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The non-rigid structure from motion problem typically involves recovering the 3D tra-

jectories of a set of scene points, from their corresponding image trajectories. In this

thesis, the assumption of locally-rigid motion is used to regularize this otherwise under-

constrained problem. The key idea is that even when a scene undergoes complex global

deformations, the trajectories of local triplets of scene points can often be approximated

by the vertices of a rigidly moving triangle. This intuition informs our bottom-up recon-

struction procedure, which discovers such triplets through a hypothesis and test frame-

work. To this end, a rigid triangle model is fit to the proposed image trajectories and

evaluated using a procedure that we call 3-SFM. The recovered triangle models are then

integrated into a global solution, by resolving their orthographic depth flip and trans-

lation ambiguities. Lastly, we consider using this solution to initialize an energy based

model, subject to a set of soft isometric constraints, in order to allow each observation

to constrain the global scene structure. Results on several sequences, both our own and

from related work, suggest that these models are applicable in diverse and challenging

scenes, such as those including multiple deforming bodies.
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Chapter 1

Introduction

A fundamental problem in Computer Vision is to reconstruct the three dimensional

structure of a dynamic scene from a stream of two dimensional image data, such as

that depicted in Figure 1.1. Although the human visual system can use stereo streams

to triangulate depth, it is clear that humans can deal perfectly well with such mono

streams. Furthermore, it has been observed [30] that humans can often perceive the three

dimensional structure of a scene from just the two dimensional projections of a sparse set

of 3D points moving in that scene. Therefore, instead of inferring scene structure directly

from the dense arrays of pixel values in an image stream, the standard approach is to work

with a sparse set of image trajectories representing the noisy projections of a deforming

set of 3D scene points. These trajectories can be obtained in a variety of ways, such as

tracking local image features [29] or by sampling from a dense 2D deformation field [50]

as illustrated in Figure 1.2. Regardless of how these trajectories were obtained, they are

generally considered to be input to these algorithms. Thus, the goal is to formulate and

fit a model of both the scene structure and projection properties that can explain these

trajectories, while elucidating the true properties of the scene.

This paradigm, when formalized as a problem to be solved computationally, is called

Figure 1.1: Three frames of the the PAPER sequence from [44].

1



Chapter 1. Introduction 2

Figure 1.2: Three frames of the PAPER sequence with image trajectories from [50] overlaid.

Figure 1.3: Three frames of the PAPER sequence with a local triplet of trajectories mod-
elled as the projection of the vertices of a rigidly moving triangle.

the structure from motion (SFM) problem. When the scene is assumed to be static (or

rigid), a rich theory detailing the required minimal configurations of points and views for

scene reconstruction [7, 51] is available, as well as efficient reconstruction algorithms [51].

When the scene, however, is allowed to deform arbitrarily, the problem becomes highly

ambiguous and new constraints need to be added to regularize the problem. Indeed,

research in this area is generally a two-step process that begins with formulating a set of

assumptions capable of yielding enough constraints to disambiguate the solution. Only

then can a method be developed to leverage these constraints in reconstructing the scene

from its projected two dimensional motion. These methods can then be said to be

solutions to the non-rigid structure from motion (NRSFM) problem.

This thesis explores such problems by appealing to the assumption of local rigidity,

which conjects that scenes undergoing complex global deformations can often be approx-

imated locally by rigid motion models. For example, the paper being bent is undergoing

an extreme global transformation. Nonetheless, at any point on the paper, the motion of

nearby (local) points can be approximated, by a plane being rotated around the vertical

axis. This thesis exploits this assumption to formulate and fit three different models to

non-rigid scenes:

• A local model of the motion of three trajectories as that of the orthographically

projected vertices of a rigidly moving triangle. This is illustrated in Figure 1.3.

• A piecewise local model of the motion of a set of trajectories as that of the averaged

projections of a loosely connected set of these local rigid triangle models. This is
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Figure 1.4: Three frames of the PAPER sequence modelled globally as a set of rigid triangles
encouraged to align with their neighbours.

Figure 1.5: Three frames of the PAPER sequence modelled globally as a 3D point cloud
(the blue points) encouraged to satisfy a set of pairwise isometric constraints (the white
lines).

illustrated in Figure 1.4.

• A global model of the motion of a set of trajectories as the projection of a deforming

3D point set, weakly constrained to satisfy a set of pairwise isometric constraints.

This is illustrated in Figure 1.5.

The global point cloud model is perhaps the most obvious way to formulate the local

rigidity assumption, however, its natural formulation as an energy minimization problem

leads to an energy landscape containing a plethora of local minima, making optimization

extremely difficult. We can, however, use the piecewise global model to provide an initial

guess to a procedure searching for a good local minima. We find, in turn, that for the

piecewise local model, another hard optimization problem can be avoided by performing a

bottom up reconstruction, in which the local three point rigid models are fit individually,

a discrete labelling problem is solved to resolve orthographic depth flip ambiguities and

a linear system is solved to tie these models together. Thus, a major contribution of this

thesis is the decomposition of the global model fitting process into a series of tractable

steps.

Although not used in recent decades, the general paradigm we follow is very old.

Indeed, in his original work on the problem, Ullman [57, 58] suggests grouping points
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in quadruplets, testing for rigidity, solving 4-point rigid structure from motion, and

combining the results. Our piecewise model can therefore be thought of as a modern re-

interpretation of Ullmans original scheme, applied to general non-rigid scenes and made

even more local with three points instead of four.

This piecewise model, first proposed in [49], became part of a resurgence in interest in

modelling complex scenes with simpler local models such as those modelling rigid planar

[13] or quadratic deformation [18]. In contrast to our use of a minimal model though,

these other approaches generally opt to combine local models using a substantially higher

number of points. One could argue that this will cause our triangle models to be more

susceptible to noise and their integration into a global structure more difficult due to the

lack of significant inter-model overlap. We have found, however, that this is outweighed

by the flexibility and ease of optimization that these minimal models provide. Further,

by upgrading to a global model, some of these deficiencies can be ameliorated.

Further, the assumption that our global model can be regularized by a set of pairwise

isometric constraints lies in stark contrast to the majority of methods that make sweeping

assumptions about the global spatio-temporal properties of a scene. These include (1)

deformations that span a low-dimensional shape space [52, 11, 54, 37, 16]; (2) trajectories

that span a low-dimensional motion space [3]; (3) textured meshes with a regularized

shape and low-order deformation [46, 47, 45, 59], or a known template shape [39]; and

(4) scenes composed of rigid bodies moving independently [14, 56, 61] or in articulated

configurations [63, 64]. Naturally, when these assumptions hold a lot of leverage can

be gained from the constraints that they provide, but we argue that the local rigidity

assumption is applicable in a diverse set of alternative scenarios in which these others

are not.

In contrast to the global methods that do incorporate an isometric regularization, our

work avoids many of the problems that come with assuming a known template [6] or a

surface model [59]. The recent work of [60], however, is an exception as their formulation

closely resembles our global point cloud model, and thus provides another route to its

optimization. Their approach, however, requires ad-hoc assumptions to be made in order

to identify the pairwise isometric constraints and heuristics to be used in order to perform

a difficult global optimization. Our bottom up reconstruction bypasses these difficulties,

although naturally admits its own. That work should therefore be seen as complementary

to ours, and further serves to validate the difficulty in optimizing such a model.

The remainder of this document is organized as follows:

• Chapter 2 introduces the mathematics of the orthographic Non-Rigid Structure

from Motion problem and the various solutions proposed in the literature. This
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includes predominant work in the area involving generalizations of the classical rigid

factorization approach [51] to the non-rigid case [11]. As well, we describe recent

work with close ties to our approach due to the use of either piecewise models or

local isometric regularizers [60].

• Chapter 3 presents 3-SFM as a method for fitting a model of three point rigid mo-

tion under orthography. This includes a direct method for recovering this model up

to its fundamental ambiguities in the noiseless case. A discussion of this method’s

bias in the presence of noise and how this can be ameliorated using a bundle adjust-

ment like refinement is then presented. The chapter is concluded with a discussion

of the method’s ability to test for the rigidity of three points in a scene.

• Chapter 4 presents Locally Rigid Motion as a technique for aggregating local rigid

models into a piecewise rigid model of global non-rigid motion. This is organized

as a recipe that extracts local models using either 3-SFM or a planar template, and

resolves their orthographic ambiguities to form a global solution. A discussion of

the performance of this algorithm on a variety of datasets is included.

• Chapter 5 presents our global model of a 3D point cloud deforming under the reg-

ularization of a set of weak isometric constraints. It is demonstrated how gradient

based optimization can find a good local minimum using results from Chapter 4 as

an initialization.

• Chapter 6 concludes by summarizing the work here and indicating potential avenues

for further work.



Chapter 2

An Overview of Orthographic

Structure from Motion

In this chapter, we introduce the necessary mathematics to precisely define the ortho-

graphic NRSFM problem. As the most popular approaches to solving this problem are

a set of methods based on low-rank matrix factorization, we spend a good deal of the

chapter describing these. In particular, we demonstrate how the traditional rigid fac-

torization technique has been generalized in various manners to deal with the non-rigid

scenes. We then discuss two alternative sets of approaches that are most comparable to

the work here. These are piecewise models that relate to the work in Chapter 4, and

deforming point cloud models regularized by isometric constraints that relate to the work

in Chapter 5. We generally exclude discussion of perspective models, except when needed

to provide appropriate context.

2.1 Mathematical Formulation

Despite there being a variety of ways to formulate the NRSFM problem, we strive to

present a single unified notation and formulation, both here and throughout the rest of

the document. In general, we assume that the world consists of a deforming scene in

which N scene points are orthographically imaged in F frames. In frame f , we denote

the position of the n’th scene point as sfn ∈ R3 and outline the orthographic imaging

procedure that generates the corresponding image point wfn ∈ R2. This procedure first

applies a rigid transformation, consisting of a rotation Rf ∈ SO(3) and a translation

tf ∈ R3, that generates the point pfn ∈ R3 in the camera’s coordinate frame as

pfn = Rfsfn + tf . (2.1)

6
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This co-incides with a camera located at −Rf tf with a coordinate system specified by

the rows of Rf . We assume an orthographic projection model (with no scaling) and thus

write the projected image point wfn ∈ R2 as

wfn = Πpfn (2.2)

where Π =
[
1 0 0
0 1 0

]
is an orthographic projection along the Z-axis of the camera. These

two equations then simplify to

wfn = Rfsfn + hf (2.3)

where Rf = ΠRf is just a combined rotation and orthographic projection and hf = Πtf

is just the 2D translation in the image plane.

In practice, the n’th scene point will be associated with a trajectory of observed image

points {w′fn}Ff=1 obtained by tracking feature points [36, 29], sampling trajectories from

a distortion field [50], or artificially projecting 3D motion capture data. Regardless, in

each frame f , the true projection wfn will not coincide with these observations and thus

we write

w′fn = wfn + εfn , (2.4)

where ε ∈ R2 is the error in measuring wfn. It is often assumed that these errors are all

independent samples taken from a single Gaussian distribution. In practice, the nature

of these errors depends on the measurement procedure used and can deviate greatly from

this assumption.

The goal of any (non-rigid orthographic) structure from motion algorithm is to recover

information about the underlying scene {{sfn}Nn=1}Ff=1 and camera motions {(Rf , tf )}Ff=1

from these observations {{w′fn}Nn=1}Ff=1. It is easy to see that this problem is completely

unconstrained in the general case, as a wide variety of combinations of scene points,

camera orientations and noise models can account equally well for these observations. It

is thus imperative to make some assumptions about these elements in order to constrain

the problem. Even then, the solution might contain gauge ambiguities such as having an

unspecified global coordinate system.

2.1.1 Rigid Model

To illustrate this, we consider the very restricted assumption that the scene is fixed.

Equivalently, by utilizing an object centred coordinate frame, we can consider a rigid

object as stationary. The situation is similar to that detailed in equations (2.1) and (2.3)
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except that now, the scene points are fixed, so we drop the temporal index f from the

scene points. This modifies these orthographic projection equations to result in

wfn = Π(Rfsn + tf ) (2.5)

= Rfsn + hf . (2.6)

If the camera orientations are known beforehand, then 2.6, is a linear constraint on these

points. In the noiseless case, the problem is simply that of triangulation and for F ≥ 2 it

is trivial to solve this system and extract the points. If these assumptions are relaxed to

admit a Gaussian noise model, then one can still form a linear system of equations and

solve this using linear least squares to obtain the statistically optimal result.

If on the other hand, we do not know the camera positions and orientations then the

situation becomes more difficult. It is then generally only possible, as we will demonstrate

in the next section, to recover the optimal solution when there are no observational errors

and F ≥ 3. When a noise model is considered, one can use this non-optimal solution to

initialize a bundle adjustment procedure [55] to try to correct the model by minimizing

min
θ

F∑
f=1

N∑
n=1

ρfn(‖Rf (θ)sn(θ) + hf (θ)− w′fn‖) , (2.7)

where θ parameterizes the various scene components and ρfn(ε) encodes the noise model

(e.g. ρfn(ε) = ε2 for i.i.d. Gaussian imaging noise). Unfortunately, such local methods are

generally only able to find a local minimum of this function, and thus not the optimal

solution. Even when an optimal solution is recovered, there are a number of equally

optimal solutions that exist. In fact, every solution to the problem has a number of

ambiguities.

The first is an ambiguous global coordinate system. This can be seen as we can apply

any rotation R to the scene points s′n = Rsn as long as new cameras rotations specified

by R′f = RfR−1 undoes the effect as

Π(R′fs′n + tf ) = Π(RfR−1Rsn + tf ) = Π(Rfsn + tf ) = wfn . (2.8)

The second is a per-frame ambiguity in the depth of the points in camera coordinates.

That is, we can set t′f = tf + δ [ 0 0 1 ]T for any δ ∈ R and then,

Π(Rfsn + t′f ) = ΠRfsn + Πtf + δΠ [ 0 0 1 ]T = Rfsn + hf = wfn . (2.9)
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The final ambiguity is referred to as the Necker ambiguity [23] and corresponds to a

reflection B of the world system s′n = Bsn where

B =

1 0 0

0 1 0

0 0 −1

 (2.10)

is a flip in depth, along with a corresponding change in rotation R′f = BRfB−1. Then

we still have that

Π(R′fs′n + tf ) = ΠBRfB−1Bsn + hf = RfB−1Bsn + hf = Rfsn + hf = wfn . (2.11)

To see that R′f is a rotation, notice that

R′Tf R′f = BTRT
f BTBRfB = BTRT

fRfB = BTB = I (2.12)

and

det(R′f ) = det(B) det(Rf ) det(B) = (−1) · 1 · (−1) = 1 . (2.13)

2.2 Factorization Methods

Factorization methods encompass a widely successful set of approaches to solving the

NRSFM problem. The commonality between each such method, is that the underlying

models result in the noiseless image projections living in a low dimensional, linear space.

In order to simplify the presentation of these models, we first need to take two short

detours.

Centred Model. It turns out that, in the context of factorization approaches, it is

often more convenient to work with what we call a “centred” model

ŵfn = Rf ŝfn , (2.14)

in which there is no translation vector. To see why this is helpful, let the average image

point be

w̄f =

∑N
n=1wfn
N

, (2.15)
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and ŵfn = wfn−w̄f denote a centred image point. If we can find a solution to the centred

problem, then we can solve the original problem by simply setting hf = w̄f because

wfn = ŵfn + w̄f = Rf ŝfn + hf . (2.16)

Conversely, the original model always has an equivalent centred model. To see this, let

s̄f =

∑N
n=1 sfn
N

. (2.17)

be the average scene point. Then we can see that the average image point is simply

w̄f =

∑N
n=1wfn
N

= Rf

∑N
n=1 sfn
N

+

∑N
n=1Rf tf
N

= Rf s̄f + hf , (2.18)

the projection of the average scene point. Therefore the centred image points ŵfn =

wfn − w̄f and centred scene points ŝfn = sfn − s̄f satisfy

ŵfn = wfn − w̄f = Rfsfn +Rf tf −Rf s̄f −Rf tf = Rf (sfn − s̄f ) = Rf ŝfn (2.19)

which is a centred model, with rotations consistent with the original model.

Matrix Formulation. It is also useful, in the description of these algorithms, to refor-

mulate the centred imaging equations (i.e., (2.1) and (2.3) with no translation) in matrix

form. This will allow them to be expressed for all N points and F frames simultaneously.

We thus arrange the N 3D scene locations for frame f into the columns of a matrix

Sf ∈ R3×N and likewise the corresponding image points as the columns of Wf ∈ R2×N .

This allows us to write the projection for all N points simultaneously as

Wf = ΠRfSf . (2.20)

This can be extended further so that equations for multiple frames can be written simul-

taneously. For this, it is useful to introduce a notational convenience in which a matrix

A is written as AM×N to indicate that the matrix has M rows and N columns. Using

this notation, we can specify matrices that include all of the above terms for all frames

simultaneously as

W2F×N =


W1

...

WF

 , (2.21)
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S3F×N =


S1

...

SF

 , (2.22)

and

D3F×3F =


R1 0 · · · 0

0 R2

...
. . .

0 RF

 (2.23)

We can now write all of the imaging equations simultaneously as

W = ΦDS (2.24)

where Φ2F×3F = IF×F ⊗ Π2×3. This reduces, as before, to

W = RS (2.25)

where R = ΦD ∈ R2F×3F .

Factorization Approach. Factorization methods all fundamentally rely on the esti-

mation of the image motion W by a low rank J factorization

W2F×N = M2F×JBJ×N , (2.26)

where M and B may be forced to respect some problem specific constraints. B in some

sense defines the model of the structure, and M defines the image formation process. As

we will see, the choice of how these matrices are parameterized, how these parameters are

set and what constraints are enforced in these matrices implicitly define the fundamental

differences between the different factorization models available.

Once a particular model is chosen, an optimization must occur in order to fit the model

to the image data, perhaps by minimizing reprojection error or some other quantity. The

choice of how to proceed with the minimization and what to minimize is considerably

nuanced with closed form solutions being available in only some circumstances, and local

minima posing a problem for methods involving bundle adjustment or other non-convex

optimizations. Indeed, it is often difficult to interpret claims that good performance has

validated the use of a particular model, when it is not clear whether the model itself is

contributing to the superior performance or just the optimization.
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In this section, we focus on the various models that have been formulated in the

factorization paradigm and isolate a few of the more principled ways to fit these models.

