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ABSTRACT

Probabilistic bisimulation is a widely studied equivalence relation for stochas-

tic systems. However, it requires the behavior of the states to match on actions

with matching labels. This does not allow bisimulation to capture symmetries in

the system. In this thesis we define lax probabilistic bisimulation, in which actions

are only required to match within given action equivalence classes. We provide a

logical characterization and an algorithm for computing this equivalence relation

for finite systems. We also specify a metric on states which assigns distance 0 to

lax-bisimilar states. We end by examining the use of lax bisimulation for analyzing

Markov Decision Processes (MDPs) and show that it corresponds to the notion of

a MDP homomorphism, introduced by Ravindran & Barto. Our metric provides an

algorithm for generating an approximate MDP homomorphism and provides bounds

on the quality of the best control policy that can be computed using this approxi-

mation.
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ABRÉGÉ

La bisimulation probabiliste est une relation d’équivalence pour système stochas-

tique grandement étudiée. Toutefois, il demande que le comportement des états soit

équivalent pour les actions portant le même nom. Ceci ne permet pas la bisimula-

tion de capturer les symétries dans le système. Dans cette thèse, nous définissons la

bisimulation lax probabiliste dans laquelle les actions sont seulement requises d’être

équivalente sous une classe d’équivalence donnée. Nous proposons une caractérisation

logique et un algorithme pour calculer cette relation d’équivalence pour les systèmes

finis. Nous spécifions aussi une métrique sur les états qui assigne une distance de 0

aux états lax-bisimilaires. Nous terminons en examinant l’utilité de la bisimulation

lax pour l’analyse des processus de décisions markoviens (PDM) et démontrons que

la bisimulation lax correspond à la notion d’homomorphisme dans les PDMs, intro-

duites par Ravindran & Barto. Notre métric fournit un algorithme pour générer

un PDM homomorphique approximatif et fournit des bornes sur la qualité de la

meilleure politique calculée à partir de cette approximation.
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CHAPTER 1

Introduction

The formal analysis of large stochastic systems often requires reducing the state

space of the system, by grouping together states that exhibit similar behavior. Prob-

abilistic bisimulation [LS91, KS60] is an equivalence relation for such systems that

captures naturally the notion of behavioral similarity between states. Much recent

research has been devoted to this topic [Bai96, BK97, DG97, DDLP05, DEP02,

DPW06, PLS00, DGJP02b]. However, in the presence of real numbers, like proba-

bilities or times, the notion of equivalence relation is too exact, because it requires

exact matching of real numbers. If these numbers are acquired from data, or rep-

resented with limited precision (as is always the case in a digital computer), exact

matching is very hard to achieve. Metrics are the ideal substitute in this case and

there has been considerable interest in metric analogues of probabilistic bisimula-

tion [DGJP99, DGJP04, vBW01b, vBW01a, DGJP02a, FPP04, FPP05]. This re-

laxation of the notion of probabilistic bisimulation opens the door to approximate

reasoning algorithms for probabilistic processes.

However, both bisimulation and its metric analogue require the behavior of

states to match on the same actions (or labels). This can be very restrictive, for

example if the action space is continuous. Moreover, there are many situations in

which one wants to match actions that are not named identically but which are closely

related. A very common case is when there is a symmetry in the underlying system.
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Our work is motivated by applications from robotics and artificial intelligence. For

example, consider a robot navigating in a square grid. Suppose that the goal is to

reach the centre of the region. In this case, a move to the right at the left end of

the room is essentially identical to a move to the left at the right end of the room,

from the point of view of bringing the robot closer to its target. One could exploit

this symmetry for extra compression in the state space. However, the usual notion

of bisimulation does not allow such symmetries to be taken into account: because

the action of going right has very different outcomes on the right and left side of

the grid, these states will all be considered different, and no aggregation is possible.

Intuitively, what we would like is to allow different actions to match each others’

effects in different parts of the state space. The goal of this thesis is to relax the

notion of bisimulation to allow different actions to match in different states.

1.1 Contributions

We study a version of strong probabilistic bisimulation which we call lax bisim-

ulation where we match actions that are at zero distance to each other in a metric –

denoted α – rather than just matching identical actions. A natural idea is to think

that one can introduce names for these distance zero equivalence classes and proceed

with ordinary bisimulation on these “lumped” sets of actions. However, this is not

correct, as we will show by example below. Essentially, the reason is that if we just

lumped the equivalence classes we would introduce non-determinism whereas our

theory preserves the fully probabilistic nature of the systems with which we work.
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Our work is carried out in the context of probabilistic transition systems with

continuous state spaces. We are contributing a new general theory of bisimulation

that includes:

• a definition of lax bisimulation

• a logical characterization of lax bisimulation,

• an algorithm to compute distinguishing formulas for states that are not lax

bisimilar and

• a metric analogue to lax bisimulation.

