based methods on Cityscapes-Stretch. Note that PolyTrans-
form [26] uses 512x512 resolution, while other methods use 224x224 resolution.

Cross Domain Results: Following [27], we evaluate models’ ability in gen-
eralizing to other datasets out of the box. Quantitative and qualitative results
are reported in Table 3 and Fig. 6, Fig 8, respectively. We outperform all base-
lines on all datasets, in terms of all metrics, and the performance gains are
particularly evident for the F-scores. Qualitatively, in all cross-domain examples
the predicted grid’s edges align well with real object boundaries (without any
finetuning), demonstrating superior generalization capability for DefGrid.

Interactive Instance Annotation: We follow Curve-GCN [27] and also report
performance for the interactive setting in which an annotator corrects errors by
moving the predicted polygon vertices. We follow the original setting but restrict
our reasoning on the deformed grid. Results for different simulated rounds of
annotation are reported in Table 4 with evident performance gains.

Pixel-wise Object Instance Annotation

Network Architecture: To predict the class label for each deformed grid’s cell,
we first average the feature of all pixels inside each cell, and use a 4-layer MLP
to predict the probability of foreground/background. For the hyperparameters
and architecture details, we refer to the appendix.

Results: Table 5 provides quantitative results. We show qualitative results in
the appendix. Predicting the (binary) class label over the deformed grid’s cells
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Fig. 8: Qualitative results: Note that the method employs ground-truth boxes.
The first row is from Cityscapes. In the bottom two rows, from left to right:
Medical, KITTI, Rooftop, ADE.
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Fig. 9: Unsupervised Image Partitioning. From left to right: BP-BR, BP,
BR and ASA. We use dotted line to represent supervised method.

achieves higher performance than carefully designed pixel-wise baselines, demon-
strating the effectiveness of reasoning on our deformed grid.

5.3 Unsupervised Image Partitioning

Dataset: Following SSN [24], we train the model on 200 training images in the
BSDS500 [4] and evaluate on 200 test images. Details are provided in appendix.

Evaluation Metric: Following the SSN and SEAL [24,36], we use Achievable
Segmentation Accuracy (ASA), Boundary Precision (BP) and Boundary Recall
(BR) to evaluate the performance of superpixels. For BP and BR, we set the
tolerance to be 3 pixels. The evaluation scripts are from SEAL2.

Baselines: We compare our method with both traditional superpixel methods,
SLIC [1], SNIC [2], and deep learning based method SSN [24], SEAL [36]. Note
that SEAL not only utilizes ground-truth annotation for training, but also is

2 https://github.com/wctu/SEAL
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SLIC SNIC SEAL DefGrid DefGrid – Merging

Fig. 10: Unsupervised Image Partitioning. We compare the DefGrid and
results after clustering with existing superpixel baselines. [Please zoom in]

trained on validation set. We use the official codebase and trained model provided
by the authors. We perform all comparisons at different numbers of superpixels.

Results: Quantitative and qualitative results are presented in Fig 9, Fig 10, re-
spectively. The deformed grid aligns well with object boundary and outperforms
all unsupervised baselines in terms of BP and BP-BR curve, with comparable
performance with counterparts in terms of ASA and BR. Our intuition is that,
since the edge between two vertices in our grid is constrained to be a straight line,
while the ground truth annotation is labelled pixel-by-pixel, our grid sacrifices
a little boundary recall while achieving higher boundary precision. It is worth
to note that our method outperforms the supervised method SEAL [36]. This
reflects the fact that an appearance feature provides a useful signal for training
our DefGrid , and our method effectively utilizes this signal.

6 Conclusion

In this paper, we proposed to deform a regular grid to better align with image
boundaries as a more efficient way to process images. Our DefGrid is a neural
network that predicts offsets for vertices in a grid to perform the alignment,
and can be trained entirely with unsupervised losses. We showcase our approach
in several downstream tasks with significant performance gains. Our method
produces accurate superpixel segmentations, is significantly more precise in out-
lining object boundaries particularly on out of domain datasets, and leads to
a large improvements for semantic segmentation. We hope that our DefGrid
benefits other computer vision tasks when combined with deep networks.
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