2.2.1 Rigid Case

The natural way to proceed is to describe the original factorization algorithm [51] which

assumes that the scene is completely rigid as described in Section 2.1.1. For a centred

model, with no noise, the motion matrix W will be of rank-3. To see why this is, we first

set the columns of a matrix B3×N to be the fixed 3D coordinates of the N points. By

stacking each of the rotational projection Rf = ΠRf into a 2F ×3 motion matrix M2F×3

we obtain the factorization W2F×N = M2F×3B3×N similar to equation 2.26 showing that

under this model, W has rank 3.

Recovery

Note that a rank-3 factorization of W is easily provided by M̂ = U:,1:3 and B̂ =

D1:3,1:3(V:,1:3)
T where UDV T is the Singular Value Decomposition (SVD) of W. Un-

fortunately, this does not respect the constraints defined by the model of the motion

matrix M, mainly that each pair of rows Mf = Rf corresponding to frame f are or-

thornormal vectors. That said, both M and M̂ span the rank 3 column space of W

and thus there must be a non-singular linear transformation Q such that M = M̂Q and

B = Q−1B̂. To find this matrix Q we can use Mf , the two rows of M associated with

frame f , to write:

M̂fQQ
TM̂T

f = MfM
T
f = I2 (2.27)

which gives us three linear constraints on the entries of the symmetric matrix G = QQT .

With enough frames we can solve for G and factor it to the form QQT recovering the

model M = M̂Q and B = Q−1B̂. This step is referred to as the euclidean upgrade.

In the presence of noise, we can still use SVD to obtain a rank-3 approximation

W∗ = M̂B̂ to W. It is not true, however, that the columns of M̂ span the column space

of W, only that of W∗ and thus there is no guarantee of a rectification transformation

Q even existing. That said, for any non-singular matrix Q, one can transform the SVD

solutions via M̃ = M̂Q and B̃ = Q−1B̂ to yield M̃B̃ = M̂QQ−1B̂ = M̂B̂ = W∗, an

equally good rank-3 approximation W. Therefore, we can still proceed by finding the

matrix Q that satisfies each of the above orthogonality constraints (2.27) in the least

squares sense as long as the recovered G can actually be factored.

Although, this is the advocated methodology in the literature, one should note that

the orthogonality constraints will not have been exactly enforced in the presence of noise.



Chapter 2. An Overview of Orthographic Structure from Motion 13

When the approximate factorization is performed, some of the noise will have leaked

into the camera model and the structure matrix after the upgrade. This will leave

the pairs of rows in the M̃ merely representing the affine cameras that are the closest

to satisfying the orthonormality constraints but that can also exactly reproduce the

rank-3 approximation W∗. A model that exactly satisfies those constraints (2.27) can

be recovered by orthonormalizing each row pair either via Gram-Schmidt or a convex

optimization [38]. This, however, only corrects the camera models and does not repair

any damage that has been caused in the structure B̃. Therefore, it would be ideal to

perform a final bundle adjustment akin to minimizing reprojection error (i.e., Equation

(2.7)), while respecting the model’s constraints.

2.2.2 Shape and Trajectory Basis Representation

In [11] the factorization approach was adapted to the NRSFM paradigm by assuming

that the the scene point set in each frame, Sf ∈ R3×N , is a linear combination

Sf =
K∑
k=1

cfkBk (2.28)

of K basis shapes B1, ..., BK ∈ R3×N . This is a generalization of the rigid factorization

method and reduces to it when K = 1. What seemed like an elegant and straightforward

generalization, however, turned out to present very subtle difficulties to model recov-

ery that took almost a decade to characterize. Regardless, the model itself has proven

immensely useful and has spawned a wide variety of generalizations.

To create a matrix formulation corresponding to this model, we define a matrix of

shape coefficients

CF×K =


c11 · · · c1K
...

. . .
...

cF1 · · · cFK

 (2.29)

and a corresponding stacked shape matrix

B3K×N =


B1

...

Bk

 . (2.30)
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This allows us to write the observation matrix W as

W = R(C⊗ I3)B . (2.31)

If we let M3F×3K = R(C⊗ I3), we see that we again have a similar equation W2F×N =

M2F×3KB3K×N to that of equation (2.26), and thus W can be seen to be of rank-3K.

One can again use SVD to recover a rank-3K approximation M̂B̂, but the question of

how to best “upgrade” the matrix M̂ under these assumptions has been the subject of

great debate [62, 9, 10, 2]. In particular, one is looking for a non-singular 3K × 3K

matrix Q such that M = M̂Q or at least as close as possible to satisfying the constraints

implicit in M. The simple algorithm proposed by [11] was shown [9, 62] to not employ

enough constraints to always extract the correct solution, without some sort of additional

regularizing priors. Later work [10, 2, 16] then demonstrated that such regularization is

not needed if a previously ignored rank constraint was incorporated. It was suggested

that the main difficulty in fitting such a model was that of optimization, as the objective

that must be minimized has many local minima [2]. In [16], however, a convex relaxation

of this rank constraint was employed to obtain a solution that appears to always produce

the correct solution in the noise-free case.

Throughout this duration of distress over how to proceed with the upgrade of a rank-

3K matrix factorization to a K basis shape model, a variety of alternative approaches

were proposed. These not only helped bypass the upgrading issues, but also improved

the practical performance by adding constraints through priors or fitting the model in a

different way. For example, [54] used a rigid initialization followed by coordinate descent

over the parameters. By parameterizing the rotations explicitly using the exponential

map the need to perform an upgrade was avoided. In contrast, [38] avoids the exponential

map and instead projects their solution to the manifold of rotations at each step.

A variety of methods assume deformation modes are added to a mean shape so that

they can be more readily regularized. In [5, 21] the modes are fit incrementally to

the remaining unexplained variance. In [53, 52] a Gaussian prior is used on the shape

coefficients Cf ∼ N(0, IK) that drive them to zero when not needed. The parameters

are then estimated via Expectation-Maximization (EM) by alternately estimating the

coefficients and then maximizing the likelihood of the data matrix W. They also consider

the possibility of a temporal smoother via Cf+1 = ΦCf+N(0,Σ) where ΦK×K and ΣK×K

are additional variables defining the temporal smoothness of the sequence fit by the EM

framework. In [37, 5], temporal and spatial smoothness priors take the form of additional

terms in a minimization framework. In [41], the shape coefficients are recovered first as
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the resultant vectors from a multidimensional scaling framework.

2.2.3 Trajectory Basis Models

Figure 2.1: Some representative vectors from the DCT basis.

There are a vast amount of variables that need to be estimated in the general shape

basis model. However, the success of temporal smoothness priors [52, 1] that implicitly

add constraints to the model hint that many of these variables are redundant in video

sequences. In this light, [4, 3] proposed to fix the column space using a basis of temporal

trajectories. To this end, they utilize the discrete cosine transform (DCT) as shown in

Figure 2.1 and defined1 by the continuous functional

ωd(f) =
σd√
F

cos

(
π(2f − 1)(d− 1)

2F

)
(2.32)

where f ∈ [1, F ], σ1 = 1 and σd = 2 for d ≥ 2. This functional is discretely sampled in

each frame f ∈ {1, ..., F} as Ωfd = ωd(f). One can then write the trajectory of point n

as

Sfn =
K∑
k=1

ΩfkBkn (2.33)

where Bkn ∈ R3 specifies the amount of the X, Y and Z signal to add in from the k’th

DCT trajectory for the n’th point. In matrix form, this is just

S3F×N = (ΩF×K ⊗ I3×3)B3K×N . (2.34)

Note that this takes the same form as the shape basis model, except now C = Ω is a

1This definition is from [22]
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fixed matrix containing these low frequency smooth DCT vectors.

In this framework, the upgrade step is considerably easier as the extra constraints are

shown to be enough [2] to avoid the difficulties detailed earlier. Regardless, the major

advantage of this model is that many degrees of freedom have been removed by fixing the

trajectory basis. This is much easier to do in trajectory space than shape space because

a basis like the DCT can describe a wide variety of common motions. This is explored

empirically in [3] by doing a principle component analysis of motion capture data and

noting the similarity between the principle trajectory vectors and the low frequency DCT

basis vectors.

Shape Trajectory Approach. A further generalization [22] of the trajectory basis

method constructs the K trajectories as a linear combination of a potentially much wider

spectrum D > K of DCT basis vectors

CF×K = ΩF×DXD×K . (2.35)

It was demonstrated that this is quite helpful when there are high frequency defor-

mations occurring in a sequence. Indeed, the truncated basis here ΩF×D contains D−K
higher frequencies than the corresponding standard trajectory basis model. The coeffi-

cients XD×K determine how to combine these into a new set of trajectories CF×K for the

model to use while the factorization of W still remains constrained and of rank 3K. Of

course if X =

[
IK

0

]
is fixed, then this reduces to the standard trajectory approach. This

is, indeed, exactly how they obtain an initialization to a non-linear optimizer to fit the

model.

Kernel Shape Trajectory Approach. In order to deal with some of the difficulties

these methods have modelling nonlinear deformation, the model presented in [20] uses the

kernel trick. Points in a very low dimensional space are mapped into a higher dimensional

shape space to select among a set of K of implicit basis shapes. This is done by specifying

the coefficients using a kernel matrix CF×K = KF×K with entries

Kfk = κ(cf , bk) = e−γ‖cf−bk‖
2

(2.36)

where cf and bk exist in a very low dimensional shape coordinate space RH . The points

b1, · · · , bK are associated with the K shapes B1, ..., Bk that make up B. Given the shape

coordinate cf , the kernel function κ(cf , bk) then specifies how much of shape Bk to add
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into frame f . Indeed, the estimated 3D point set Sf in some frame f can be recovered as

Sf =
K∑
k=1

κ(cf , bk)Bk . (2.37)

This means that the bk’s and cf ’s which need to be estimated can in practice exist in a

much lower dimension H << K than the 3 ×K dimensional shape space because they

only interact through the κ function.

The number of parameters is reduced even further by again assuming that the shape

coordinate trajectory in RH itself is smooth and can be modelled as

cTf =
[
ω1(f) ... ωD(f)

]
XD×H . (2.38)

This is very similar to (2.35) but now note that the coefficient matrix X has only H << K

columns that need to be estimated. Furthermore, the points b1, ..., bK in the shape

coordinate space are assumed to lie on this continuous trajectory that these F samples

represent, and thus a single continuous variable tk ∈ [1, F ] is used to specify each as

bTk (tk) =
[
ω1(tk) ... ωD(tk)

]
XD×H . (2.39)

Figure 2.2 illustrates this situation in the common setting of H = 2.

This leaves the kernel matrix K parametrized by only DH +K + 1 parameters to es-

timate2. In practice D is often set to 0.1F and H was set to 2 yielding around 0.2F +K

parameters as opposed to the FK parameters in the coefficient matrix of the uncon-

strained shape model.

2.2.4 Locally Linear Manifold

All of the methods discussed above have assumed that the space of shape deformation

across time is a linear subspace of finite dimension. In [40], this assumption is relaxed as

to require only that the shape in each frame lie on a locally linear manifold of finite di-

mension. In essence, the model reduces to a rigid shape model for each frame wf = RfBf ,

under the constraint that the shape Bf lies on that manifold and deforms smoothly in

time. The method relies heavily on a heuristic initialization that finds clusters C1, ..., CL

of frames that give a valid rigid interpretation Wf ≈ Rf Ŝl, ∀f ∈ Cl. The shape in each

frame is then initialized via Bf = Ŝl before optimization. Unfortunately, this model

2This includes the DH entries in X, the K tk’s and γ from equation 2.36.
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Figure 2.2: A two dimensional shape coordinate space. Figure adapted from [20].

has many parameters, seems brittle due to the awkward initialization via clustering and

appears to be largely eclipsed by more recent methods.

2.2.5 Quadratic Deformation Model

The quadratic deformation model [19] is similar to the shape basis model as it assumes

that the point set has a finite set of deformation modes present in B. The difference is

that here it has a special form in which it is parametrized by a fixed rest shape.

B1 =

X1 · · · XN

Y1 · · · YN

Z1 · · · ZN

 . (2.40)

Its structure matrix B has the form

B(B1) =

 B1

B2(B1)

B3(B1)

 (2.41)

where

B2(B1) =

X
2
1 · · · X2

N

Y 2
1 · · · Y 2

N

Z2
1 · · · Z2

N

 (2.42)
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and

B3(B1) =

X1Y1 · · · XNYN

Y1Z1 · · · YNZN

Z1X1 · · · ZNXN

 . (2.43)

Each mode is transformed through a full set of unconstrained linear transformations

in each frame so that the full model is written as

W2F×N = D2F×3F

[
Γ3F×3 Ω3F×3 Λ3F×3

]
B9×N

This specifies 3F nearly general3 quadratic mappings from the 3-dimensional rest

shape space and specifies the per-frame pose and deformation. It is shown that such a

formulation can produce a wide range of natural deformations. In particular, Γ provides

a per-frame linear transformation of the rest shape B1 such as stretching, Ω provides

bending through the quadratic terms in B2 and Λ provides twisting through the cross

terms in B3.

A serious drawback of this method though is that it assumes that the rest shape

B1 is fixed, centred and axis aligned. They suggest that this can be done through a

rigid factorization of a short sequence of the target object at rest. It is then suggested

to initialize Γ with F identity matrices and Ω = Λ = 0 as this corresponds to the

same transformation provided by the rigid factorization model. A bundle adjustment is

performed to refine the rotations and learn the deformation coefficients.

2.3 Piecewise Models

The models that have been discussed so far try to model the entire set of point tracks

simultaneously in a global model. Another option is to fit simpler models to smaller

local sets of image trajectories, and then combine these into a global model. These

piecewise models have the advantage that there may be common constraints on local

deformation that apply to a diverse set of sequences, despite their global deformations

being drastically different. These models, however, must decide how to divide the set of

N trajectories, which local model to fit to each piece, and how to stitch these models

together.

The approach presented in Chapter 4, and based on the work [49], chooses to use rigid

triangle models to explain local triplets of trajectories. This has the advantage that the

local rigidity assumption leveraged here is more likely to be valid with just three points.

3No constant term is available.
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The planar nature of these triangles, however, admits a per-frame depth flip ambiguity,

that is challenging to resolve given the limited number of points two models can share.

We refer the reader to Chapter 4 for additional details.

An alternative and more standard approach is to instead model a modest number of

points in a local neighbourhood. The intuition is that reasonably flexible models can be

fit to relatively large but local subsets of trajectories. Further, the sets of trajectories

attached to each model can be allowed to have a large intersection making it easier to

integrate these models together. The local models that have been considered have been

restricted to planar [59, 13] and quadratic deformation models [18] but of course a wide

variety of SFM models could be used.

With these larger models, however, how to best divide the trajectories into subsets is

still an open question. In [13], it is required that the user provide a reference frame and

region of interest in which points are not occluded. In [18], a coarse rigid fit of the entire

point set was used to embed the tracks in three dimensions. The bounding box of this

set was then subdivided with each subdivision being used to initialize a local quadratic

deformation model. In [43], an alternation is performed between model fitting and model

assignment, allowing local models to grow to include inlier points or shrink by removing

outliers.

2.4 Point Clouds with Pairwise Isometric Constraints

The above models attempt to explicitly restrict local deformation by fitting low capacity

models to local image trajectories. An attractive alternative is to instead form a global

model of all image trajectories that penalizes violations of the local deformation assump-

tions. The local deformation assumption that this thesis focuses on is local rigidity, which

can be encoded using isometric constraints between two points as is done in Chapter 5.

A similar, but uniquely different formulation is proposed in [60]. For completeness, we

briefly describe the essence of this approach, but a more in depth explanation is deferred

to Section 5.1.5.

In [60], they first acquire a set of pairs of points L ⊆ {1, ..., N}2 that should remain

at a fixed distance to each other. They then parameterize their model with a vector θ

which includes the assumed interpoint distance Lnm(θ) that a pair of points (n,m) ∈ L
should remain. For the n’th scene point, they also dedicate a component of θ to its depth

in each frame f , and thus one can write zfn(θ) to indicate this dependence. They do not,

however, parameterize the x and y components of the point, and instead constrain that
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point to lie on the back projected ray through w′fn =

[
x′fn
y′fn

]
. They can thus write

pfn(θ) =

 x′fn
y′fn
zfn(θ)

 . (2.44)

They then formulate an energy based model

E(θ;L) =
F∑
f=1

∑
(i,j)∈L

|‖pfi(θ)− pfj(θ)‖ − Lij(θ)| (2.45)

which they desire to minimize.

They choose to view the energy (5.14) as that of a Markov Random Field in which

each term represents a potential over a clique of three variables. In order to optimize

this energy, they choose to use a discrete optimization strategy in which, at each step,

a proposal solution θ′ is “fused” [35] to the current solution θk in such a way such

that the resulting solution θk+1 = FUSE(θk, θ
′) does not increase the energy (i.e., that

E(θk+1;L) ≤ E(θk;L) and E(θk+1;L) ≤ E(θ′;L) ).



Chapter 3

Three Point Rigid Structure from

Motion

In this chapter, we consider what can be said about 3 rigid scene points that have been

orthographically imaged from F viewpoints as illustrated in Figure 3.1. Previous work

has focused on the exact case, where it is assumed that no noise has entered the imaging

process [7, 24]. That work has aimed to identify, given a set of image projections, whether

such a rigid configuration exists to explain those projections and if so, how many such

configurations exist. Although the proofs of these configurations’ existence are often

constructive in nature, attention is not generally paid to producing practical algorithms

for their recovery. Indeed, they only consider explaining the projections in at most four

views whereas a practical estimation procedure will need to integrate information from

multiple frames or views. This is of course not surprising given that they consider only

the noiseless case, in which four views effectively determine the intrinsic geometry of the

scene. Adding another view will either agree with this geometry or invalidate it, as their

is no allowance for the observations to deviate from the model. In contrast, we admit the

possibility of noise, where the integration of observations from multiple views is likely

essential to reliably estimating scene geometry.

This chapter begins by mathematically formalizing the orthographic three point rigid

model and the unique depth flip ambiguities that it admits. We demonstrate that the

projections in each new view yield a linear constraint on the coordinate free geometry

of the scene, providing a straightforward method for recovering the rigid model in the

noise free case. In the presence of noise, linear least squares provides a natural route to

fitting a model that averages error from multiple frames. As this model cannot exactly

reproduce the image observations, a Gaussian noise model is assumed and each viewpoint

(exterior orientation) is optimized to maximize the likelihood under this model. This,

22
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Figure 3.1: An illustration of the orthographic three point rigid model. The three points
can be seen as a triangle that is imaged from a variety of viewpoints. The location of
these points in the world, and the orientation and position of the viewpoints specify the
model.

however, is not the maximum likelihood solution as the intrinsic geometry has been held

fixed. We therefore use this as an initialization for a bundle-adjustment like procedure

that simultaneously optimizes this geometry. Evidence on synthetic data indicates that

this nearly always provides the optimal solution in the presence of reasonable amounts of

Gaussian noise. We also demonstrate that a simple prior on the link lengths can be used

to regularize the solution in degenerate cases caused by a lack of viewpoint variation.