As well, by applying this theory to the domain of Markov Decision Processes we

include the following contributions:

• a metric that indicates the degree of symmetry between MDP states

• bounds on the performance loss caused by aggregating states in an MDP

• an algorithm to do aggregation.

1.2 Outline

The work will begin with a background chapter that accomplishes two things.

First, the appropriate mathematical structures are introduced necessary to the theory

of bisimulation. Next, bisimulation and its metric analogue are shown in their classic

unlaxed form.

Chapter 3 focuses on relaxing these definitions and demonstrating that the the-

ory can be generalized. Chapter 4 provides a logical characterization of this unlaxed

bisimulation as well as a corresponding algorithm that can compute the necessary

characterizing formulas for a system.
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Chapter 5 is a case study in which we analyze a specific type of probabilistic

system called a Markov Decision Process (MDP). In this case, we show that the

notion of bisimulation corresponds exactly to that of symmetry as described by the

theory of MDP homomorphisms. This theory allows states that can behave similarly

by performing symmetric actions to be lumped together to create an aggregate MDP.

The resulting bisimulation metric actually indicates the level of symmetry between

two states and we show how this can be used as a recipe to form an approximate

MDP homomorphism. We conclude by providing tight bounds on the performance

of the approximate MDP.

In chapter 6 we outline the contributions of the thesis and discuss potential

avenues of future work.
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CHAPTER 2

Background

Our mission is to formalize a theory that can describe the behavioral similarity

of different parts of a system. Mathematically we think of these parts as different

states (or elements) of a state space S. In this thesis, we assume that S is an analytic

space. This is hardly restrictive as it is inclusive of all discrete spaces and closed

subspaces of Rn [DEP02]. We now proceed to examine the spatial structures that

will be used to describe the similarity between states. References for this material

are available in many classic analysis texts [Rud66].

2.0.1 Relations

One way to indicate state similarity is to directly equate states through a rela-

tion. A relation B is a subset of S × S in which (s, t) ∈ R indicates that s is related

to t by B and this is often denoted simply as sBt. The type of relations that are

most useful to us will satisfy a few basic properties.

1. Reflexivity: for any x, xBx.

2. Symmetry: for any x and y where xBy, yBx also.

3. Transitivity: for any x, y, z ∈ S, xBz and zBy means that xBy.

If a relation B satisfies the above properties that we say that it is an equivalence

relation. An equivalence relation divides the state space of a system into partitions.

Bisimulation is an example of such a relation in which the states within each partition

behave the same way. We will make this precise later.
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2.0.2 Metrics

Equivalence relations are completely binary; states are either related or not. One

can think of many examples in which states should be related to varying degrees.

Indeed, in the case of behavioural similarity, we may want to indicate to what degree

states are similar even if they do not have the exact same behaviour. The obvious

way to do this is to indicate similarity through a numerical value. The appropriate

mathematical structure required here is that of a metric.

A metric can be thought of as a distance function that assigns a numerical value

to two points denoting how far apart they are. What these numerical values are

and how they are assigned varies but the rules that they must follow are inspired by

our conventional notion of spatial distance. To start, the distance from one point

to itself is zero. Also, the distance from one point to a second must be equal to

the distance from the second to the first. Lastly, the distance from one point to a

second detouring through a third point cannot be less than the distance to the third

directly. Indeed, these rules are quantitative analogs to the rules of an equivalence

relation.

We say that a (1-bounded pseudo) metric on a space X is a map d : X × X

−→ [0, 1] such that for x, y, z ∈ X we have that

1. x = y =⇒ d(x, y) = 0

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

Given a metric d we let Rel(d) denote the equivalence relation that equates all

pairs of points (x, y) in which d(x, y) = 0.

6



Let us now define the specific class of metrics that we use in this thesis:

Definition 2.0.1 A function h : X −→ R is lower semicontinuous (lsc) if whenever

{xn} −→ x we have that lim inf h(xn) ≥ h(x).