Finally we explore the procedure’s ability to quantify the rigidity of three points.

3.1 Formulation

We can consider the three point rigid model to be a clear specialization of the more

general rigid model described in Section 2.1.1 where now N = 3. This again requires the

modification of the general orthographic projection equations (2.1) and (2.3) to utilize

scene points that are fixed. We thus drop the temporal index f from the scene points in

those equations (i.e., sfn = sn for any f). Written explicitly, these equations are then

wfn = Π(Rfsn + tf ) (3.1)

and

wfn = Rfsn + hf (3.2)

replicated for each frame f ∈ {1, .., F} and each point index n ∈ {1, 2, 3}.
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b b

b

s1 = (0, 0, 0) s2 = (γ1, 0, 0)

s3 = (γ2, γ3, 0)

L1

L2L3

Figure 3.2: The geometry of a triangle has three degrees of freedom. There is a one to one
mapping between the labelled lengths L ∈ TL ⊆ R3 and our assumed parameterization
γ ∈ Tγ ⊆ T ±γ . In addition, there is a second γ± ∈ T ±γ that corresponds to a triangle
reflected across the x axis, that does not exist in Tγ.

3.1.1 Parameterization as a Triangle

With only three fixed world points, it is natural to think of these points as the labelled

vertices of a triangle in 3D that is imaged from multiple viewpoints as illustrated in

Figure 3.1. As the world coordinate frame is ambiguous, it is natural to consider as

equivalent any two such triangles that are related by a 3D rotation and translation. We

will show that there is a one-to-one correspondence between these equivalence classes of

triangles and their labelled triangle lengths Li = ‖si mod 3+1 − si‖ for i ∈ {1, 2, 3}. The

space of such lengths is

TL = {(L1, L2, L3) : L1, L2, L3 > 0;L1 + L2 + L3 −max
i
Li > max

i
Li} ⊆ R3 (3.3)

where the last constraint is just the triangle inequality. Despite this being a somewhat

obvious result, its development here is justified as we introduce notation that will be used

later on. Further, the following sub-result will be useful in understanding an argument

about “counting” rigid interpretations put forth in Section 3.2.3.

Result 1. Up to a rigid rotation and translation in the x-y plane there exists two possible

triangles in the x-y plane with lengths L ∈ TL. These triangles take the form s1(L) =

(0, 0, 0), s2(L) = (γ1(L), 0, 0) and s3(L) = (γ2(L), γ±3 (L), 0) with

γ1(L) = L1 > 0 (3.4)

γ2(L) =
1

2L1

(L2
3 − L2

2 + L2
1) > 0 (3.5)

γ±3 (L) = ±
√
L2
3 − γ22(L) 6= 0 . (3.6)
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Proof. The geometry of this is illustrated in Figure 3.2. For any triangle in the x-y plane

with labelled lengths L, it is clear that a rigid in-plane rotation and translation puts s1

at the origin and s2 at (γ1(L), 0, 0) with γ1(L) > 0, so assume that is done. Now s3 must

be in the x− y plane at distances L2 and L3 to points s2 and s3 respectively. The points

of intersection of the two circles that these points define are at the two possible values

of s3(L) detailed above. This creates two triangles, one above the x-axis and one below,

with counter-clockwise ordering of their points as (1, 2, 3) and (1, 3, 2) when observed

from the positive z-direction. Any in-plane rigid transformation, will preserve such an

ordering and thus these triangles cannot be equivalent up to such a transformation.

For reasons that will become clear in Section 3.2.3, where we discuss how related

work may be counting rigid interpretations, one might then consider the space of such

triangles as

T ±γ = {(γ ∈ R3 : γ1 > 0, γ3 6= 0} ⊆ R3 . (3.7)

For our purposes, however, we require this straightforward corollary.

Corollary 1. Up to 3D rigid rotations and translations there exists a unique triangle

with lengths L ∈ TL. This triangle takes the form s1(L) = (0, 0, 0), s2(L) = (γ1(L), 0, 0)

and s3(L) = (γ2(L), γ3(L), 0) with

γ3(L) =
√
L2
3 − γ22(L) . (3.8)

Proof. Given any such triangle, there exists a rigid transformation that maps it into the

plane. By the above result, there exists another rigid transformation that maps it to a

triangle specified by γ ∈ T ±γ . Now if γ3 > 0, we are done. If γ3 < 0, then a final rigid

rotation around the x-axis of 180 degrees, will set γ3 to −γ3 > 0

We thus fix the world coordinate system by assuming that the scene points to be

parameterized by some vector γ ∈ Tγ where

Tγ = {(γ ∈ R3 : γ1 > 0, γ3 > 0} ⊆ R3, (3.9)

unless otherwise stated.

3.1.2 Ambiguities

The planar nature of such a triangle model induces a special per-frame depth flip ambi-

guity in each viewpoint’s cameras coordinates. Mathematically, this flip takes the form
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b b b

s1 s2 s3

(Rf , tf ) (R′

f , tf + δ [ 0 0 1 ]T )

Figure 3.3: Illustration of depth flip ambiguity in a two dimensional scene. There are two
different camera orientations which allow the three scene points s1, s2 and s3 to project
to the same points on the image plane. The relative depths of the points with respect to
the camera gets flipped.

of another rotation R′f = BRfB where

B =

1 0 0

0 1 0

0 0 −1

 (3.10)

is a flip through the x-y plane. To see that R′ is a rotation, the reader is referred to

equations (2.12) and (2.13). In frame f , the camera coordinates of point n becomes

R′fsn + tf = BRfBsn + tf = BRfsn + tf (3.11)

where the last equality is due to the sn having zero z component. This means that the

point has flipped its z-component around the z-component of tf . As the z-component

of tf is also ambiguous, it is convenient to just refer to this ambiguity as a depth flip

ambiguity.1 Regardless, under this new interpretation, the projected points remain the

same as

Π(R′fsn + tf ) = ΠBRfsn + hf = ΠRfsn + hf = Rfsn + hf . (3.12)

This ambiguity is illustrated for a two dimensional model in Figure 3.3. These 2F am-

biguous depth flip assignments, that exist in F frames, are of particular interest to the

reader of this document, as a good deal of the next chapter is devoted to disambiguating

them.

1Since we are dealing with a planar model, the “depth flip ambiguity” is equivalent to the ambiguity
in the 3D rotation, Rf or R′

f
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δz1 δz2

δz3
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Figure 3.4: Top view of three points in camera coordinates p1, p2, p3 being projected to
their image points w1, w2, w3 in the image plane. The thick lines form the triangle with
vertices representing the points. Each side i has link length Li that is the hypotenuse of
a right triangle (coloured either red, green or blue) formed with the projected link length
li and the relative depth δzi.

3.2 Strictly Rigid Noise Free Model

Here we consider the problem of finding three point rigid models that exactly explain a

set of image trajectories. The problem of counting such rigid interpretations in F = 3 or

F = 4 frames has been considered previously [7, 24]. In contrast, we demonstrate how a

simple algorithm allows for the recovery of solutions in F ≥ 3 frames when they exist.

3.2.1 Linear Recovery of Structure

In [49], it was demonstrated that there is a succinct relationship between the edge lengths

L ∈ R3 of a triangle and their projected lengths lf ∈ R3 in each frame f . This takes the

form of a quadratic constraint between the squared edge lengths M ∈ R3 and the squared

image lengths mf ∈ R3.

Result 2. Let wi = Πpi be the orthographic projection of a point pi for i ∈ {1, 2, 3}. Then

if M ∈ R3 is the vector of squared link lengths (i.e., Mi = ‖pj−pi‖2 where j = i mod 3+1)

and m ∈ R3 is the vector of squared projected link lengths (i.e., mi = ‖wj − wi‖2 where

j = i mod 3 + 1), then

MTAM − 2MTAm+mTAm = 0 (3.13)

where

A =

 1 −1 −1

−1 1 −1

−1 −1 1

 . (3.14)
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Proof. The geometry is illustrated in Figure 3.4. Let zi be the depth of point i. The

relative depth change across link i is δzi = zi mod 3+1 − zi. Using the right triangle that

this relative depth forms with the link in the image plane, we see that

δz2i = L2
i − l2i (3.15)

= Mi −mi . (3.16)

Further, all three links form a closed loop and thus their relative depths must add to zero

δz1 + δz2 + δz3 = 0 . (3.17)

Rearranging and squaring both sides we have

δz21 = (δz2 + δz2)
2 (3.18)

= δz22 + 2δz2δz3 + δz23 (3.19)

or equivalently that

δz21 − δz22 − δz23 = 2δz2δz3 . (3.20)

Squaring both sides again, we have that

(δz21 − δz22 − δz23)2 = 4δz22δz
2
3 . (3.21)

Rearranging, we have that

0 = (δz21 − δz22 − δz23)2 − 4δz22δz
2
3 (3.22)

=
3∑
i=1

δz2i − 2δz21δz
2
2 − 2δz21δz

2
3 + 2δz22δz

2
3 − 4δz22δz

2
3 (3.23)

=
3∑
i=1

δz2i − 2
3∑
i=1

3∑
j=i+1

δz2i δz
2
j . (3.24)

Since this now only contains squared relative depths, we can plug in (3.16) and continue
as

0 =
3∑
i=1

(Mi −mi)− 2
3∑
i=1

3∑
j=i+1

(Mi −mi)(Mj −mj) (3.25)

= (M −m)TA(M −m) (3.26)

= MTAM − 2MTAm+mTAm (3.27)
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to obtain the quadratic equation in (3.13).

Note that equation (3.13) can be said to be coordinate free as it does not involve the

three original points explicitly. Equations from different frames can thus be combined as

long as they share the common unknown link lengths. In particular, by subtracting the

equation for frame 1 from the other F − 1 equations, we can cancel out each quadratic

term MTAM leaving F − 1 linear equation in M . This results in the following corollary.

Corollary 2. Given three 3D points with squared link length vector M ∈ R3, orthograph-

ically projected to F views with corresponding squared projected link lengths m1, ...,mF ∈
R3,

B(F−1)×3M3×1 = b(F−1)×1 (3.28)

where

B = 2


mT

1 −mT
2

...

mT
1 −mT

F

 (3.29)

and

b =


mT

1Am1 −mT
2Am2

...

mT
1Am1 −mT

FAmF

 . (3.30)

When F = 4, this matrix B will be generically of rank 3, as demonstrated numerically

in Figure 3.5, and thus we can recover M using linear least squares. If the estimate of M

has no negative component, which empirically always occurs in the noiseless case, then

the link lengths can be recovered by taking an element-wise square-root. When F = 3,

this matrix will be generically of rank 2 and thus we can find its null vector vnull, and a

single solution M0 such that

BM0 = b . (3.31)

This allows us to parameterize the solutions that satisfy this system as M0+λvnull because

B(M0 + λvnull) = BM0 + λBvnull = b . (3.32)

By plugging this back into (3.13) for a single frame, we get a quadratic in λ. This can

be solved to find up to two 2 length solutions.
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Figure 3.5: Estimated distributions of the three singular values of the linear squared
length recovery system B where 3 random points are projected randomly projected to 4
views 10000 times.

3.2.2 Exterior Orientation

The above procedure only recovers the structure of the triangle, leaving its per-frame

pose, or exterior orientation, to be estimated. Note that we can only hope to recover the

pose up to a depth flip and translation in each frame as it was demonstrated that these

transformations will not alter the orthographic image projections. In the noiseless case,

this can be done by pinning the x-y components of points p1, p2, p3 to the rays that pass

through the image projections w′1, w
′
2, w

′
3 as illustrated in Figure 3.4 and solving for the

depths z1, z2, z3 of these points. An arbitrary depth translation is fixed by selecting z1 = 0

and the depth flip by setting z2 =
√
L2
1 − l21. The first two points constrain the last by

z3 = ±
√
L2
3 − l23 and z3 = z2±

√
L2
2 − l22 for which one of these values will exactly satisfy

both constraints. This can be done in each frame to extract candidate camera points

pf1, pf2, pf3 ∈ R3 and a rigid alignment (Rf , tf ) found such that pfi = Rfsi(L) + tf .

Combined with the linear extraction of the link lengths L ∈ R3 using (3.13), this gives

an exact solution to the three point rigid structure from motion problem (up to the

aforementioned ambiguities) in the noiseless case.
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3.2.3 On Counting Rigid Interpretations

We have shown here, that for each link length solution L ∈ TL there is a unique triangle

specified by γ ∈ Tγ. This triangle admits 2F possible depth flips that produce the same

image projections. Thus, for F = 4 frames, we have shown how to recover a single

link length solution yielding 24 = 16 possible rigid interpretations. For F = 3 frames,

we have shown how to recover up to two possible link length solutions yielding up to

2 · 23 = 16 possible rigid interpretations. In contrast, the work [7] shows that there are

at most 32 different rigid interpretations for F = 4 frames, and the work [24] shows

that there are up to two distinct link length solutions that yield up to 2 · 23 = 32

different rigid interpretations for F = 3 frames. We suggest that these works are likely

counting, for each length solution, the 2F depth flip ambiguities that result from each

of the two triangles that can be specified using γ± ∈ T ±γ (see Section 3.1.1). That is,

that they are allowing a triangle model in such a rigid interpretation to have a “visible”

face based on the sign of γ±3 , accounting for the factor of two discrepancy. Regardless of

how one counts rigid interpretations though, for F = 4 frames, we have shown that all

rigid interpretations correspond to a single length solution. For our purposes, however,

we do not differentiate between the sides of the triangle and thus only admit the 2F

interpretations corresponding to F possible depth flips.

3.3 Plausibly Rigid with Gaussian Noise Model

In practice, we would like an algorithm that can cope with multiple noisy frames. In this

section we consider two such algorithms.

3.3.1 3-SFM (Linear)

One approach, is to simply substitute the squared observed link lengths for the squared

projected link lengths when forming the linear system in (3.28) and solve for M using

linear least squares. If M has only positive components we can take the element-wise

square-root to recover a vector L ∈ R3. If M has negative components or the estimated

lengths do not form a valid triangle (i.e., L /∈ TL), we fall back to a more naive estimate

by using the observed image link lengths lf∗ in the frame

f ∗ = argmax
f
‖lf‖1 (3.33)
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where the observed triangle has the largest perimeter. Note that this will actually be a

high quality estimate if the triangle is ever seen nearly “head on”. Further, it can be

motivated by the tendency for humans to perceive the maximal extension between two

imaged points as a frontal-parallel orientation [31]. Regardless, the practical advantage

is simply that it forces this procedure, 3-SFM (Linear), to always recover lengths L that

form a valid triangle.

Naturally, the noise free algorithm for solving exterior orientation cannot be applied

in the presence of noise. We therefore consider solving for an orientation that minimizes

squared reprojection error. For this we assume that the rotations are parameterized by

some standard vector ωf of rotational parameters so that Rf = R(ωf ). We then formulate

the minimization of the squared reprojection error under this model with a fixed rigid

triangle by seeking this rotational parameter in addition to the necessary 2D translation

hf .

min
hf ,ωf

3∑
n=1

‖R(ωf )sn + hf − w′fn‖2 (3.34)

Note that if ωf is fixed, we can use the well known result [32] that the optimal translation

between the projected scene points and observed points is the difference in centroids.

Therefore, given ωf , the optimal translation is

hf = w̄′f −
1

3

3∑
n=1

R(ωf )sn (3.35)

= w̄′f −R(ωf )
1

3

3∑
n=1

sn (3.36)

= w̄′f −R(ωf )s̄ (3.37)

where w̄′f is the centroid of the observations and s̄ is the centroid of the scene points.

This allows us to rewrite (3.34) using the centred scene coordinates ŝn = sn − s̄ and

centred image coordinates ŵ′fn = w′fn − w̄′.

= min
ωf

min
hf

3∑
n=1

‖R(ωf )sn + hf − w′fn‖2 (3.38)

= min
ωf

3∑
n=1

‖R(ωf )sn +
(
w̄′f −R(ωf )s̄

)
− w′fn‖2 (3.39)

= min
ωf

3∑
n=1

‖R(ωf )ŝn − ŵ′fn‖2 (3.40)
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and thus the problem is reduced to estimating the 3 rotational degrees of freedom inherent

in ωf . In practice, this can be done reliably by using a non-linear optimizer such as L-

BFGS [12] using a few random restarts. When the views correspond to a temporally

smooth sequence as is often the case, the solution in a neighbouring frame can provide

an additional high quality initial guess. Finally one can extract the optimal translation

using (3.37).
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Figure 3.6: Accuracy of 3-SFM variants in recovering link lengths averaged over 50
runs. An equilateral triangle with link lengths 1 is projected randomly in 100 frames
and N(0, σ2) noise added to each projection. Note that the lines for 3-SFM and 3-SFM
(GT-Init) nearly coincide, and thus 3-SFM does a good job of finding the same local
(perhaps global) optimum as found initializing from ground truth. Further, 3-SFM is
much more robust to (Gaussian) noise than the linear solution at reasonable noise levels.
Notice also, that there is virtually no difference between using the prior or not, as there
is no viewpoint degeneracy.

3.3.2 Bundle Adjustment

In the presence of noise or violations of the fundamental rigidity assumption, solving for

the lengths in (3.28) above only minimizes algebraic error and produces biased length es-

timates. This phenomenon can be seen in Figure 3.6, where various amounts of Gaussian

noise are added to random views of an equilateral triangle in 100 random views. Nat-

urally, with no noise, 3-SFM (Linear) recovers the correct solution but in the presence

of noise, the lengths are underestimated. Therefore, that solution is used to initialize

a non-linear refinement of both lengths and per frame pose jointly to minimize squared

reprojection error across frames. Of course, we cannot always expect to have such ideal

conditions: diverse viewpoints, Gaussian noise and equilateral geometry and thus we

admit the possibility of adding a regularizer to discourage unlikely triangle structures.
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This is formulated in the following bundle adjustment like energy.

min
γ

(
F∑
f=1

min
hf ,ωf

3∑
n=1

‖R(ωf )sn(γ) + hf − w′fn‖2 + λprior

3∑
n=1

Ln(γ)2

)
(3.41)

= min
γ

(
F∑
f=1

min
ωf

3∑
n=1

‖R(ωf )ŝn(γ)− ŵ′fn‖2 + λprior

3∑
n=1

Ln(γ)2

)
(3.42)

where the second line again follows from centring the data as was done in the previous

section. Solving this corresponds to finding the MAP solution under a Gaussian noise

model with a Gaussian prior placed on the link lengths. In the sequences that we consider

in this thesis, the link lengths generally lie in a similar range from 1 to 100. We therefore

find it unnecessary to tune this prior to each triangle, and simply use λprior = 0.01 unless

otherwise stated.

In summary, our three point structure from motion algorithm, 3-SFM, simply uses the

initial guess from Section 3.3.1 to initialize a local gradient based optimization of (3.41).
2 Looking back to Figure 3.6, we can see that 3-SFM provides a much more reasonable

length recovery in the presence of significantly more noise. Further, it appears that

initializing this bundle adjustment from ground truth does not cause a significant change

in the recovered link lengths, and thus it appears that the local minima that it finds is

very close to the global optimum.

3.3.3 The Effect of the Prior

When there are enough generic viewpoints, the image observations will quickly drown

out the effect of the prior. In contrast, the prior allows the algorithm to fail gracefully by

choosing a “reasonable solution” when the structure is left otherwise under-constrained

by the provided viewpoints. Without the prior, it is unclear how factors, such as imaging

noise or non-rigidity in the underlying point configuration, would combine to dictate

the minimum of the energy. This will then result in the algorithm “hallucinating” non-

existent triangle structure. One example of such a situation, is when a triangle spins

around a fronto-parallel axis that remains in the plane of the triangle. As we have chosen

the world coordinate system so that the triangle lies in the x-y plane, this corresponds

to any axis also in that plane (as in Figure 3.1). In the noiseless case, this degeneracy is

demonstrated by the following result.

2One has to be slightly careful to avoid saddle points that can occur if the triangle becomes fronto-
parallel in a frame. In practice, this is not difficult to avoid, for example by slightly perturbing such
rotations and restarting the optimization until no progress is made.
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Result 3. Let s1, s2, s3 ∈ R3 define a rigid triangle lying in the x-y plane and let d ∈ R3

be any unit vector also in the x-y plane and n = d × e3 be a unit vector in the x-y

plane normal to d. Let R be a rotation of θ ∈ R around d. Then for any α ≥ 0, if

s′n(α) = (sTnd)d+ (1 +α)(sTnn)n and R′(α) is a rotation of θ′(α) = cos−1(cos(θ)/(1 +α))

around d, then we have that

ΠR′(α)s′n(α) = ΠRsn . (3.43)

That is, there is a continuous ambiguity specified by a relation between the triangle struc-

ture and its rotation.

Proof. To prove this, we will expand this equation, taking advantage of the fact that the

orthographic projection Π will drop any z component. We thus do not need to keep track

of any z component when R′(α) rotates n out of the x-y plane.

ΠR′(α)s′n(α) = Π(R′(α)(sTnd)d+R′(α)(1 + α)(sTnn)n) (3.44)

= Π((sTnd)d+ cos(θ′(α))(1 + α)(sTnn)n+ sin(θ′(α))(1 + α)(sTnn)e3) (3.45)

= Π((sTnd)d+ cos(θ′(α))(1 + α)(sTnn)n) (3.46)

= Π((sTnd)d+
cos(θ)

1 + α
(1 + α)(sTnn)n) (3.47)

= Π((sTnd)d+ cos(θ)(sTnn)n) (3.48)

= Π((sTnd)d+ cos(θ)(sTnn)n+ sin(θ)(sTnn)e3) (3.49)

= ΠR((sTnd)d+ (sTnn)n) (3.50)

= ΠRsn (3.51)

In the presence of imaging noise, or slight deviations from rigidity, this ray of zero

energy solutions will become a long valley in the energy landscape. This valley has been

observed to slowly descend in the direction of larger triangles as it becomes increasingly

easy to model noise through small rotations. In contrast, as the rotational axis begins

to deviate from being strictly fronto-parallel, more constraints will arise, pushing the

minimum towards the true solution. As cameras and objects in our world tend to stay

upright, we should not be surprised to see situations in practical sequences that closely

resemble this ambiguity. The result will be that these two forces pushing towards (i.e.,

non-degenerate views) and away from (i.e., noise in degenerate views) the true solution

will play off each other, often leaving the minimum of the energy far from the true
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Figure 3.7: Illustration showing that if each scene point sn is re-parameterized as s′n(α),
then for each rotation R of θ around d, there is a corresponding rotation R′(α, θ) that
projects the scene points to the same image locations.

solution. The prior helps by providing a slight tilt to the entire energy landscape, resulting

in the minima of these valleys being moved towards parameters that result in smaller and

often more reasonable triangles than those that would arise from a minimum based purely

on noise. In contrast, point configurations that are well constrained by the observed

viewpoints will have sharp minima in the energy. The small tilt that the prior provides

will generally not be enough to move these substantially.

To illustrate these effects we examine triangles from the Delaunay triangulation (see

Figure 3.8) of the first frame of the JACKY sequence [52]. This sequence is particularly

useful to illustrate these effects as we have ground truth data available and since the

motion consists primarily of rotations around the y-axis. Furthermore, it contains, in

addition to a largely rigid face, a variety of non-rigid local 3-point configurations such as

those triangles covering the mouth or eyelid.

We first show the effect of the prior in regularizing against the poor variance of

viewpoints presented in JACKY. This is illustrated in Figure 3.9 where it can be seen that

a good portion of the link lengths recovered are massively overestimated. For example,

without the prior, 3-SFM will fit an extremely long and obtuse rigid triangle model

to the image observations of triangle 33 (highlighted in the Figure). This is done by

choosing rotations so that the triangle extends deep into depth and using the remaining

rotational freedom to minimize the squared image residuals. This behaviour can be seen

in Figure 3.10, where the link lengths diverge while very little improvement in the energy

function is obtained. This indicates that the energy is following the nearly flat bottom

of a long valley, which corresponds to the lack of constraints. In contrast, 3-SFM is



Chapter 3. Three Point Rigid Structure from Motion 37

1

2

3

4

5

6

7

8

9 1011 1213
14

15 1617 1819
20

21

22
232425 26

27 28
2930

31
3233

3435
36

37
3839

40

41

42

43 4445

4647
48

49
50

51
52

53
5455

56
5758 5960

61

62
63

6465
66 67

68
69 70

71 72

73
74

75

Figure 3.8: Delaunay triangulation of Jacky sequence in first frame.

able to recover “reasonable” link lengths using the prior term as the quadratic penalty

adds a well defined minimum near the beginning of this valley. This also has the clear

advantage of avoiding needless exploration, massively accelerating convergence in such

under-constrained scenarios (see Figure 3.10).

If we artificially add viewpoint diversity to JACKY, naturally the accuracy of both
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Figure 3.9: The effect of running 3-SFM with and without the prior on the triangles in
the Delaunay triangulation in Figure 3.8. Above: The standard Jacky sequence which
contains degenerate viewpoints which the prior helps to regularize. Triangle 33 is high-
lighted as an example. Below: The sequence has each frame randomly rotated to provide
generic viewpoints. The prior has little effect and the lengths are properly recovered.
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methods drastically improve as can be seen in the bottom of Figure 3.9. Furthermore,

there is virtually no difference in the recovered solutions as the prior term is so weak in

the presence of the diverse viewpoint constraints.
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Figure 3.10: The convergence of 3-SFM with and without using the prior on triangle
33 of Jacky. Without the prior, the edge lengths are unconstrained and can be driven to
large values to model reprojection error. The prior provides a well defined local minimum
at a reasonable solution. This minimum is encountered very quickly.

3.3.4 Inferring Rigidity

One might also wonder whether one can decide whether three points belong to a rigid

configuration by examining the residual errors provided by 3-SFM. It was demonstrated

by Bennett and Hoffman [7] that in 4 generic viewpoints, the set of rigid models that

can exactly explain a set of observations is measure zero. If we wish to allow some level

of noise or deviance from rigidity, we can use 3-SFM to assign a non-rigidity score based
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on RMS reprojection error. This is calculated as

ε(θ) =

√√√√ 1

3F

F∑
f=1

3∑
i=1

‖wfi(θ)− w′fi‖ (3.52)

where θ parameterizes the 3-point rigid models recovered from 3-SFM.

To evaluate the usefulness of this score, we again appeal to the JACKY sequence where

we have ground truth available. We use the matrix of ground truth lengths LGT
F×3 to

form a ground truth estimate of non-rigidity by taking the mean of the sample standard

deviations of the three lengths.

εGT =
1

3

3∑
i=1

√√√√ 1

F

F∑
f=1

(LGT
fi −

1

F

F∑
f=1

LGT
fi )2 (3.53)

As can be seen in Figure 3.11 there is a correlation between the ground truth non-

rigidity estimate and our estimate. Unfortunately, due to the lack of viewpoint variation,

some non-rigid structures have a rigid interpretation that yield a relatively low repro-

jection error (see points in lower right of Figure 3.11). When the sequence is randomly

rotated, these phantom interpretations tend to disappear and the correlation becomes

much stronger and more useful.

3.4 Conclusion

This chapter began by developing the orthographic three point rigid model to explain

the motion of three image trajectories. This model is minimal in the sense that drop-

ping another point (i.e., a two point rigid model) could not be constrained by these

trajectories alone and would require additional priors for reconstruction. In contrast, the

three point rigid model is well constrained when imaged in a set of generic viewpoints.

These constraints, however, admit an interesting per-frame depth flip ambiguity arising

from the planar nature of the model. The admittance of an additional point (i.e., a four

point rigid model) could potentially break this planarity and resolve the per-frame depth

flips. However, in practical sequences, including the majority of the ones considered in

this thesis, spatially local quadruplets of trajectories that arise from points in a near

rigid configuration will often be near planar. There is therefore little to be gained by

considering such an expanded model.

In section 3.2, we explored some options for fitting such a three point rigid model to a
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Figure 3.11: Inferred Non-Rigidity Measure vs. Ground Truth Non-Rigidity Measure

set of image trajectories. A key contribution here, is the formulation of a linear constraint

on squared link lengths from a set of squared projected link lengths. This provides a

direct method to recover the triangle’s link lengths when we have access to noise free

image projections from just four frames. In the presence of noise, we can incorporate

observations from multiple frames using linear least squares. To recover a full solution, the

triangle’s orientation with respect to the camera (i.e., exterior orientation) in each frame

must be recovered, a very manageable non-linear optimization problem. To extract the

maximum likelihood estimate under a Gaussian noise model, this solution is then used as

an initial guess to a bundle-adjustment like optimization. Although this problem is well-

constrained by a generic set of viewpoints, we proceeded to explore some of the degenerate

viewpoint configurations that are likely to arise in common sequences. A simple prior

penalizing the sum of squared lengths was then formulated and demonstrated to bias

the solution towards a smaller fronto-parallel triangle, when such viewpoint degeneracies

leave the solution otherwise unconstrained. The resulting procedure, formed from the
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initialization followed by the regularized bundle adjustment, defines our three point rigid

model recovery algorithm called 3-SFM.

We hypothesized in the introduction, that a procedure like 3-SFM might be a power-

ful tool in allowing arbitrary scenes to be broken into a set of local rigid models. Indeed,

3-SFM can be used as a probe for local rigidity, as an extracted model with low repro-

jection error indicates that the motion of the image trajectories have a plausible rigid

interpretation. It was further demonstrated that under generic viewpoints we can expect

truly rigid configurations to be correctly recovered with low reprojection error, while

non-rigid configurations to be identified by their higher reprojection error. The resulting

models give cues about the local structure but are valid only up to the per-frame depth

flip and translation ambiguity. Resolving these ambiguities and reconstructing a global

solution is an interesting problem that is addressed in Chapter 4. In contrast to the

more global models (detailed in Chapter 2) that integrate more observations per param-

eter, one can expect that fitting local models to such a small number of trajectories will

be sensitive to image noise. This is addressed in Chapter 5 in which the local models

are used only as an initialization for a global energy function. The global structure is

then optimized in a large bundle adjustment framework that allows all observations to

potentially constrain all points at once.



Chapter 4

Non-Rigid Structure from Locally

Rigid Motion

This chapter outlines Locally Rigid Motion (LRM), a framework for solving the non-rigid

structure from motion problem. The key idea is that many complex global deformations

can be modelled locally by K-point rigid motion. This assumption will become increas-

ingly likely to hold for smaller values of K, as more local configurations can be considered.

Naturally then, we would like to use the smallest value for which such models can be

fit to, and evaluated for true rigidity against, image observations. We thus explore this

concept using the three point rigid models described in the previous chapter. This allows

us to model a deforming scene as a “soup” of plausibly-rigid triangle models. This soup

must then be integrated into a global solution by resolving each model’s orthographic am-

biguities. Our approach can be seen as a modern re-interpretation of a scheme advocated

by [57] in which four point rigid models were suggested as local models.

Our proposed procedure begins by forming a soup of rigid triangles through a hypoth-

esis and test framework. Triplets of points are proposed as candidates to be tested for

rigidity. Such proposals should be as local as possible in order to maximize the chance

that the local rigidity assumption holds. Some care should be taken, however, as ex-

treme locality can cause the noise in the observed image trajectories to entirely wash

away any identifiable patterns of rigid motion. Regardless, the trajectories from each

proposal triplet are then tested for rigidity using 3-SFM and, as a side effect, a rigid

triangle model recovered.

Alternatively, if the triplet can be matched to a known template shape, rigidity is

evaluated by the proximity of points in the template, which is assumed to be locally rigid.

In this case, a rigid triangle model can be extracted directly from the template and fit

to a new frame by solving a small exterior orientation problem.

43
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In either case, a soup of plausibly rigid triangle models is recovered from those triplets

that passed the test. As discussed in Chapter 3, each local triangle model within this soup

has an ambiguous depth flip and depth translation in each frame. The flip ambiguities

can be partially resolved by establishing the constraint that two triangle models that

share two image points should be flipped in such a manner that the vertices explaining

these points can be aligned. If some degree of temporal smoothness can be assumed,

then the flips of a given triangle over neighbouring frames might be selected to align

the triangle across these frames. We formulate these constraints as a Markov Random

Field over binary variables, each of which corresponds to the flip of a triangle in some

frame, and encode the described constraints as pairwise potentials. We then consider

a variety of techniques to find a low energy state that resolves the per-frame depth flip

ambiguities. Each triangle is then translated in depth so as to align its vertices with

those of its neighbours. The 3D locations of all vertices that explain an observation are

averaged into a single location, thereby providing a final global reconstruction.

4.1 Rigid Triangle Models

In this section we propose to model deforming scenes as a soup of local plausibly rigid

triangle models. Given N scene points, we can label such models as triplets of increasing

indices. The set of all such triplets is:

Tall = {(i, j, k) : i, j, k ∈ 1, .., N, i < j < k} . (4.1)

The goal is then to find a subset Tsoup ⊆ Tall, where each triplet represents the indices

of observations that can be explained by a rigid triangle model in the soup. For each

such triplet τ , we assume that this rigid triangle model has been fit and we label its

components with the τ in superscript. We can thus write out this model as an equation

that, for each frame f ∈ {1, ..., F}, explains the observation w′fτi with

wτfi = Π(Rτ
fs
τ
i + tτf ) (4.2)

for i ∈ {1, 2, 3}. We first demonstrate how such a soup can be formed by exploiting

structure from motion (through 3-SFM) and then briefly consider the alternative of using

correspondences to a known template.
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Figure 4.1: Left: Delaunay Triangulation of all N observations in a frame. Notice the
long strings of collinear edges due to the grid like structure of the underlying image
observations. Right: Delaunay Triangulation of observations with indices in Iζ . Notice
that the grid-like structure has been mostly broken.

4.1.1 Plausibly Rigid Models from 3-SFM

When we are given F ≥ 4 frames, we can use the 3-SFM procedure from the previous

chapter in a hypothesis and test framework. Triangle models that pass a rigidity test

will form our soup.

Proposal Triplets

The first step is to propose a set Tprop ⊆ Tall of triplets of indices whose corresponding

points will be tested for a valid rigid interpretation. Ideally, we might examine all possible

triplets but as |Tall| =
(
N
3

)
= O(N3), doing so is prohibitive and therefore some reasonable

subset must be selected. However, whichever strategy is employed, it is important that

it has a reasonable chance of discovering triplets with nearly rigid point configurations.

Our local rigidity assumption hints that we should probe for point configurations that

have spatially localized observations in the hopes that they correspond to local nearly

rigid structure. Furthermore, it is also desirable to have Tprop cover the set of image

trajectories so that every point has a possibility of being reconstructed.

A natural way to satisfy both of the above criteria, is to triangulate the image obser-

vations {w′f1, ..., w′fN} of a single frame f as was done in [49] and illustrated in Figure

4.1. We advocate here, however, to augment this set with additional proposals to in-

crease the coverage of the resulting soup. To deal with tracks that get lost, and to some

extent occlusion, it is also helpful to include triplets that occur in a triangulation of any

frame. We further find that it is helpful to break up grid-like structures (such as the

one illustrated in the left pane of Figure 4.1) by also triangulating, in each frame, the
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image observations corresponding to a random set of point indices Iζ ⊆ {1, ..., N} where

ζ ∈ [0, 1] indicates what fraction of the full N track indices are used. We set ζ = 0.25 by

default, which corresponds to roughly downsampling a grid by a single factor of two in

each spatial direction as illustrated in the right pane of Figure 4.1.

To be explicit, the set of triplets considered is then

Tprop = ∪Ff=1

(
DT({w′fn}Nn=1, {1, ..., N}) ∪DT({w′fn}Nn=1, Iζ)

)
, (4.3)

where DT({vm}Mm=1, I) takes a set of indexed points {vm}Mm=1 ⊆ R2 and an index set I ⊆
{1, ...,M} and returns the set of triplets of increasing indices {(i, j, k) ∈ I3 : i < j < k}
corresponding to the Delaunay Triangulation [17] of the points {vm : m ∈ I}.

Fitting and Testing Triangle Triplets using 3-SFM

The next step is to fit a three point rigid model to the corresponding observations of each

triplet τ ∈ Tprop using 3-SFM. That is, for each frame f and each vertex i in the rigid

triangle model, the observation w′fτi is modelled by

wτfi = Π(Rτ
fs
τ
i + tτf ) . (4.4)

We evaluate this model using two tests. The first test filters out any models that are

determined not to correspond to valid rigid motion on the basis of reprojection error. As

models that undergo generic non-rigid motion are not expected [7] to have a valid rigid

interpretation, we assign RMS reprojection error

ετ =

√√√√ 1

3F

3∑
i=1

‖w′fτi − w
τ
fi‖2 (4.5)

as a measure of non-rigidity to each τ ∈ Tprop. Models for which this measure is above

a certain threshold ε∗ are considered to be non-rigid and discarded. This set is

Tnon-rigid = {τ ∈ Tprop : ετ > ε∗} . (4.6)

Models below this threshold are assumed to be rigid but may actually be under-constrained

due to degenerate triangle structure or from a lack of generic motion as discussed in sec-

tion 3.3.4. A useful heuristic for setting this parameter automatically from the data is
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to set it to be ε∗ = ηε̃, where ε̃ is the median of the set

{ετ : τ ∈ Tprop} . (4.7)

We generally set η to 1.5 unless otherwise indicated, which helps to ensure a large coverage

of the trajectory set, while still filtering large outliers.