For a given set X we let M denote the set of lsc metrics on X. If X is not

specified, it can be assumed we are talking about the set of states S in a probabilistic

system. It will be shown later that under an appropriate ordering, this space is an

example of a complete lattice.

2.1 Fixed Points

Bisimulation will be defined later in a manner that resembles a recursive refine-

ment of the state space. It will be seen that this form facilitates significant analysis

through the use of fixed point theory [DP02] on lattices. A set L is said to be par-

tially ordered if it is endowed with an ordering ≤. We say such a set is a complete

lattice if arbitrary subsets of L have least upper bounds and greatest lower bounds.

A point x ∈ L in which f(x) ≤ x, f(x) = x or x ≤ f(x) are respectively said to be

prefixed, fixed and postfixed points.

Theorem 2.1.1 (Knaster-Tarski Fixed Point Theorem). Let L be a complete lattice,

and suppose f : L −→ L is monotone. Then f has a least fixed point, which is also

its least prefixed point, and f has a greatest fixed point, which is also its greatest

postfixed point.

In this thesis, we will use this theorem twice. First, we will define bisimulation

in terms of operators on REL and EQU . These spaces will denote respectively, the

space of binary relations and the space of topologically-closed equivalence relations

7



on an analytic space S. Both spaces under the subset ordering form complete lattices

[FPP05].

Second, we will define an analogous metric on the space of lsc metrics. Indeed,

given an arbitrary set of lsc functions, the pointwise supremum is also lsc. As well,

the pointwise supremum of a metric is also a metric. Thus, this space forms a

complete lattice under pointwise ordering.

2.2 Probability

The sort of systems that will be investigating are probabilistic. We have at-

tempted to address a set of systems as diverse as possible. In order to include

systems with continuous state spaces it will be necessary to recall a few basic defini-

tions from measure theory [Bil95]. Although it is always helpful to look to discrete

systems for insight such systems will be special cases of this more general theory.

A collection Σ of subsets of S is a σ−-algebra if

1. Σ contains both the empty set ∅ and the entire set S.

2. Σ is closed under complements.

3. Σ is closed under countable unions.

The smallest σ-algebra containing a collection of sets B is called the σ-algebra

generated by B and is denoted σ(B). The tuple (S,Σ) is then said to be a measurable

space but we will often just say S without making Σ explicit.

Within such a space we are concerned with a specific set of functions known as

subprobability measures. Such a function µ : Σ −→ [0, 1) has the properties that

1. µ(∅) = 0

8



2. for any countable pairwise disjoint collection of sets E1, E2, . . . , µ(∪iEi) =
∑

iEi.

In addition to measuring a set E directly through µ(E), we can measure a

set through a certain type of function called a measurable function. A function f

between measurable spaces (X,ΣX) and (Y,ΣY ) is said to be measurable if ∀E ∈ ΣY

it is true that f−1(E) ∈ ΣX . Here, we are mostly concerned with the case where Y

is the real numbers and ΣY is the Borel σ-algebra. This is the smallest σ-algebra

containing all the open intervals.

The following proposition [Bil95] will be useful to us.

Proposition 2.2.1 Let B be a non empty collection of sets where S ∈ B and T ∈ B

means that S ∩ T ∈ B. If σ(B) is the σ-algebra generated by B and two probability

measures P and Q agree on B then they agree on all of σ(B).

2.3 Probability Metrics

Later we will analyze the similarity of states by looking at how the states behave

when they attempt to perform various actions. As this behaviour is described by

probability distributions, we will need a way to measure the degree of similarity

between two distributions.

The Total Variation Metric between two probability measures P and Q is

defined as

TV (P,Q) = sup
X∈Σ

|P (X) −Q(X)|

This metric is easy to understand and computationally efficient but it is not

always appropriate as it treats each state in the state space distinctly. As will be

9



seen, we may want to indicate that some state pairs are less distinct than others

and take this into account when similarity is computed. Of course, the best way to

describe how distinct states are is by using a metric. We then want to have a way to

lift metrics on the state space to metrics on probability distributions over the state

space.

The construction given below is inspired by work of Kantorovich [Kan40]. The

lifting is given by a linear program; the duality theory of linear programs is crucial

in the theory.