It was noticed in [49] that some of the more extreme degenerate triangles, that slip

through this filter have a characteristic geometry. Such triangle models typically are very

thin and become turned deeply into depth to model the image observations and noise

using foreshortening. This motivates our second test that employs a simple heuristic for

identifying these false positives. This heuristic looks at each triangle τ ∈ Tprop and finds

its smallest angle

κτ = min
i

∠(sτf(i mod 3+1) − sτfi, sτf((i+1) mod 3+1) − sτfi) , (4.8)

where

∠(v1, v2) = cos−1
(

vT1 v2
‖v1‖‖v2‖

)
∈ [0, 180] (4.9)

is the angle in degrees between v1 and v2. We then discard triangles whose smallest angle

is less than some parameter κ∗, which we set to 20 degrees. This set of discarded triplets

is

Tdegenerate = {τ ∈ Tprop : κτ < κ∗} . (4.10)

This leaves us with our final “soup” of plausibly rigid triangles

Tsoup = Tprop − (Tnon-rigid ∪ Tdegenerate) . (4.11)

4.1.2 Plausibly Rigid Models from a Planar Template

In this section, we briefly consider an alternative scenario in which we only attempt

to reconstruct a single frame (i.e., F = 1). Naturally, we cannot use a structure from

motion algorithm like 3-SFM, as the problem would be massively under-constrained.

We therefore also assume that we are provided a single template frame, in which each

observation w′1n has a match ωn ∈ R2 in this frame. We further assume that we have a

distance matrix DN×N in which Dnm is the true 3D distance between the n’th and m’th

scene points in that template frame. We generally assume that the underlying structure

is nearly planar and that we have a head on view (as illustrated in Figure 4.1), and thus

Dnm ≈ ‖ωn − ωm‖, but we do not explicitly require this. This template, allows us to
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compute the link lengths of our triangle models directly from the template instead of

relying on 3-SFM. We now show how to modify the hypothesis and test framework to

form a soup using this template.

Proposal Triplets

If we assume that the template is locally rigid, then for points i and j on the model

we can use the distance Dij as a proxy measure for rigidity. We thus, again, use a

Delaunay triangulation of the template points to find triplets of points that are likely to

be nearly rigid. We foreshadow that the use of a template will allow us to fit triangle

models of much higher quality and thus do not deem it necessary to integrate further

proposal triplets. Furthermore, for reasons that will become clear in Section 4.2.1, this

will actually be a significant advantage when integrating our local models into a global

model. To be explicit, the set of triplets that we consider is just

Tprop = DT({ωn}Nn=1, {1, ..., N}) . (4.12)

Fitting and Testing Triangle Triplets using a Template

For each triangle τ ∈ Tprop, we can extract a link length solution directly from the

template using Lτi = Dτiτi mod 3+1
for i ∈ {1, 2, 3}. We hold Lτ ∈ R3 fixed and follow the

procedure in Section 3.3.1 to find the rigid transformation (Rτ
f , t

τ
f ) that best models the

corresponding observations under a Gaussian noise model. This gives us a local model

wτfi = Π(Rτ
fs
τ
i + tτf ) (4.13)

for f = 1 and i ∈ {1, 2, 3}. When testing these proposals, we accept their spatial locality

in the template as certification of rigidity, and thus do not examine reprojection error.

We do, however, allow thin near co-linear triangles from the triangulation to be filtered

out as before. This leaves us with our final “soup” of plausibly rigid triangles as

Tsoup = Tprop − Tdegenerate . (4.14)

4.2 Non-Rigid Structure from Locally Rigid Motion

At this point, we assume that we have formed a soup Tsoup of plausibly rigid triangle

models to model the scene. These T = |Tsoup| rigid triangle models each have a depth

flip and depth translation ambiguity in each frame which we will resolve in this section.
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The latter can be resolved easily if the depth flips are known in each frame, as we will

see in Section 4.2.2, and thus we now concentrate first on resolving the depth flips.

4.2.1 Resolving Depth Flips

We attack this problem of selecting one of the 2FT depth flip configurations by formulating

a pairwise Markov Random field. This field assigns an energy F (y) to the vector y ∈
{0, 1}FT of binary depth flip variables. Orthographic projection relays no information

about the flip of a single triangle model in a single frame and thus there are no unary

potentials. Instead, we rely solely on pairwise potentials that encode the interactions

between the components of y. For simplicity, we define ψfτ to assign triangle τ in frame

f a unique index in the FT length flip vector y. Thus we can define yψfτ = 0 to indicate

that triangle τ has taken the arbitrary flip in frame f output by 3-SFM and yψfτ = 1

to indicate instead a flip through the x − y plane. Further, we can define the pairwise

potential Fψfτ ,ψf ′τ ′ (yψfτ , yψf ′τ ′ ) as the energy associated with its interaction with triangle

model τ ′ in frame f ′. We use these potentials to define the energy as

F (y) =
∑

(i,j)∈G

Fij(yi, yj) . (4.15)

where G ⊆ {(i, j) : i, j ∈ {1, ..., FT}; j > i} is a set of pairwise interactions between

indices in the flip vector.

Pairwise Spatial Potentials

Let τ denote a triangle with vertices i and j modelling points n and m (i.e., τi = n

and τj = m). Recall that pτfj and pτfi are the 3D positions of these vertices in camera

coordinates. We can then define a directional vector along this edge, that depends on a

flip variable b ∈ {0, 1} indicating whether this triangle has flipped or not as

dτf,i,j(b) = B(b)(pτfj − pτfi) (4.16)

where

B(b) =

1 0 0

0 1 0

0 0 (−1)b

 . (4.17)

That is, B(b) is either the identity or a reflection through the x-y plane depending on

its argument b. Let τ ′ denote another triangle with vertices i′ and j′ that also model
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points n and m (i.e., τ ′i′ = n and τ ′j′ = m). In any frame f , let k = ψfτ and k′ = ψfτ ′

denote their indices in the flip vector y. Their flips yk and yk′ should be constrained to

maximize some measure of the possible alignment of their corresponding vertices. We

therefore ensure (k, k′) ∈ G and encode a corresponding potential that measures some

function of the angle between their corresponding edges as:

Fkk′(yk, yk′) = Υs(∠(dτf,i,j(yk), d
τ ′

f,i′,j′(y
′
k);σs) (4.18)

where

Υs(θ;σs) =
θ2

θ2 + σ2
s

(4.19)

is the Geman-McClure [8] error function with parameter σs that is set to 10 degrees

unless otherwise indicated. This function is close to quadratic near zero but inflects as

it asymptotes to 1 as can be seen in Figure 4.3. This mapping is admittedly heuristic,

but reflects the intuition that correct local models will have one alignment error near 0

and thus a harsh penalty should be imposed if the other is chosen in a flip configuration.

In contrast, if one of the triangles is a false positive, this pair will not likely see a

low error (e.g. less than 20 degrees) under either flip arrangement and thus each will

be assigned similar potential values downweighting the effect of this interaction in the

resulting energy. Further note that when the edges aligning these triangle models are

roughly fronto-parallel, both alignment errors will be close to zero, leaving a potential

that provides little information to inference methods.

Figure 4.2: Two neighbouring three point rigid models that share a common edge are
shown orthographically projected onto an image plane (blue) under the two possible
depth flip assignments. Of the four possible depth flip assignments only two are shown
corresponding to the even flip interaction (left) and the odd flip interaction (right). The
other two assignments correspond to depth flipping both triangles in each of these two
cases.
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Pairwise Temporal Potentials

In the typical sequences that we consider, some degree of temporal continuity can be

assumed. We thus consider how the pose of a triangle τ ∈ Tsoup changes between two

consecutive frames. Given such a triangle, we use the ordering of the triangle vertices to

define a vector normal to the surface of the triangle in frame f under flip b ∈ {0, 1} as

nτf (b) =
dτf,1,2(b)× dτf,1,3(b)
‖dτf,1,2(b)× dτf,1,3(b)‖

(4.20)

=
(−1)bB(b)(dτf,1,2(0)× dτf,1,3(0))

‖(−1)bB(b)(dτf,1,2(0)× dτf,1,3(0))‖
(4.21)

=
(−1)bB(b)(dτf,1,2(0)× dτf,1,3(0))

‖dτf,1,2(0)× dτf,1,3(0)‖
(4.22)

In the next frame, f ′ = f + 1, we should not expect the normal nτf ′(b) to be radically

different, and thus we constrain them to be similar. This is done by ensuring that

(k, k′) ∈ G where k = ψfτ and k′ = ψf ′τ and defining the corresponding potential on this

edge as

Fkk′(yk, yk′) = Υt(∠(nτf (yk), n
τ
f ′(yk′); ct) (4.23)

where

Υt(θ; ct) = ctθ (4.24)

scales the alignment error using ct to account for the degree of trust in temporal continu-

ity. In practice, for typical sequences we will trust temporal continuity much more than

spatial coherence. Even when we have a very poorly fit triangle model, we do not expect

its pose to drastically change from frame to frame. The default value of ct = 1
50
deg−1

shown in Figure 4.3 allows spatial coherence to only dominate temporal continuity in the

energy when very good spatial alignments can be found.

Now that the MRF is well defined, we explore options for inferring a flip vector y so

that its energy F (y) is as low as possible. That said, one also needs to be realistic about

the value one expects to extract from a low energy labelling. The heuristic nature in

which the MRF is constructed means that the correlation between lower energy values

and higher quality reconstructions will almost necessarily be weak. One can, of course,

try to tweak the MRF so as to produce better labellings, but without a large quantity of

realistic ground truth data to use as a validation set we will simply overfit the sequences

that we do have. Such tweaking was, therefore, not considered and instead we have

deferred to intuition to provide some plausible pairwise potentials, while maintaining a
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Figure 4.3: Comparison of mapping from spatial and temporal alignment errors using
the default parameters mentioned in the text.

few parameters that can be set when a new dataset is encountered.

Inference Options

One thing to notice is that the MRF has some special characteristics. In addition to not

having any unary potentials, the pairwise potentials are symmetric around an even and

an odd depth flip configuration. That is, any assignment of flips to a pair of triangle

models with (i, j) ∈ G will have their pairwise potential contribute the same energy if

both models are again flipped (i.e., F (yi, yj) = F (1− yi, 1− yj)). To see why this is, let

A(b) = I[b = 0]I3×3 + I[b = 1]A3×3 where A is any symmetric orthonormal matrix, then

∠(A(a)u,A(b)v) = cos−1
(

(A(a)u)TA(b)v

‖A(a)u‖‖A(b)v‖

)
(4.25)

= cos−1
(
uTAT (a)A(b)v

‖u‖‖v‖

)
(4.26)

= I[a = b] cos−1
(

uTv

‖u‖‖v‖

)
+ I[a 6= b] cos−1

(
uTAv
‖u‖‖v‖

)
(4.27)
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Note that B(b) in (4.16) and (−1)bB(b) in (4.22) are such matrices and thus, applying this

result to the spatial potential in (4.18) and (4.23) allows us to define for any (i, j) ∈ G,

FEQ
ij = Fij(0, 0) = Fij(1, 1) (4.28)

and

FOP
ij = Fij(0, 1) = Fij(1, 0) (4.29)

and thus rewrite the energy as

F (y) =
∑

(i,j)∈G

I[yi = yj]F
EQ
ij + I[yi 6= yj]F

OP
ij . (4.30)

Note that due to this symmetry, it is easy to see that F will not generally be submodular

because (Fij(1, 1)+Fij(0, 0))−(Fij(0, 1)+Fij(1, 0)) = 2(FEQ
ij −FOP

ij ) can have an arbitrary

sign. Further, the graph can contain a frustrated cycle (a cycle of odd length where the

sign is negative) and thus an equivalent submodular MRF cannot be constructed [42].

This means that efficient methods such as graph cuts [34] cannot be employed to find

the minimum energy labelling y∗. We now, therefore, explore some strategies to perform

approximate inference. Note that, without loss of generality, we assume the graph G is

connected, as otherwise, we can simply perform inference independently in each connected

component.

Optimal Labelling on any Spanning Tree. One approach is to perform inference

in a simpler MRF and then upgrade the solution to the original MRF. If we let G ′ ⊆ G
denote some sub-set of the edges in the original MRF, then we can construct a new MRF

FG′(y) =
∑

(i,j)∈G′
Fij(yi, yj) (4.31)

that is restricted to this subgraph. If we can find a good solution to this MRF, then we

might hope that it is a good solution to the original energy. The question is then, what

kind of subgraphs can we obtain good solutions for?

Due to their widespread tractability in many problems, it was proposed in [49] to look

at trees. If G ′ is a tree within G finding a MAP labelling becomes very simple. First,

we let the root node take an arbitrary flip, and consider a recursive function that must

decide the flip of a node i given the flip of its parent node π(i). Due to symmetry, the
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optimal choice

yi = I[FEQ
π(i)i ≤ FOP

π(i)i]yπ(i) + I[FEQ
π(i)i > FOP

π(i)i](1− yπ(i)) (4.32)

that minimizes the energy contribution from the pairwise potential Fπ(i)i can always be

chosen. This means that the contributions of all pairwise potentials from edges in G ′

have been minimized and thus y minimizes FG′(y) optimally1.

This procedure admits the use of any arbitrary tree G ′ ⊆ G, but a principled approach

is to assign a weight w(e) to each edge e ∈ G and then use Kruskal’s algorithm to find a

minimum/maximum spanning tree (MST) G ′. One could assign w heuristically [49] but

a more natural way is to measure the energy that can be guaranteed to be discarded by

choosing an edge. That value is

w(i, j) = |FEQ
ij − FOP

ij | . (4.33)

Note that this approach only uses FT − 1 constraints provided by the edges of the mini-

mum spanning tree to determine the FT −1 relative depth flip variables in y. Therefore,

it is likely to provide very brittle solutions as it ignores the rest of the constraints in

the MRF. In a uniform triangle mesh, for example, there are roughly 4FT inter-triangle

interactions providing constraints, three in space and one in time for each triangle. Inter-

estingly, due to symmetry, an incorrect flip will actually cause an entire subtree to change

their flips, but another incorrect flip at a node further down will correct the problem for

its subtree. Nonetheless, the solutions are likely to be more robust if we can leverage the

excluded constraints provided by potentials defined on G − G ′.

Optimal Labelling on any Planar Sub-Graph. To this end, we take another look

at rewriting the full energy:

F (y) =
∑

(i,j)∈G

I[yi = yj]F
EQ
ij + I[yi 6= yj]F

OP
ij − FOP

ij + FOP
ij (4.34)

=
∑

(i,j)∈G

I[yi = yj](F
EQ
ij − FOP

ij ) + I[yi 6= yj](F
OP
ij − FOP

ij ) + FOP
ij (4.35)

=
∑

(i,j)∈G

FOP
ij +

∑
(i,j)∈G

I[yi = yj](F
EQ
ij − FOP

ij ) (4.36)

1Note that because of orthography, the last remaining variable corresponds to the global depth flip,
which can be set arbitrarily
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The first term is constant for any configuration y and thus performing inference in this

MRF is actually equivalent to performing it in a related Ising MRF in which the constant

term is dropped.

Fising(y) =
∑

(i,j)∈G

I[yi = yj](F
EQ
ij − FOP

ij ) (4.37)

Recent work [48], provides an optimal labelling for Fising if the underlying graph G is

planar. This is the case, for example, when we are reconstructing a single frame using

triangles modelled from a template as described in Section 4.1.2. If G is not planar, then

we could use a planar subgraph G ′ ⊆ G to construct a new MRF for which the optimal

solution can be found. In contrast to a spanning tree, a planar subgraph can contain

many more edges. Unfortunately, it is not always obvious how to find a good or optimal

one as a cheap analogue to a MST algorithm does not exist.

Optimal Labellings using QPBO. The QPBO method [42] allows one to obtain

a portion of the full optimal labelling z∗ of a binary MRF E(z) with z ∈ {0, 1}D.

Specifically, their approach defines a function z = QPBO(E) where z ∈ {0, 1, χ}D and

zi ∈ {0, 1} indicates that the optimal label for variable i has been found (i.e., zi = z∗i )

and zi = χ indicates that it could not be found. Naturally, one would hope that QPBO

would produce an optimal labelling for the flip MRF F (y) but unfortunately it generally

leaves the majority of the MRF unlabelled. Experiments [42] show that the number of

nodes labelled is tied to the unary strength of the MRF of which F (y) has none2. An

enhancement called QPBOP that tries more aggressively to label nodes has a very long

run time and still fails to label any more than a small fraction of nodes in a reasonable

amount of time.

Improving Labellings with QPBOI. All is not lost, however, if we consider methods

that use QPBO as a subroutine to improve an existing labelling. These methods generally

rely on an operation z′ = FUSE(z, zprop;E) called a fusion move that considers updating

some labels from z to those of a proposal labelling zprop [42, 35]. The resulting labelling

z′ is guaranteed to not increase the energy.

This allows the definition of another procedure z′ = QPBOI(z) that works by fixing

a (random) set of nodes S to take their labels from z, running QPBO on the remaining

nodes to obtain a partial solution zS and using z′ = FUSE(z, zS) operation to improve

the solution [42]. This operation’s runtime is not prohibitive and allows us to improve

the quality of the labellings that we get from other methods.

2Note that fixing a strong unary for one flip variable has not been observed to remedy the situation.
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Merging Solutions with Fusion Moves. Another option is to use the fusion move to

efficiently merge a diverse set of solutions into a strictly better solution [35]. For example,

we could generate a proposal solution yprop by performing inference on a randomly selected

spanning tree. We can then fuse this to our current estimate to obtain a better solution.

We will consider the following methods for acquiring proposal solutions.

• RANDOM: Select a flip vector y ∈ {0, 1}TF randomly from a binomial(TF, 0.5)

distribution.

• RANDOM MST: Weight each edge (i, j) with a random weight wij ∼ U(0, 1)

sampled from a uniform distribution. Find a maximum spanning tree G ′ using this

weighting and find the optimal labelling y restricted to this tree.