Definition 2.3.1 Given a metric d ∈ M and probability distributions P and Q over

the state space S the Kantorovich Metric K(d)(P,Q) is defined to by

K(d) = sup
f

(P (f) −Q(f))

where P (f) denotes the integral of f with respect to the probability measure P

and the supremum is taken over all bounded measurable f : s −→ R satisfying the

Lipchitz condition that ∀x, y ∈ S

f(x) − f(y) ≤ d(x, y)

in the case of discrete systems, the linear program is as follows:

10



max
ui

|S|
∑

i=1

(P (si) −Q(si))ui

subject to ∀i, j.ui − uj ≤ d(si, sj)

∀i.0 ≤ ui ≤ 1

which has the following equivalent dual program:

min
λkj

|S|
∑

k,j=1

λkjd(sk, sj)

subject to ∀k.
∑

j

λkj = P (sk)

∀j.
∑

k

λkj = Q(sj)

∀k, j.λkj ≥ 0

2.4 Labelled Markov Processes

Labelled Markov processes are probabilistic versions of labelled transition sys-

tems. A Markov process is defined for each label. The transition probability is given

by a stochastic kernel (Feller’s terminology [Fel71]), also commonly called a Markov

kernel. Hence, the lack of determinism has two sources: the “choice” of the labels

(no probabilities are attributed to this at all) and the probabilistic transitions made

by the process. This is the “reactive” model studied by Larsen and Skou [LS91] who

used it only in a discrete state-space setting.

A key ingredient in the theory is the stochastic kernel or Markov kernel. We

will call it a transition probability function.
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Definition 2.4.1 A transition (sub-)probability function on a measurable space

(S,Σ) is a function τ : S×Σ −→ [0, 1] such that for each fixed s ∈ S, the set function

τ(s, ·) is a (sub-)probability measure, and for each fixed X ∈ Σ the function τ(·, X)

is a measurable function.

One interprets τ(s,X) as the probability of the process that starts in state s to

make a transition to one of the states in X. In general, the transition probabilities

could depend on time (in the sense that the transition probability could be different

at every step), but they must be independent of the past history. We will always

consider the time-independent case.

We will work with sub-probability functions; i.e. with functions where τ(s, S) ≤ 1

rather than τ(s, S) = 1. We view processes where the transition functions are only

sub-probabilities as being partially defined. All the theory extends immediately to

the case of full probabilities.

Definition 2.4.2 A partial labeled Markov process (LMP) S with label set

A is a structure (S, i,Σ, {τa | a ∈ A}), where S is the set of states, Σ is the Borel

σ-field on S, and

∀a ∈ A, τa : S × Σ −→ [0, 1]

is a transition sub-probability function.

For simplicity, we will fix the label set to be A (this does not restrict the theory).

Hence, we will write (S,Σ, τ) for partial labelled Markov processes, instead of the

more precise (S,Σ, {τa | a ∈ A}).

12



2.5 Probabilistic Bisimulation

The fundamental process equivalence that we consider is strong probabilistic

bisimulation. Probabilistic bisimulation means matching the moves and probabilities

exactly. Thus, each system must be able to make the same transitions with the same

probabilities as the other.

Let B be a binary relation on a set S. We say a set X ⊆ S is B-closed if

B(X) := {t|∃s ∈ X, sBt} is a subset of X. If B is reflexive, then clearly this

condition is equivalent to requiring B(X) = X. If B is an equivalence relation, a

set is B-closed if and only if it is a union of equivalence classes. We write Σ(B) for

those Σ-measurable sets that are also B-closed.

Definition 2.5.1 Let S = (S,Σ, τ) be a labelled Markov process. An equivalence

relation B on S is a bisimulation if whenever sBs′, with s, s′ ∈ S, we have that

for all a ∈ A and every B-closed measurable set X ∈ Σ, τa(s,X) = τa(s
′, X). Two

states are bisimilar if they are related by a bisimulation relation.

Alternately, bisimulation on the states of a labelled Markov process can be

viewed a fixed point of the following (monotone) functional F on the lattice of equiv-

alence relations on (S × S,⊆):

s F (B) t if for all a ∈ A and all B-closed C ∈ Σ, τa(s, C) = τa(t, C)

In either case it is clear that bisimulation is actually an equivalence relation

[DEP02].

Proposition 2.5.2 Bisimulation is an equivalence relation.
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It is not always clear which states of a system are bisimilar and even less clear

which ones are not. In order to make such analysis easier, one can define a simple

modal logic and prove that two states are bisimilar if and only if they satisfy exactly

the same formulas. Indeed, for finite-state processes one can decide whether two

states are bisimilar and effectively construct a distinguishing formula in case they

are not [DGJP02a]. The logic is called L and has the following syntax:

T | φ1 ∧ φ2 | 〈a〉qφ

where a is an action and q is a rational number.