• REWEIGHTED MST: Select α ∼ U(0, 1) and use it to scale down the weights in

(4.33) for temporal edges. That is, for each edge (i, j) = (ψfτ , ψf ′τ ′) ∈ G assign a

new weight

w′(i, j) = I[f = f ′]w(i, j) + I[f 6= f ′]αw(i, j), (4.38)

and find a maximum spanning tree. Then find the optimal labelling y restricted to

this tree.

Inference Summary. The above discussion indicates that although we are generally

unable to directly solve for the minimum flip configuration y∗, there is quite an arsenal of

approaches to obtain an approximation. The exact approach is deferred to section 4.3.7

where various strategies are explored and one is selected that strikes a balance between

speed and accuracy.

Housekeeping

Now that we have inferred some low energy flip vector y ∈ {0, 1}FT , we update the global

soup of triangle models to incorporate these flips. This corresponds to, for each τ ∈ Tsoup

and every frame f , replacing the rotation Rτ
f with

I[y∗ψfτ = 0]Rτ
f + I[y∗ψfτ = 1]BRτ

fB . (4.39)

Also, as the graph G may not be fully connected we can compute a set of disjoint

resolvable segments T1, ...,TC ⊆ Tsoup such that

Tsoup = ∪Cc=1Tc . (4.40)
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Each such segment Tc can have a global depth flip applied without changing the energy.

That is, we can define y′ such that

y′ψfτ = I[τ /∈ Tc]yψfτ + I[τ ∈ Tc](1− yψfτ ), (4.41)

resulting in F (y′) = F (y).

4.2.2 Resolving Depths

After flip resolution, within each resolvable component Tc, each triangle model τ ∈ Tc
still has an ambiguous depth translation due to orthography in each frame. In a single

frame, let zτi denote the depth of vertex i. Let zτ = 1
3

∑3
i=1 z

τ
i be the mean depth of

triangle τ .

If vertex i shares a common feature point n with vertex j of another triangle τ ′ ∈ Tc
(i.e., τi = τ ′j = n), then ideally their depths would be equal to allow these vertices to

align. That is

zτi − zτ
′

j = 0 . (4.42)

We know the depth change ∆zτi = zτi − zτ , so we can rewrite this as.

(zτ + ∆zτi )− (zτ
′
+ ∆zτ

′

i ) = 0 (4.43)

zτ − zτ ′ = ∆zτ
′

i −∆zτi (4.44)

which is a linear constraint on the mean depths of the two triangles. By combining these

equations for all such vertex interactions, we form a sparse overdetermined linear system

which we solve using least squares to extract the optimal mean depth ẑτ for each triangle

model τ ∈ Tc.3 Finally, we update each triangle model by replacing the translation

vector tτf in the triangle model for that frame by tτf + (ẑτ − zτ ) [ 0 0 1 ]T .

4.2.3 Integrating Locally Rigid Triangle Models

The final step is to infer from the set of per-frame rigid 3D triangles, a per-frame position

for each point contained in a resolvable segment Tc. This set of such points is

Pc = ∪τ∈Tcτ , (4.45)

3We also add an additional constraint that the mean depth be zero (i.e.,
∑
τ∈Tc

zτ = 0) to deal with
the global depth ambiguity.
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where we are abusing the notational convenience of treating each ordered triplet τ as a

set. For each point in this set, we simply take the mean of all vertices associated with

that point in each frame. That is, for point n ∈ Pc in frame f , we write

pcfn =
1

|Vc(n)|
∑

(τ,i)∈Vc(n)

pτfτi (4.46)

where

Vc(n) = {(τ, i) : τ ∈ Tc, i ∈ {1, 2, 3}, τi = n} . (4.47)

4.3 Experiments with Ground Truth

In order to evaluate our reconstruction algorithm, Locally Rigid Motion (LRM), we utilize

sequences in which we have 3D ground truth data available. This data, takes the form

of a set of 3D trajectories

{pgtfn : f ∈ {1, ..., F}, n = {1, ..., N}} ⊆ R3 . (4.48)

As is standard practice, we generate a set of observed image trajectories by simply

projecting to the x-y plane via

w′fn = Πpgtfn (4.49)

for each n ∈ {1, ..., N} and f ∈ {1, ..., F}. Given a reconstructed component c we can use

the ground truth data to resolve the remaining global depth flip and depth translation

ambiguities. That is, in each frame f , we align the points with indices in Pc to the data

using

min
b∈{0,1},δ

∑
n∈Pc

‖B(b)pcfn + δe3 − pgtfn‖
2 . (4.50)

and updating each point pcfn with B(b)pcfn + δe3. In particular, we do this for each

resolvable component output by LRM. Note that technically speaking, LRM has only a

single global depth flip ambiguity due to the use of temporal constraints in the MRF.

This per-frame alignment is common, however, as reconstructions that are structurally

similar to depth flipped version of ground truth, should still be considered high quality.

When comparing to ground truth, we use RMS 3D error

E(c) =

√√√√ 1

F |Pc|

F∑
f=1

∑
n∈P

‖pgtfn − pcfn‖2 (4.51)
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Figure 4.4: Comparison of various methods on ground truth datasets. Results for Vicente
et al. 2012 are taken from [60], which does not provide values for CLOTH or RIP

for an aligned component c. For our method, LRM, we calculate this error for the

largest resolvable component (i.e., c = 1) of each dataset, with the exception of the

RIP sequence where we separately calculate this error for the two largest components

(i.e., c = 1 and c = 2). This is due to the fact that this sequence naturally contains

two distinct deforming bodies, that our algorithm detects. The other algorithms do not

perform such a segmentation, so we calculate the error using the single component that

they reconstruct (i.e., P1 = {1, ..., N}).

We compare to two factorization methods, Torresani et al. 2008 [52] and Paladini

et al. 2009 [38], for which code is available. For these methods, we used the code nearly

as provided4 but attempted to select an optimal number of basis shapes. We also compare

to Vicente et al. 2012 [60], for which the error defined in (4.51) is available for the WIND,

BEND and JACKY sequences. As noted in Section 2.4, this approach also implicitly assumes

some degree of local rigidity, and thus we expect similar performance. The approach

described in the next chapter, however, shares a similar energy based formulation and

thus we defer a more detailed exploration of the contrasts of [60] and our models until

Section 5.1.5. The results of this comparison are summarized in Figure 4.4 that compares

this error for LRM and these other methods. For now, we introduce the datasets that

we consider, and discuss qualitatively the reconstructions.

4Note that very minor modifications were made to allow the code to run on all of these datasets.
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Figure 4.5: 4 frames of WIND with LRM reconstruction (depth colored triangles and
blue points), ground truth points (in green), Torresani et al. 2008 (in purple) and image
points (in red).

4.3.1 WIND

The result of our algorithm on the WIND dataset is illustrated in Figure 4.5. This dataset

consists of 17 trajectories across 1000 frames. The points are located on the a piece of

paper that is deforming as it is being blown in the wind. The dataset is an excellent fit

for our method as it satisfies the local rigidity assumption and the scene is subjected to

wide viewpoint variation. The method qualitatively does an excellent job of recovering

the deformation as illustrated in Figure 4.5. It is difficult for the factorization based

methods to represent this deformation with a limited number of basis shapes, and the

optimization becomes more difficult when this set is expanded. As expected, Vicente

et al. produce a similar reconstruction error.

4.3.2 JACKY

The result of our algorithm on the JACKY dataset is illustrated in Figure 4.6. This dataset

consists of 43 trajectories across 1000 frames. As discussed in Section 3.3.3, this is a very

challenging sequence as most of the motion is around a single fronto-parallel axis. This

not only makes it difficult to fit accurate rigid triangle models, but it also makes it difficult

to evaluate rigidity. Further, there is a noticeable amount of local non-rigid deformation

as the face deforms even though globally the structure is approximately rigid. This is not

generally a problem for factorization methods that can model such local deformations

and further benefit from the fact that they are initialized from a rigid factorization. In

contrast, the local rigidity assumption of our model is repeatedly violated and the test

for these violations is rendered impotent due to the viewpoint degeneracy. One can see,

for example, that the algorithm has hallucinated rigid triangle models that fit in between

the lips, and this causes the chin to move back and forth in depth while the actor’s mouth

is opening and closing. Nonetheless, we do manage to recover a plausible reconstruction,

as the prior allows us to fit reasonable approximate triangle models. In contrast to
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Figure 4.6: 4 frames of JACKY with LRM reconstruction (depth colored triangles and
blue points), ground truth points (in green), Torresani et al. 2008 (in purple) and image
points (in red).

Figure 4.7: 4 frames of BEND with LRM reconstruction (depth colored triangles and
blue points), ground truth points (in green), Torresani et al. 2008 (in purple) and image
points (in red).

Vicente et al. , our reconstruction error is higher due to an incorrect flip assignment in

the forehead that lasts for a few frames. This is illustrated in the second image of Figure

4.6.

4.3.3 BEND

The result of our algorithm on the BEND dataset is illustrated in Figure 4.7. This dataset

consists of 34 trajectories across 471 frames. The sequence contains a piece of paper

that is initially nearly fronto-parallel and then is slowly bent. Although our local rigidity

assumptions hold well here and there is a fair degree of viewpoint variation, the main

difficulty is with flip resolution due to fronto-parallel edges. In contrast, factorization

models can model this type of motion but find their optimization becomes trapped in

bad local minima due to a rigid initialization. Indeed, the best rigid model that can fit

this data is actually an S shape, where one end of the paper bends towards the camera and

the other bends away, rotating to model the image observations. This is best illustrated

in the third image of Figure 4.7. Again, Vicente et al. produce a similar error to us as

expected.
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Figure 4.8: 4 frames of RIP with LRM reconstruction (depth colored triangles and blue
points), ground truth points (in green), Torresani et al. 2008 (in purple) and image
points (in red).

Figure 4.9: 4 frames of CLOTH with LRM reconstruction (depth colored triangles and
blue points), ground truth points (in green), Torresani et al. 2008 (in purple) and image
points (in red).

4.3.4 RIP

The result of our algorithm on the RIP dataset is illustrated in Figure 4.8. This dataset

consists of 35 trajectories across 1227 frames. This sequence contains the motion of a

piece of paper, that is slowly ripped in half in front of the camera. This is a challenging

sequence for other methods, that cannot model this topology change. In contrast, our

algorithm finds two resolvable components and does a good job reconstructing them.

4.3.5 CLOTH

The result of our algorithm on the CLOTH dataset is illustrated in Figure 4.9. This dataset

consists of 34 trajectories across 796 frames. The sequence contains the motion of a light

cloth being waved so that it deforms in the wind. Due to the lighter material, there is

more local non-rigid deformation than with the sequences using paper. This compounds

with nearly fronto-parallel edges to present a challenge to our algorithm. The complex

deformation, however, is still a challenge for factorization based methods which we beat

by a considerable margin.
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4.3.6 Sensitivity to Noise

To evaluate our algorithm’s robustness to noise, we add Gaussian noise to the projected

ground truth locations proportional to some factor α of the 2D dataset size. More

precisely, in contrast to (4.49), we now define the image observation for each point index

n ∈ {1, ..., N} and frame f ∈ {1, ..., F} as

w′fn = Πpgtfn + εfn(α), (4.52)

where εfn(α) ∼ N(0, ασ2D) and σ2D measures the scale of the 2D ground truth data

defined by

σ2D =
1

2F

F∑
f=1

(σfx + σfy) . (4.53)

where σfx and σfy are the standard deviations of the x and y components of the N noise

free image observations in frame f .

We perform 10 runs for each value of α ∈ {β/100}5β=0 and plot the mean and standard

deviation of the resulting normalized RMS 3D error E(c)/σ2D for component c. Note that

when noise is added to the image projections, the reprojection error ετ for each triangle

τ ∈ Tprop will change, and thus the rigidity cutoff ε∗ would have to be heuristically reset

for each noise level. To avoid this obstacle, and to ensure that we always reconstruct the

same points Pc for component c, we instead arrange for the soup of triangles Ti,αsoup to be

fixed for each run i and noise level α. We do this by using the set of triplets T∗soup from

a single noiseless run and force every run at all noise levels to utilize this same set of

triplets. That is, for every run i and noise level α, we replace the filtering step of LRM

by simply setting Ti,αsoup = T∗soup.

The results of this experiment are plotted in Figure 4.10. In general, the results

indicate that the algorithm, given Tsoup, can tolerate these noise levels as normalized RMS

3D errors of up to .20 have reasonable reconstructions (e.g. the noiseless reconstruction of

JACKY in Figure 4.6). It is also interesting that some sequences, such as BEND, have very

large error bars due to a bimodal distribution over the reconstruction error. This points

to a drastic change in the reconstruction, caused by different flip vectors being inferred,

which causes the algorithm to, on occasion, be quite sensitive to its input. Although

this could be the flip optimization getting stuck in local minima, the fact that things

improve occasionally with more noise (e.g. on the BEND sequence), suggests that the same

local minimum is just moving slightly. That is, the constraints that the triangle models

provide, dictate a low energy local minimum consistent with a poor reconstruction. This

points to a fundamental limit in how well the flip energy can serve as a proxy metric for
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reconstruction error. One might consider more complicated energy functions, as is done

in the next chapter, but this will also open up new optimization challenges.

4.3.7 Evaluation of Flip Assignment Strategies

Here we compare the performance and runtime of a few different strategies for finding a

flip assignment y with low energy F (y). We will use the flip assignment inferred using

the greedy algorithm as a baseline [49] and consider improving these solutions either

using the principled QPBOI method or using a variety of fusion moves. Specifically, we

consider the following strategies:

• GREEDY: This is simply the greedy algorithm from section 4.2.1.

• QPBOI: Improve the labelling y0 provided by the greedy algorithm using yk+1 =

QPBOI(yk) until the energy F (y) does not change for 1 iteration.

• RANDOM: Improve the labelling y0 provided by the greedy algorithm using yk+1 =

FUSE(yk, yprop) until the energy does not change for 20 iterations. Here yprop is

selected using the RANDOM strategy as defined in section 4.2.1.

• RANDOM MST: Improve the labelling y0 provided by the greedy algorithm using

yk+1 = FUSE(yk, yprop) until the energy does not change for 20 iterations. Here

yprop is selected using the RANDOM MST strategy as defined in section 4.2.1.

• REWEIGHTED: Improve the labelling y0 provided by the greedy algorithm using

yk+1 = FUSE(yk, yprop) until the energy does not change for 20 iterations. Here

yprop is selected using the REWEIGHTED strategy as defined in section 4.2.1.

• CHOICE: Improve the labelling y0 provided by the greedy algorithm using yk+1 =

FUSE(yk, yprop) until the energy does not change for 20 iterations. Here yprop

is chosen to be constructed with either the RANDOM MST or REWEIGHTED

strategy with equal probability.

In Figure 4.11, we have plotted the energy yielded by a strategy against its runtime.

We ran each strategy (except GREEDY since it initializes the others) once on each dataset

up to a maximum of five minutes. The QPBOI strategy almost always converges to a

slightly lower energy than the fusion strategies. Unfortunately, its runtime performance

is difficult to justify in the larger sequences, such as SCARF and TWO CLOTHS, and would

generally affect the scalability of our algorithm.
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Figure 4.10: Effect of Gaussian noise in the observed image trajectories, on normalized
3D error. The setting α roughly corresponds to the fraction of noise added, relative to
the scale of the dataset.
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Figure 4.11: Evaluation of different flip improvement strategy. Although QPBOI is
somewhat more principled, using a variety of fusion moves tends to be more efficient.
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Figure 4.12: 3 frames of SCARF with LRM reconstruction (depth colored triangles and
blue points) and image points (in red).

Knowing that our MRF formulation is likely not optimal for most problems anyways,

we don’t concern ourselves with obtaining the absolute lowest possible energy. We there-

fore use the CHOICE strategy, but cut off after only 5 iterations that have not made

progress, which tends to converge very quickly, even for extremely large problems.

4.4 Qualitative Results on Real Sequences

It is also important to evaluate our algorithm using trajectories that we can obtain for

real image sequences. We describe five such sequences and their reconstructions below.

For the PAPER, SCARF and TWO CLOTHS sequences we use image trajectories sampled from

an estimate of dense 2D motion [50]. For the sequences HEAD and TEAR, we use trajectories

obtained from tracking feature points [29].

4.4.1 SCARF

The result of our algorithm on the SCARF dataset is illustrated in Figure 4.12. This dataset

consists of 567 trajectories across 101 frames. In this sequence, a scarf is being waved

rapidly in front of a high speed camera. We appear to do quite well, as the trajectories

are quite accurate in representing plausible locally rigid motion of the cloth. Even though

there are long lines of fronto-parallel edges, our strategy of randomly selecting trajectories

to triangulate (see Section 4.1.1 and Figure 4.1) allow triangles to span these edges and

provide strong constraints to the flip MRF.
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Figure 4.13: 3 frames of HEAD with LRM reconstruction (depth colored triangles and
blue points) and image points (in red).

Figure 4.14: 3 frames of TWOCLOTHS with LRM reconstruction (depth colored triangles
and blue points) and image points (in red).

4.4.2 HEAD

The result of our algorithm on the HEAD dataset is illustrated in Figure 4.13. This

dataset consists of 160 trajectories across 61 frames. This is a sequence, from [64], of a

person rotating their torso and their head back and forth. The head and torso are both

nearly rigid, so ideally our method would segment the two. Unfortunately, many of the

trajectories slide along image edges, including nearly all of the trajectories on the head.

We thus only display the torso, which LRM provides a very plausible reconstruction for.

There are, however, some creases in his chest due to incorrect flips which will become

more apparent when we compare to the reconstruction provided by our approach in the

next chapter.

4.4.3 TWO CLOTHS

The result of our algorithm on the TWO CLOTHS dataset is illustrated in Figure 4.14. This

dataset consists of 525 trajectories across 163 frames. This sequence is very similar to

SCARF, except now there are two cloths deforming side by side. Our algorithm is able to

successfully separate and reconstruct each piece but there are some long triangles hanging

off the reconstruction.
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Figure 4.15: 3 frames of TEAR with LRM reconstruction (depth colored triangles and
blue points) and image points (in red).

Figure 4.16: 4 frames of PAPER with LRM reconstruction (depth colored triangles and
blue points) and image points (in red).

4.4.4 TEAR

The result of our algorithm on the TEAR dataset is illustrated in Figure 4.15. This dataset

consists of 159 trajectories across 167 frames. This is an extremely challenging sequence

of a piece of paper being ripped in half. Although, topologically similar to the RIP

ground truth sequence, it was extremely difficult to track image features due to motion

blur, sparse texture and different depths being out of focus. Nonetheless, we do appear to

resolve two separate components and qualitatively, there is evidence of a ripping motion

occurring in our reconstruction.