Given a labelled Markov process S = (S,Σ, τ) we denote by s |= φ the fact

that the state s satisfies the formula φ. The definition of the relation |= is given by

induction on formulas. The definition is obvious for the propositional constant T and

conjunction. We say s |= 〈a〉qφ if and only if ∃X ∈ Σ.(∀s′ ∈ X.s′ |= φ)∧ (τa(s,X) >

q). In other words, the process in state s can make an a-move to some state that

satisfies φ, with probability strictly greater than q.

The following important theorem, proved in [DEP98, DGJP02a], relates logic L

and bisimulation.

Theorem 2.5.3 Let (S,Σ, τ) be a labelled Markov process. Two states s, s′ ∈ S are

bisimilar if and only if they satisfy the same formulas of L.
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CHAPTER 3

Lax Probabilistic Bisimulation

Bisimulation requires bisimilar states to behave similarly by matching identical

actions. This thesis investigates the possibility of relaxing this condition so that non

identical actions can be matched. Such a relaxation will relate more states allowing

for more compression.

3.1 Formulation

To facilitate this “relaxed” matching we make the assumption that the action set

A is finite and fix a labelled Markov process and consider a fixed metric α : S × A

−→ [0, 1] that quantifies how similar state action pairs are. Within this “relaxed”

notion of bisimulation, we allow states to match actions with zero distance in α. In

this way, metrics which “relate” more actions will allow more states to be related.

Definition 3.1.1 A relation B is a lax probabilistic bisimulation relation if whenever

sRt we have that

(1) ∀a ∃b such that α((s, a), (t, b)) = 0 and for all B-closed sets X we have that

τa(s,X) = τb(t,X)

(2) ∀b ∃a such that α((s, a), (t, b)) = 0 and for all B-closed sets X we have that

τb(t,X) = τa(s,X)

Note that from here on, when we say lax bisimulation or simply bisimulation, we

are implicitly referring to lax probabilistic bisimulation unless otherwise explicitly

stated.
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As with regular bisimulation, the goal is to group states together and thus

any sane relation of states should be an equivalence relation. The definition above,

combined with the fact that Rel(α) itself is an equivalence relation, can easily be

seen to only admit equivalence relations.

Theorem 3.1.2 A bisimulation relation is an equivalence relation.

If we have two different bisimulation relations, then the finite additivity of the

probability function assures us that their union is also a bisimulation relation.

Theorem 3.1.3 The union of two bisimulation relations is a bisimulation relation.

This is a very useful property as we would like to group as many states as

possible to get the simplest abstraction of the underlying system. To this end, we

consider merging all bisimulation relations into one.

Definition 3.1.4 The union of all lax bisimulation relations is called the bisimilarity

relation and is denoted by ∼. We say that two states s and t are bisimilar if s ∼ t.

In order to show that ∼ itself is a bisimulation relation it is useful to look at an

alternate definition of bisimulation in terms of an operator on relations. Indeed, let

REL and EQU be the complete lattices of binary relations and topologically closed

equivalence relations over S.

Definition 3.1.5 Define F : REL −→ REL so that sF(B)s such that

∀a,∃b where α((s, a), (t, b)) = 0 and ∀X ∈ Σ(Brst), τa(s,X) = τb(t,X)

and

∀b,∃a where α((s, a), (t, b) = 0 and ∀X ∈ Σ(Brst), τa(s,X) = τb(t,X)
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Where Brst is the smallest equivalence relation containing B.

Theorem 3.1.6 ∼ is a bisimulation relation.

Proof . Clearly F is monotonic and thus by theorem 2.1.1 it has a greatest fixed

point. Also, one can see that F(B) = B if and only if B is a lax bisimulation

relation, and thus the greatest fixed point is a bisimulation relation and so it must

be contained in ∼. As every lax bisimulation relation is contained in the greatest

fixed point, we actually have that ∼ must be the greatest fixed point and thus a

bisimulation relation also.

This relation ∼ provides the highest degree of compression under the constraints

provided by α. When the state space is finite the theorem above yields an algorithm

for calculating ∼ by locating the greatest fixed point of F .

3.2 A Metric Analogue

As was explained in the introduction, an exact equivalence is inappropriate when

one is dealing with systems with quantitative parameters. In this chapter we develop

a metric analogue of α-lax bisimulation. Ferns et al.[FPP04, FPP05] developed a

metric theory for MDPs, of course one with probabilistic bisimulation as its kernel

rather than lax bisimulation. Here we develop the lax version for LMPs and to this

end, we first define the specific type of metric in which we are generally interested

in.

Similar ideas for defining metrics were proposed by van Breugel and Wor-

rell [vBW01a].

The following two lemmas are given in Ferns et al [Fer07].
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Lemma 3.2.1 Given a metric d ∈ M and actions a, b, the map that takes d(s, t)

−→ K(d)(τa
s , τ

b
t ) is lower semi continuous in the state pair.

Lemma 3.2.2 Given a metric d ∈ M we have that

K(d)(P,Q) = 0 ⇐⇒ P (X) = Q(X),∀X ∈ Σ(Rel(d))

In the case of the lax metric we have to compare sets of actions. Here we take

advantage of a “natural” metric between compact subsets of a metric space called

the Hausdorff metric. Given a metric, the Hausdorff metric measures the distance

between two (compact) sets. It is a tight bound on the largest distance between

a point in one set and a point of the other set. The Hausdorff metric is thus zero

exactly when the two point sets coincide.

Definition 3.2.3 Given a finite 1-bounded metric space (S, d), let P(S) be the pow-

erset of S, then the Hausdorff metric H(d) : P(S) × P(S) −→ [0, 1] is given by

H(d)(X,Y ) = max(max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y))

In the setting of defining a metric analogue to lax bisimulation this arises as follows.

Given two states that we are comparing we have to look not just at the distance

between the probability distributions for the same action, but, rather, at the metric

between sets of distributions corresponding to the different possible actions in the

equivalence classes. Since the sets of actions are finite we need not worry about

compactness. In this vain, let us define the following operator on the space of lsc

metrics.
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Definition 3.2.4 Given d ∈ M and any c ∈ (0, 1) we define δ(d) as follows

δ(d)((s, a)(t, b)) = (1 − c)α((s, a), (t, b)) + cK(d)(τa
s , τ

b
t )

F (d)(s, t) = H(δ(d))(s, t)

Note that for simplicity we do not make the dependence of δ on c explicit.

We would like to show that the fixed point of this operator is a lsc metric and

relate it to lax bisimulation. For this, we will first need the following lemma.

Lemma 3.2.5 The lax bisimilarity relation ∼ is a closed subset of S × S.

Proof . Let E ∈ EQU , then F(E) is clearly an equivalence relation due to the fact

that Rel(α) is an equivalence relation.

Let {(xn, yn)} be a sequence in F(E) converging to some pair of states (x, y).

Let a ∈ A, then for every n there exists some b in which α((xn, a), (yn, b)) = 0. This

means that for every E-closed measurable set X we have that τa
xn

(X) = τ bn
yn

(X). Now

as the action space is finite, there must be an infinite subsequence {(x′n, y
′
n)} in which

the bn’s are all the same action, say b. Thus we have that τa
x′

n
(X) = τ b

y′

n
(X). Let γ be

the discrete metric assigning distance 1 to points if and only if they are not related

by E. Since E is closed, we have that γ is lsc so that K(γ) is defined. So we have

that K(γ)(τa
x′

n
, τ b

y′

n
) = 0 by the lemma 3.2.2. Hence, by lemma 3.2.1 K(γ)(τa

s , τ
b
t ) is

lsc in terms of s and t we have that K(γ)(τa
x , τ

b
x) = 0 so that τa

x (X) = τ b
y(X). As

well α is lsc so α((x, a), (y, b)) = 0 and thus (x, y) ∈ F(E) and F(E) is closed.

Now we can proceed with the main result of this section.

Theorem 3.2.6 F is monotonic and has a least fixed point dfix in which Rel(dfix) =∼.
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Proof . To see that F (d) ∈ M, note that by Lemma 3.2.1, the map taking (s, t) to

K(d)(τa
s , τ

b
t ) is lsc. As well the sum of two lsc metrics is lsc also. Indeed because all

the max’s and min’s are over finite sets F itself is lsc.

The monotonicity of the Hausdorff and Kantorovich metrics together imply

monotonicity of F . Thus F has a least fixed point dfix.

By the lemma, Rel(dfix) = F(Rel(dfix)) and is thus contained in bisimulation.