4.4.5 PAPER

The result of our algorithm on the PAPER dataset is illustrated in Figure 4.16. This

dataset consists of 340 trajectories across 70 frames.

The PAPER sequence shows a piece of paper being bent from its original planar config-

uration into a U shape. Orthographically, such a motion has an equally valid S-shaped

interpretation that is often recovered. Also, the rotation is almost entirely around the y-

axis, leaving the motion quite degenerate and the rigid triangle models underconstrained.

A further difficulty is the large perspective effects present, causing the middle of the pa-

per to bulge in the image when it is bent (see Figure 1.1). This, further, challenges our

test for rigidity as a triangle modelling a triplet of points on the middle of the paper

cannot lie fronto-parallel in the initial frames, and expand to model the bulging in the

later frames. Such triangles then generate a higher than expected reprojection error and
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Figure 4.17: 4 frames of PAPER with LRM (from a planar template) reconstruction
(depth colored triangles and blue points) and image points (in red).

we therefore choose to weaken our rigidity test by setting the cutoff as η = 2.5. Using

this, we appear to do well, although these perspective effects prevent the initial frames

of the reconstruction from being planar as they should.

This sequence is also unique, in that we can clearly identify the planar structure in the

first frame. We can therefore also reconstruct it using a soup of triangles extracted from

a template (see Section 4.1.2). The noticeably higher quality reconstruction, illustrated

in Figure 4.17, is due to the fact we are given the local structure, and we only need to

estimate its motion.

4.5 Conclusion

In this chapter, we have provided a solution to the Non-Rigid Structure from Motion

problem composed of both a piecewise local model of global scene deformation and an

algorithm to fit this model. This piecewise local model is composed of a set of loosely

connected rigid triangle models whose averaged vertices explain the non-rigid motion in

a scene. Our algorithm LRM for fitting this model to a set of image trajectories, involves

breaking up the problem into a series of tractable sub-problems, each of which can be

solved individually in a bottom-up fashion. This method begins by identifying triplets of

trajectories that can be modeled as the projected vertices of a rigid triangle model. By

resolving each triangle’s depth flip and translation ambiguities, we obtain our piecewise

model.

Using ground truth sequences, we have shown that LRM is generally competitive with

other state of the art algorithms and considerably outperforms standard factorization

based approaches when our assumptions strongly hold. Further, our algorithm appears

to be robust to noise, although this property does not always hold due to the brittleness

of the discrete depth flip optimization step. On image trajectories obtained from real

sequences, we achieve plausible reconstructions despite non-Gaussian noise, non-uniform

trajectory coverage and degenerate motions all presenting challenges to our algorithm.



Chapter 5

Globally Optimized

Locally Rigid Motion

This chapter describes our global point cloud based model for non-rigid scene structure,

regularized by a set of pairwise isometric constraints. An isometric constraint (n,m) ∈
{0, ..., N}2 requires scene points with indices n and m to remain at a fixed distance

across all views. A set of such constraints L ⊆ {1, ..., N}2 is the key to regularizing

the otherwise ill-posed problem of inferring the 3D scene point’s locations, given their

observed 2D trajectories, but naturally their strict imposition will quickly lock the entire

scene into rigidity. Indeed, rigid models such as those fit by 3-SFM or rigid factorization

could be described equivalently by a set of such strict isometric constraints between all

pairs of points. In order to allow the flexibility to model non-rigid scenes, it is then

necessary that these constraints are not strictly enforced. The local rigidity framework

from the previous chapter achieves this by not requiring two triangle models τ and τ ′

that model some feature point n through vertices i and j to have their positions coincide

(i.e., the constraint pτfi = pτ
′

fj for every frame f is not enforced). In order for the final

“reconstruction” stage to impose this restriction and produce a single prediction for

each point, these corresponding vertex locations are averaged, necessarily violating the

isometric constraints within each triangle model.

In contrast, the model that will be presented here only ever allows for a single re-

constructed scene point to correspond to each feature point, and thus cannot directly

enforce these isometric constraints. Instead, the isometric constraint violations are sim-

ply discouraged through the use of an additional term in an energy based formulation.

Such an energy based formulation presents three main questions that this chapter

attempts to address.

71
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1. How can one select the set of isometric constraints L ⊆ {1, ..., N}2 that the energy

function requires?

2. The resulting energy will generally be non-convex and littered with local-minima,

so how can one effectively optimize this energy?

3. What sort of penalties should be imposed in the energy when the isometric con-

straints are violated?

To address the first two questions, we appeal again to the notion of local rigidity presented

in the previous chapter. As a valid rigid triangle model implicitly constrains three pairs

of points to be isometric, we can use the same strategy of probing the scene locally

using 3-SFM to identify isometric constraints. In practice, we can simply run the LRM

algorithm provided in the previous chapter. This provides us with the set of constraints,

but also provides a complete approximate reconstruction.

This reconstruction, can then used as an initial guess to fast local search methods that

refine the reconstruction through a bundle adjustment like minimization of the energy

function. Under harsh penalties (e.g. squared error) one might expect this to refine and

polish the initial reconstruction, but with more robust penalties, it also has the potential

to allow subsets of these constraints to be overridden to create a better global consensus.

As this energy based formulation is a very natural (albeit challenging) way to approach

things, it is not surprising that a similar but independent formulation was proposed in

[60].1 That work is briefly described in Section 2.4, but a more detailed comparison is

provided in Section 5.1.5 in a notation consistent with this thesis, in order to elucidate

contrasts with the work presented here. Interestingly, they provide a very different and

complimentary set of answers to the above three questions.

5.1 Formulation

The energy function that will be formulated here will assign an energy value E(θ;L) to

a vector θ ∈ Rd that we will use to parameterize our model. We include in this vector,

the concatenation of the 3FN components contained in the N points deforming in front

of each camera, and thus write pfn(θ) ∈ R3 to indicate this dependence. Residuals errors

from the observed image point w′fn can then be penalized directly in the energy through

1Note that [60] was published after the author of this thesis presented a version of this energy based
formulation in his depth examination in April 2012.



Chapter 5. Globally Optimized Locally Rigid Motion 73

a data term. This term is

Edata(θ) =
F∑
f=1

N∑
n=1

‖Πpfn(θ)− w′fn‖2 . (5.1)

Note that, for notational simplicity, the dependence of energy terms like Edata(θ) on the

observed data points themselves is left implicit.

Naturally, the energy Edata(θ) leaves the parameter vector highly ambiguous, as each

point can move arbitrarily in depth without changing the resultant energy value. This

untethered movement, however, can be discouraged by an isometric constraint (i, j) ∈ L,

that indicates that points i and j should remain at a constant distance to each other.

We do not necessarily know this distance beforehand, and thus we also include it in the

parameter vector, denoting its value as Lij(θ) ∈ R+ to indicate this dependency. We can

then formulate an additional energy term that encourages ‖pfi(θ)− pfj(θ)‖ to be equal

to Lij(θ) for all frames as

Eiso(θ;L) =
F∑
f=1

∑
(i,j)∈L

ρiso(‖pfi(θ)− pfj(θ)‖ − Lij(θ)) (5.2)

where ρiso is some appropriate error function. We will discuss the choice of this function

in Section 5.1.1.

Of course we may have other prior knowledge about these constraints or the scene, so

it is natural to consider encoding additional priors as terms in the energy. For example,

we know that the image trajectories that we consider, arising from image or motion

capture sequences, are discrete samples of temporally continuous scene deformation. It

is natural, therefore, to encourage our model of scene deformation to plausibly represent

such a sampling by penalizing large structural deviations from frame to frame. This

preference is encoded as another energy term

Etemp(θ) =
F−1∑
f=1

N∑
n=1

‖p(f+1)n(θ)− pfn(θ)‖2 . (5.3)

Further, it was demonstrated in previous chapters, that the strict isometric constraints

in triangle models are often not enough to constrain the model when the viewpoints

are degenerate. In this model, we have actually softened these isometric constraints in

(5.2). On the other hand, these degeneracies are likely to be somewhat ameliorated as

each point can be constrained by a larger set of image observations, coming from its
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Figure 5.1: The three different error functions considered for penalizing isometric con-
straints.

isometrically constrained neighbours. For cases when this is not enough, however, we

simply add a prior term, similar to that in 3-SFM, that penalizes squared edge lengths,

as

Eprior(θ;L) =
∑

(i,j)∈L

Lij(θ)
2 . (5.4)

Combining the energies (5.1), (5.2), (5.3) and (5.4) with scalars λdata, λiso, λtemp and

λprior yields our full energy

E(θ;L) = Edata(θ) + λisoEiso(θ;L) + λtempEtemp(θ) + λpriorEprior(θ;L) . (5.5)

5.1.1 Choice of Isometric Error Function

The choice of the error function ρiso used to penalize deviations from our set of isometric

constraints is particularly interesting. This is because there is often not a reliable way to

obtain the set of isometric constraints L, and thus we might actually expect a good deal

of them to be wrong. We therefore consider three different penalties of varying degrees

of robustness as illustrated by Figure 5.1. The first is a harsh standard squared error

measure

ρsq(e) = e2. (5.6)
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The second is a smoothed L1-like measure called the Huber Loss Function [25]

ρhub(e; δ) =

 e2

2
|e| < δ

δ(|e| − δ
2
) |e| ≥ δ

. (5.7)

This error is as robust and attentive to large errors as a standard L1 error, but in contrast,

its continuous first derivative causes less trouble for standard gradient based methods.

Lastly, we consider a very robust measure called the Geman and McClure Function[8]

ρgm(e;σ) =
e2

e2 + σ2
. (5.8)

This function is quadratic near zero, but quickly approaches unity for absolute values over

(roughly) 2σ, allowing it to largely ignore errors of such magnitude (i.e., its derivative

will be nearly zero).

When we are confident about the constraints, we might indeed want to use ρsq to

harshly penalize isometric deviations. If, on the other hand, we do not believe all of

these constraints to be correct, we could use a more robust function. For example, using

ρgm might allow E(θ;L) to completely ignore faulty isometric constraints when it is

minimized. Even though robust error functions generally add more local minima to a

function, such a function may also change the energy landscape in ways that allow other,

stronger terms to provide paths that descend to better local minima.

5.1.2 Optimization

The approach to optimization taken here is to use local gradient based methods, and thus

some care was taken to ensure that the function E(θ;L) is differentiable. This is some-

what similar to a standard bundle adjustment [55] except that without a rigid scene, there

are many more parameters, of which many are tied through the isometric constraints.

We thus utilize L-BFGS that maintains approximate second order information instead of

requiring the entire Hessian (or its inverse).

5.1.3 Initialization of θ and L

The final ingredient in order for E(θ;L) to be well defined, is to determine which isometric

constraints should be contained in L. Also, in order for our bundle adjustment-like

optimization to find a good local minimum, we will require a reasonable initialization of

θ.



Chapter 5. Globally Optimized Locally Rigid Motion 76

For this we appeal to the notion of local-rigidity, once again, to find and test isomet-

ric constraints. In practice, we simply run the local rigidity procedure detailed in the

previous chapter. We will then optimize each resolvable component Tc ⊆ Tsoup individ-

ually. To simplify notation, we thus assume that we are working with a single resolvable

component, which spans the entire point set (i.e., Pc = {1, ..., N}).
We then use each side of each rigid triangle in this component to define the set of

isometric constraints as

L = {(τi, τi mod 3+1) : i ∈ {1, 2, 3}, τ ∈ Tc} . (5.9)

For any such link (i, j) ∈ L, we also initialize the appropriate component of the parameter

vector θ to ensure that Lij(θ) is the median of the set of framewise distances

{‖pcfi − pcfj‖ : f ∈ {1, ..., F}} . (5.10)

Lastly, we set the remaining components of θ so that our model aligns with the re-

constructed component. That is, for every point index n and frame f we ensure that

pfn(θ) = pcfn.

5.1.4 Parameter Choices

The most interesting aspect of the parameter space, is the choice of the isometric error

function as this fundamentally reshapes the energy landscape. Without access to training

data, we therefore choose to fix the other parameters using intuitive values as detailed

in Table 5.1. As with our triangle models, we only want our prior terms to take affect

when the data or isometric terms fail to provide constraints. We therefore set the data

terms and isometric terms to be equal to unity, and the temporal and prior term to

be correspondingly very weak. We refer to optimizing the energy detailed above using

the initialization and local optimization procedure explained as Locally Rigid Motion

with Bundle Adjustment (LRMBA), and specifically LRMBA-SQ, LRMBA-HUB and

LRMBA-GM to indicate whether ρiso is set to ρsq, ρhub or ρgm.

5.1.5 Relation to Vicente et al. 2012

An alternative approach to this bundle adjustment like method is proposed in [60]. In

their method, a similar energy E(θ;L) is formulated and the set L is set using pairs

of points with consistently near image observations. The optimization procedure, tries

to improve the current solution θk at iteration k, using a new proposal solution θ′k.
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Parameter Value
λdata 1
λiso 1
λtemp 0.01
λprior 0.01
σ 1.0
δ 1.0

Table 5.1: The fixed parameters of our energy. We set both the data term and isometric
term to be equal to unity and allow the choice of isometric penalty (see Section 5.1.1)
dictate how these interplay. We considerably downweight the two priors so that they
only take affect when the other terms leave the local parameter space underconstrained.

This proposal is then fused together into a new solution θk+1 in such a way [35] that

E(θk+1;L) ≤ E(θk;L) and E(θk+1;L) ≤ E(θ′k;L). This has the distinct advantage, over

bundle adjustment, of being able to jump out of local minima if a proposal allows it, but

each iteration is expensive and requires a thoughtful proposal to be chosen. Also, it is

not guaranteed that these methods will jump out of local minima and thus the faster

convergence generally exhibited by continuous second order methods may be preferred.

We will now briefly provide a simplified description of their general method, using the

notation of this thesis, in order to draw comparisons to our approach.

Isometric Constraint Set. In this work, they also require a set of pairwise isometric

constraints between points. To decide which pairs of the N points to constrain, they

define a distance metric between two point indices n and m to be the maximum over all

their projected distances in all frames

d(n,m) = max
f
‖w′fn − w′fm‖ . (5.11)

For each point index n, they define Kn ⊆ {1, ..., N} to include the k-nearest neighbours

(excluding n) under this metric. They then define a set of isometric constraints between

these neighbours, up to a maximum distance t as

L ⊆ {(n,m) : n ∈ {1, ..., N}, n ∈ Kn, n < m, d(n,m) ≤ t} . (5.12)

where the parameters are generally set to k = 10 and t = 150. As with our method the

assumption that nearby points are more likely to be nearly rigid is being leveraged. In

contrast, however, our method is often able to test, using 3-SFM, to see if the constraints

are valid.
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Model Paramaterization. They also parameterize their model using a vector θ which

is composed in the following way. For the n’th point, they dedicate a component of θ

to its depth in each frame f , and thus one can write zfn(θ) to indicate this dependence.

They do not, however, parameterize the x and y components of the point, and instead

constrain that point to lie on the back projected ray through w′fn =

[
x′fn
y′fn

]
. They can

thus write

pfn(θ) =

 x′fn
y′fn
zfn(θ)

 . (5.13)

For each constraint (n,m) ∈ L they also use a component of θ to parameterize the

current estimate of the true distance between n and m by Lnm(θ). In contrast to our

model that implicitly assumes a Gaussian noise model allowing the image projections to

deviate from the observations, this model requires isometric constraints to be satisfied

purely by movements in and out of depth. Our model has the disadvantage of having to

keep track of these extra 2FN parameters.

Energy Formulation. Given this parameterization, they formulate the following en-

ergy function over the FN + |L| parameters that they would like to minimize:

E(θ;L) =
F∑
f=1

∑
(i,j)∈L

|‖pfi(θ)− pfj(θ)‖ − Lij(θ)| (5.14)

They, also, admit the possibility of adding additional terms to the energy in order to

encode temporal smoothness, similar to (5.3), or spatial smoothness.

Optimization. They choose to view the energy (5.14) as that of a Markov Random

Field in which each term represents a potential over a clique of three variables. In order

to optimize this energy, they choose to use a discrete optimization strategy in which, at

each step, a proposal solution θ′ is “fused” [35] to the current solution θk in such a way

such that the resulting solution θk+1 = FUSE(θk, θ
′) does not increase the energy (i.e.,

that E(θk+1;L) ≤ E(θk;L) and E(θk+1;L) ≤ E(θ′;L) ). The advantages of this regime

are that proposal solutions can be made heuristically and that the fusion move has the

ability to incorporate only part of the proposal in order to lower the value of the true

energy.

This fusion move, however, does not apply directly to energies with potentials over

cliques of size greater than two. It is therefore, necessary, to apply a transformation to
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Figure 5.2: Comparison of our bundle adjustment methods (LRMBA) to our piecewise
(LRM) method

the MRF by introducing extra variables [26]. The number of variables introduced by

this reduction is, however, exponential in the clique size. Furthermore, it was hinted

in [28] that proposal generation is further complicated with larger cliques by having “a

richer class of null potentials”. This makes fully parameterizing pfn(θ) to contain all

three components more difficult, as a naive approach could potentially introduce cliques

of size 3 + 3 + 1 = 7.

They initialize their optimization from a θ0 in which Lmn(θ0) = maxf ‖w′fn−w′fm‖ and

zfn(θ0) = 0. They perform 50 fusion moves using proposals from a greedy region growing

method in which the depths for a growing subset S of point indices are initially fixed.

For each new point index n (in the order of distance to this set) optimal depths from a

discrete set of possibilities are selected to minimize the summands in (5.14) involving n

and any m ∈ S. After this, n is added to S. Finally, the distances Lnm(θ′) for all points

are then selected to be the median over all observed distances.

They perform the above procedure 8 times, and take the solution with minimum

energy. From that solution, they then perform 100 fusion moves using proposals generated

[27] using the gradient via

θ′ = θ + λ
∂E(θ;L)

∂θ
(5.15)

where λ is a fixed step size.
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5.2 Experiments with Ground Truth

In this section we use the ground truth sequences to contrast the performance of LRM,

from the previous chapter, to the three algorithms that we consider here LRMBA-SQ,

LRMBA-HUB and LRMBA-GM. The main results are summarized in Figure 5.2, where

it can be seen that generally, these global bundle adjustment methods provide a modest

improvement improvement over LRM.