For the other direction, consider the d∼ metric that assigns 0 distance to all bisimilar

states and 1 otherwise. This is lsc as ∼ is closed (by the previous Lemma). So

∼= F(∼) = F(Rel(d∼)) = Rel(F (d∼)), which implies that F (d∼) ≤ d∼. Since dfix

is the least prefixed point of F , we must have that dfix ≤ l ≤ d∼ so ∼⊆ Rel(dfix).

With the previous theorem we have shown that dfix is in some sense an analogue

to the bisimilarity relation ∼. The metric dfix completely captures the information

in the relation as Rel(dfix) =∼ but for states that are not bisimilar, it will also give a

numerical value indicating how different they actually are. In this sense, the metric

can be used to describe the similarity between states in a system in a much less

brittle manner. This will become very evident when we find that good approximate

MDPs can be made by lumping together states that are close in this metric.
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CHAPTER 4

Logical Characterization

4.1 Formulation and Explanation

As previously explained in the case of unlaxed bisimulation, it is not obvious how

to show that two states are bisimilar. The characterization of bisimulation through

a modal logic assists us in proving such properties. We would like to define a logic

that characterizes the concept of lax bisimulation in such a way that states are lax

bisimilar exactly when they satisfy the same formulas in this logic. For simplicity,

we assume that the similarity in actions is independent of state, or more formally,

that ∀s, t, s′, t′.α((s, a), (t, b)) = α((s′, a), (t′, b)). This allows us the slight abuse of

notation in which we use Rel(α) as an equivalence relation over actions and simply

denote it by α. To be clear this simplifies the original definition of bisimulation as

follows.

Definition 4.1.1 A relation B is a lax probabilistic bisimulation relation if whenever

sRt we have that

(1) ∀a ∃b such that aαb and for all B-closed sets X we have that τa(s,X) =

τb(t,X)

(2) ∀b ∃a such that aαb and for all B-closed sets X we have that τb(t,X) =

τa(s,X)

In [DEP98, DEP02] the logical characterization for unlaxed bisimulation was

shown using a very simple logic with no negative constructs. It turns out that the

21



logic does not quite work for the case of lax bisimulation. The one modal operator

appearing in the logic of [DEP98, DEP02] is 〈a〉q where a is an action and q is a

rational number. For lax bisimulation one has to modify the logic so as to capture the

fact that several different formulas must be satisfied simultaneously, because different

actions can be matched. Interestingly, this cannot just be done by conjunction.

Definition 4.1.2 The logic L has the syntax

T |φ1 ∧ φ2|〈a〉(φ1, ..., φk; l1, ..., lk;u1, ..., uk)

where T and conjunction have the obvious meaning and

s |= 〈a〉(φ1, ..., φk; l1, ..., lk;u1, ..., uk) means that ∃b ∈ A with bαa and ∃X1, . . . Xk ∈

Σ so τb(s,Xi) ∈ (li, ui),∀i ∈ {1 . . . k} and when t ∈ Xi, we have that t |= φi.

One can immediately notice that the last construct has evolved into something

significantly more complicated. In particular:

• Any α-related action can now be used.

• Lower bound constraints (> qi) have been replaced by interval constraints

(∈ (lk, uk)).

• Multiple formulas must be satisfied simultaneously.

The first modification seems reasonable as it allows equating states that use

related actions to accomplish the same behaviour. This, however, introduces a sub-

tlety: it makes it necessary to use interval constraints instead of lower bounds. To

see this, consider the system depicted in Figure 4–1, in which s and t both make a

transitions to x with probability 1, and can also make b transitions with probability

1
2

and 1
5

respectively. Intuitively, even if a and b are α-related, s and t are still not
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Figure 4–1: A simple LMP

bisimilar, because their transition probability functions are not properly matched.

However, they would satisfy all the same lower bound formulas because the a tran-

sitions are the highest probability, and they are equal. Thus, it is necessary to use

intervals. In this case, the two states can be differentiated by a formula such as

〈a〉(T, 0.4, 0.6) which s satisfies but t does not.

Is it really necessary to have the 〈a〉 construct include multiple formulas? This

is a very subtle point. At first sight it looks just like conjunction. Maybe we could

simply write

〈a〉(φ1, l1, u1) ∧ . . . ∧ 〈a〉(φk, lk, uk)

instead of

〈a〉(φ1, ..., φk; l1, ..., lk;u1, . . . , uk).

These are, in fact, quite different: in the first formula each term can be matched by

a different α-equivalent action while in the second formula, the same α-equivalent

action must be used for each formula.