The glaring exception to this trend is the JACKY sequence, where the LRMBA-GM

sequence does substantially better. Looking at the reconstruction (see Figure 5.5), we

can see that the robust penalty is allowing the false isometric constraints on the mouth

to be violated. This allows the mouth to open and close much more realistically as can be

seen in the the final row of Figure 5.5. In contrast, the LRMBA-SQ and LRMBA-HUB

methods do worse than LRM, as LRM can allow truly rigid triangles to “out-vote” these

false constraints, whereas in LRMBA the rest of the structure is actually “optimized”

so as to allow these false constraints to hold. The ability to choose different penalty

functions (such as ρgm) is thus a key feature of LRMBA, in allowing the underlying model

to be easily adapted to scenarios where our fundamental local rigidity assumptions do

not strictly hold. Further, it is compelling that, even in such cases, LRM can be used to

bootstrap the optimization so as to successfully fit the LRMBA model.

We now refocus our discussion on the dominant trend of LRMBA variants yielding

modest improvements in accuracy on the remaining sequences. This result is consistent

with our expectation that, when our local rigidity assumptions hold, the bundle adjust-

ment will not lead to drastic changes in the structure and corresponding reconstruction

error. Instead, the procedure may be able to average over observational noise leading to

these modest improvements in performance.

Given that LRMBA generally only finds a local minimum of our energy, it is natural

to wonder how good this minimum actually is. To investigate this, we also try initializing

our model using ground truth, instead of from the result of LRM. For this, we set the

parameters of our model θ as before (see Section 5.1.3) but using the ground truth points

instead of our LRM reconstructed points. We then plot (see Figures 5.3 and 5.4), for both

initializations, the RMS 3D error against the number of iterations to get an idea of the

trajectory being taken by the optimizer. The LRMBA variants initialized from ground

truth quickly diverge from zero error, as any local non-rigidity in the initialization will

initially be violating the isometric constraints. The final result, however, is often very

close to the LRM initialized result, leading us to believe that the local minimum that

LRMBA finds is often close to the global minima.
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On the other hand, it is clearly possible for the LRM initialization to present prob-

lems that are impossible for the local optimizer to overcome. This is most evident for

the JACKY and CLOTH sequences, where there is a clear difference between the resulting

RMS 3D error, when the optimization was initialized from ground truth. These diver-

gences are often the result of a small number of incorrect flips causing gross errors in

the LRM initialization, as opposed to a large number of minor errors, which the global

optimization might be able to correct. One can see that this occurs in the forehead of

the reconstructions of JACKY in the second column of Figure 5.5, the top of the recon-

structions of CLOTH in the first column of Figure 5.9 and in the second component of the

reconstructions of RIP in the third column of Figure 5.8.

5.2.1 Sensitivity to Noise

In order to evaluate the different LRMBA variants’ robustness to noise, we repeat the

experiment of Section 4.3.6 exactly but including these variants. The results of this

experiment are plotted in Figure 5.11. Here we can see that when the local rigidity

assumption holds strongly, in all sequences except JACKY, the bundle adjustment algo-

rithms generally do a bit better as they are better able to average over the noisy image

observations. In particular, LRMBA-SQ generally outperforms the other error methods

as it more strongly regularizes the structure against the effects of noise.

The exception, again is the JACKY sequence where relatively low amounts of imaging

noise leads to catastrophic failures in the LRMBA-SQ and LRMBA-HUB reconstructions.

The added image noise puts the optimizer under intense pressure to model these errors

in order to reduce the energy. Unfortunately, there is not enough viewpoint variation (as

described in Section 3.3.3), to allow the soft isometric constraints to regularize against

this. The optimizer finds that by extending the structure in depth (see Figure 5.10), it

can approximately satisfy these constraints while lowering reprojection error. In the case

of LRMBA-GM, it appears as if the robust error function has declared enough isometric

constraints as outliers, that the other energy terms, mainly reprojection, can be easily

satisfied, ending the optimization.

5.3 Qualitative Results on Real Sequences

We again run our algorithms on the image trajectories in the real datasets from Section

4.4 to see if there is a large difference from the LRM reconstructions. For the most part,

there is not much difference which coincides with our intuition that LRM provides a good
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Figure 5.3: For a variety of ground truth datasets, the normalized RMS 3D error (left)
and the corresponding energy (right) plotted during optimization of E(θ;L). The dashed
lines indicate that the optimization started from ground truth. Note that the error
measure is comparable across different datasets even though the limits on each axis is
different. Energies are only comparable when the same energy function is used but with
different initializations (i.e., The solid and dashed lines within a single plot)
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Figure 5.4: For a variety of ground truth datasets, the normalized RMS 3D error (left)
and the corresponding energy (right) plotted during optimization of E(θ;L). The dashed
lines indicate that the optimization started from ground truth. Note that the error
measure is comparable across different datasets even though the limits on each axis is
different. Energies are only comparable when the same energy function is used but with
different initializations (i.e., The solid and dashed lines within a single plot)
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LRMBA-SQ

LRMBA-SQ (Initialized from Ground Truth)

LRMBA-HUB

LRMBA-HUB (Initialized from Ground Truth)

LRMBA-GM

LRMBA-GM (Initialized from Ground Truth)

Figure 5.5: 4 frames of JACKY with LRMBA reconstructions (depth colored triangles
and blue points), ground truth points (in green) and image points (in red).
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LRMBA-SQ

LRMBA-SQ (Initialized from Ground Truth)

LRMBA-HUB

LRMBA-HUB (Initialized from Ground Truth)

LRMBA-GM

LRMBA-GM (Initialized from Ground Truth)

Figure 5.6: 4 frames of WIND with LRMBA reconstructions (depth colored triangles and
blue points), ground truth points (in green) and image points (in red).
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LRMBA-SQ

LRMBA-SQ (Initialized from Ground Truth)

LRMBA-HUB

LRMBA-HUB (Initialized from Ground Truth)

LRMBA-GM

LRMBA-GM (Initialized from Ground Truth)

Figure 5.7: 4 frames of BEND with LRMBA reconstructions (depth colored triangles and
blue points), ground truth points (in green) and image points (in red).
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LRMBA-SQ

LRMBA-SQ (Initialized from Ground Truth)

LRMBA-HUB

LRMBA-HUB (Initialized from Ground Truth)

LRMBA-GM

LRMBA-GM (Initialized from Ground Truth)

Figure 5.8: 4 frames of RIP with LRMBA reconstructions (depth colored triangles and
blue points), ground truth points (in green) and image points (in red).
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LRMBA-SQ

LRMBA-SQ (Initialized from Ground Truth)

LRMBA-HUB

LRMBA-HUB (Initialized from Ground Truth)

LRMBA-GM

LRMBA-GM (Initialized from Ground Truth)

Figure 5.9: 4 frames of CLOTH with LRMBA reconstructions (depth colored triangles
and blue points), ground truth points (in green) and image points (in red).
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Figure 5.10: Head on and Side View of the LRMBA-SQ reconstruction (depth colored
triangles and blue points) of JACKY with substantial Gaussian noise added to the image
observations (red points). The ground truth points are in green. The lack of viewpoint
variation, allows the optimizer to chase reprojection error (caused by the added noise)
without substantially violating the isometric constraints by extending the structure into
depth.

solution to begin with.

The most significant change is in the HEAD sequence (see Figure 5.13), where the

bundle adjustment methods employing a robust isometric penalty have managed to cor-

rect the crease in the actor’s upper left arm and chest. In the SCARF sequence (see

Figure 5.12), although the overall shape that the LRM reconstruction is correct, there

were also many creases. In the corresponding bundle adjusted reconstructions, these

creases have been corrected resulting in a much smoother surface and resulting motion.

In the PAPER sequence (see Figure 5.16), the LRM reconstruction struggled to resolve the

fronto-parallel edges in the center of the paper, as evident by the dent there in the later

frames. The bundle adjustment has managed to pop this dent outwards to give smoother

and more realistic reconstructions. The perspective effects also become more pronounced

in the earlier frames of the LRMBA reconstructions, as LRM’s averaging of its (noisy)

vertices actually gives the illusion that it realized that these frames were nearly planar.

In contrast, the bulging LRMBA reconstructions of PAPER actually displays more opti-

mal results (i.e., lower energies) under the invalid orthographic assumptions. In the TWO

CLOTHS (Figure 5.14) and TEAR (Figure 5.15) sequences, there are a few slight correc-

tions made by bundle adjustment. Again, this is in some ways confirmation that LRM

is doing quite well. Naturally, the optimization could be just stuck in a local minima

but the ground truth results seem to indicate that this local minima is often quite good.

It would, on the other hand, be much more concerning if the reconstructions got worse

when further optimized with bundle adjustment.
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Figure 5.11: Effect of Gaussian noise in the observed image trajectories, on normalized
3D error. The setting roughly corresponds to the fraction of noise added, relative to the
scale of the dataset.
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LRM

LRMBA-SQ

LRMBA-HUB

LRMBA-GM

Figure 5.12: 3 frames of SCARF with LRMBA reconstructions (depth colored triangles and
blue points) and image points (in red). The LRMBA reconstructions extend much further
in depth, as a result of the many creases in the LRM reconstruction being smoothed.
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LRMBA-HUB

LRMBA-GM

Figure 5.13: 3 frames of HEAD with LRMBA reconstructions (depth colored triangles
and blue points) and image points (in red). The bundle adjustments have managed to
correct the creases in the reconstruction of his upper left arm.
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Figure 5.14: 3 frames of TWOCLOTHS with LRMBA reconstructions (depth colored trian-
gles and blue points) and image points (in red).
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Figure 5.15: 3 frames of TEAR with LRMBA reconstructions (depth colored triangles
and blue points) and image points (in red).
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Figure 5.16: 4 frames of PAPER with LRMBA reconstructions (depth colored triangles
and blue points) and image points (in red).

5.4 Conclusion

In this chapter we have formulated a global point cloud model regularized by a set

of pairwise isometric constraints. We have also demonstrated four important things

concerning this model and its relationship with LRM from Chapter 4:

1. This is a good model for the diverse set of sequences that we have considered

here. This is most strongly evident by the reconstructions we obtain when we

initialize LRMBA from ground truth (see left of Figures 5.3 and 5.4). Further

qualitative evidence includes the reconstructions obtained on both ground truth

and real sequences when the optimization is initialized using LRM.

2. LRM itself is actually extremely effective at initializing this model. This is evident

by how close the local minima that LRMBA finds are to the local minima found

when LRMBA is initialized from ground truth (see left of Figures 5.3 and 5.4).

3. In cases when LRM has accurately identified enough isometric constraints, this

bundle adjustment can provide a modest increase in performance and robustness

by allowing errors in the image observations to be averaged (see Figure 5.11).
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4. Even when a scene requires the additional modelling capacity provided by robust

error functions to represent a degree of local non-rigidity, LRM can provide an

initialization of high enough quality to allow the LRMBA model to be fit. This is

evident by the ability of the GM error function, to introduce non-rigidity into the

JACKY sequence (see Figure 5.5).

A final point to make about this model, is that it is perhaps a much more natural

place to start than the LRM model of Chapter 4. It is quite plausible to think of

encoding isometric constraints into an energy function as has been done here, without

even considering local rigidity leveraged through a piecewise structure made up of rigid

triangle models. Indeed, this is what was done in [60], who provide another alternative

to attacking this hard optimization problem. It would of course be interesting for future

work to consider hybrid approaches or other more global optimizers.



Chapter 6

Conclusion

In this thesis, we have shown how a particular assumption, local rigidity, can be leveraged

to attack the NRSFM problem. This assumption, that complex global deformations can

be approximated locally by rigid motion, appears consistent with human intuition in

many situations. For example, in our opening example (see Figure 1.1), we argued that

the global bending of the paper could be modelled locally, around any point, by the

rigid motion of its tangent plane. As this thesis has demonstrated through the last two

chapters, the local rigidity assumption is not only applicable in such situations where

human intuition suggests, but also over a diverse set of sequences. Further, we have

demonstrated how this assumption can be formalized into two global models. One is a

piecewise model of loosely connected rigid triangles and the other is a global deforming

point cloud model regularized by a set of pairwise isometric constraints. Furthermore,

we have demonstrated that it is actually possible to fit both of these models to noisy

image trajectories.

In Chapter 3, we formulated our three point rigid triangle model and characterized its

per-frame depth flip ambiguities. We presented three point rigid structure from motion

procedures to fit this model in both the noiseless and noisy case. In the noiseless case,

our simple solution recovers the single link length solution with just 4 frames and up to

two such solutions with just 3 frames. In the presence of noise, we presented a bundle-

adjustment like method for fitting the rigid triangle model and demonstrated empirically

its robustness under a generic set of viewpoints. We further demonstrated how a simple

prior can deal with viewpoint degeneracies, present in common sequences, that leave the

solution otherwise underconstrained.

This rigid triangle model is the key ingredient in our piecewise model of global scene

deformation presented in Chapter 4. To fit this model, we followed a bottom up recon-

struction approach. This began first with a hypothesis and test framework to find triplets

97
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of image trajectories that could be explained by the motion of the vertices of a rigid tri-

angle. For the NRSFM problem we used 3-SFM, but when a planar template model is

available this is reduced to solving exterior orientation. The per-frame depth flips of the

triangles were resolved by performing inference in a non submodular binary MRF. When

this MRF is planar, as was the case in our template based approach, tractable exact

methods are available. A global piecewise model was then formed through a final step

that resolved each triangle model’s depth using linear least squares.

Finally, in Chapter 5, we formulated our deforming point cloud model and regularized

it using a set of pairwise isometric constraints. We provided a tractable algorithm for

fitting this model through local gradient based optimization, initialized from our piecewise

model. We demonstrated that using different error functions to penalize violations of the

isometric constraints can lead to interesting properties. Sometimes such functions can

allow upstream mistakes, such as incorrect flip inference, to be corrected or allow a degree

of local non-rigidity to be admitted by the model.

Perhaps the most interesting result of this thesis, stems from the premise that opti-

mizing either of these global models is extremely difficult. If a model instance is assigned

some function of fitness through an energy function, as was done explicitly in Chapter 5,

one will encounter a non-convex energy landscape with a plethora of local minimum. The

key to our success here is the decomposition of this hard optimization problem into many

easy ones. To see this strategy in action, one should consider the sequence of steps in the

entire procedure for fitting our final global point cloud model. Each step was formulated

and solved as a relatively simple sub-problem:

1. Fit Local Rigid Triangle Models

• Linear Least Squares

• Local Optimization

2. Test for Rigidity

• Trivial Calculations

3. Resolve Depth Flips

• Approximate (Optimal) Inference in a Non-Planar (Planar) Binary MRF

4. Resolve Depth Translations

• Linear Least Squares
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5. Fit Point Cloud Model

• Local Optimization

An obvious avenue for future work would be to consider trying to extract more in-

formation from these local three point models. The ability of these models to probe for

rigidity in a sequence is very compelling but is tempered by the pervasive viewpoint de-

generacy in typical sequences which sometimes results in false positives. Unfortunately,

the emergence of such false positives appears to result from a very complex relationship

between the degree of non-rigidity of a three point configuration, that configuration’s

geometry, and the variation in viewpoints in which that configuration is observed. One

way to approach this would be to try to examine the local energy landscape near a so-

lution to determine whether the minimum is well defined. A different approach might

include building an appearance model for the projected interior of a triangle, that could

be checked for consistency across frames.

Another interesting avenue of work would be to increase the flexibility of the model to

include an isotropic scaling of the triangle. Interestingly, this is mathematically equivalent

to considering a scaled orthographic projection model. This means, however, that we

would have 6F + 3 parameters to estimate with only 6F observations. If the trajectories

come from a video sequence, a natural way to attack this problem would be to incorporate

a strong prior to penalize scale parameters that do not vary smoothly in time.

Another brittle component of this overall approach is the flip resolution stage used

in fitting our piecewise model. If enough flips can be inferred correctly then there is a

chance that the downstream bundle adjustment can correct the others. Naturally, we

would then like to perform more accurate inference in large non-planar MRFs. It appears

that our greedy method does quite well in minimizing the energy, however, there is still

considerable value in methods that allow more constraints to be considered. For example,

if two sets of flip variables are connected only by a weak (i.e., both potentials are nearly

the same) set of noisy constraints, the greedy algorithm is likely to choose the relative

flip of these two sets based on only one of these noisy constraints. The availability of

tractable exact methods for planar MRFs is thus quite compelling, as a MRF defined

on a planar subgraph can include all of these constraints. When inference is performed,

there will then be an increased chance of choosing the correct flip, as it will be determined

by integrating over all of the noisy constraints instead of just one. Therefore, one could

consider approximation algorithms for finding maximum weight planar subgraphs [15].

Unfortunately even if we can do optimal inference, the correlation between low en-

ergies and good reconstructions is not perfect. We might try to improve this situation
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by reformulating the energy to make it more representative of how good a flip config-

uration truly is. To do this, we might consider higher order potentials to encode the

interaction of small cliques of flip variables, instead of just pairs. Another option, might

be to include a third, outlier label in order to allow the energy to pay a small penalty

to remove non-integrable triangle models that would otherwise drastically increase the

energy. Naturally, both of these options would considerably complicate inference and

thus new methods would have to be considered.

Lastly, we might consider modifications to our global model and its fitting proce-

dure in order to obtain better results. It was quite noticeable in the reconstructions of

the PAPER sequence, that the orthographic projection assumption is limiting and causes

problems when applied to motion undergoing pronounced perspective effects. It would be

natural to parametrize a perspective projection model, which could be directly optimized

in our bundle adjustment framework. In sequences such as PAPER, this might allow us to

both obtain a cleaner reconstruction and disambiguate the global flip by comparing the

two possible energies. Even with such realistic models, however, our local optimization

procedure is limited and thus it would be natural to consider a hybrid approach integrat-

ing the fusion moves advocated in [60] or, alternatively, stochastic local search methods

[33].

Finally, to conclude this thesis, we briefly summarize the main contributions of this

thesis:

• A linear algorithm for recovering, from the orthographic projections of three rigid

points in four (or three) views, the single set (or up to two sets for F = 3) of

possible interpoint distances such a model admits.

• A regularized bundle-adjustment like procedure for fitting a three point rigid model

to a triplet of image trajectories spanning an arbitrary number of views.

• The use of this procedure to probe a scene for local plausibly rigid three point

configurations.

• A bottom up procedure that uses pairwise constraints between such models to re-

solve their local depth flip and depth translation ambiguities, resulting in a piece-

wise local model.

• An analogous procedure for fitting such a model to a single frame, when a planar

template shape is available. Despite being seemingly tangent to the structure from

motion work in this document, this contribution falls out naturally and elegantly

as an aside.



Chapter 6. Conclusion 101

• The formulation of a global point based model incorporating a set of weak pairwise

isometric constraints and a strategy for fitting this model.

• Experimental results and comparisons with other methods on several ground truth

(or ground truth with added noise) datasets.

• Demonstrations of the results given image trajectories from image motion estima-

tion and tracking data.
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