To illustrate this, consider Figure 4–2 where the α classes are {a, b, c}, {d}, {e}

and all transitions have probability 0.5. Clearly s and t are not lax bisimilar because

for any bisimulation B, we have that x and y are in their own singleton classes, and

there is no α-related action t can use to match s’s a actions to both these B-closed
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Figure 4–2: Labelled Transition System where the α classes are {a, b, c}, {d}, {e}.

sets. The formula needed to distinguish these two states is:

φ = 〈a〉(〈d〉(T ; l;u), 〈e〉(T ; l;u); l, l, u, u)

where, for example, l = 0.4 and u = 0.6. For this formula, we have that s |= φ but

t 6|= φ. The proposed replacement formula using conjunction would be satisfied by

both s and t, and thus the logic would be too weak.

4.2 Characterization

We now proceed to show that L indeed characterizes lax bisimulation.

Lemma 4.2.1 For any formula φ in L the set [φ] is measurable.

Proof . We proceed by structural induction on φ. First, s |= T , ∀s ∈ S and S ∈ Σ,

so the base case is true. The set [φ1 ∧ φ2] = [φ1] ∩ [φ2] ∈ Σ because Σ is a σ-field.

Since A = [a]α is finite, we also have that the set

〈a〉(φ1, . . . φk; l1, . . . lk;u1, . . . uk) = ∪b∈A ∩k
i=1 τb(·, [φi])

−1((li, ui))
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is in Σ. This is due to the fact that each term is measurable (since the τb’s are Borel

measurable) and we are taking a finite union of finite intersections, which is also

measurable (because Σ is a σ-algebra).

Proposition 4.2.2 If B is a bisimulation and sBt then s and t satisfy the same

formulas.

Proof . The cases for T and conjunction are trivial, so let us assume the statement

is true for some formulas φi i.e., any pair of B-related states either both satisfy φi, or

neither of them does. This means that [φi] is B-closed, and by the previous lemma it

is also measurable. Now if s |= 〈a〉(φ1, . . . φk; l1, . . . lk;u1, . . . uk) then we know there

is some b ∈ [a]α such that for 1 ≤ i ≤ k, τb(s, [φi]) ∈ (li, ui). Since s and t are

bisimilar, there exists a c ∈ [b]α = [a]α with τc(t, [φi]) = τb(s, [φi]) ∈ (li, ui) and thus

t |= 〈a〉(φ1, . . . φk; l1, . . . lk;u1, . . . uk) as well.

The reverse direction of the proof follows more or less the same pattern of the

corresponding proof from [DGJP00, DGJP03]; it relies on properties of analytic

spaces. However, the result here is not just a corollary of the result in [DGJP03], it

has to be redone for the new logic.

Definition 4.2.3 We say that s ≈ t if ∀φ ∈ L we have that s |= φ ⇐⇒ t |= φ.

It is clear that ≈ is an equivalence relation and thus we define q : S −→ S/ ≈ by

q(s) = [s]≈. When (S,Σ) is measurable, this defines the quotient (S/ ≈,Σ≈) such

that a subset E ⊆ S/ ≈ is in Σ≈ if q−1(E) ∈ Σ.

Lemma 4.2.4 If s ≈ t then ∀a ∈ A, ∃b ∈ A such that aαb and ∀φ ∈ L we have

that τa(s, [φ]) = τb(t, [φ]).
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Proof . Suppose the statement is not true. Then, for some a ∈ A we have that

∀b ∈ A where bαa there is a formula φb in which τa(s, [φb]) 6= τb(t, [φb]). Because

there is a finite number of α classes, there are finitely many such formulas. Thus, we

can find intervals (lb1 , ub1), . . . (lbk
, ubk

)) such that

s |= 〈a〉(φ1, . . . φk; l1, . . . lk;u1, . . . uk)]

but

t 6|= 〈a〉(φ1, . . . φk; l1, . . . lk;u1, . . . uk)]

contradicting s ≈ t.

The following two lemmas are the crucial facts about analytic spaces that one

needs. The first lemma is a very strong structural property which says that there

cannot be very many sub-σ-algebras of an analytic space: if the sub-σ-algebra is

not too large (countably generated) and not too small (separates points) then it is

the ambient σ-algebra. This is called the “unique structure theorem.” The result

appears as Theorem 3.3.5 of “Invitation to C-∗ algebras” by Arverson [Arv76] and

one of its corollaries.

Lemma 4.2.5 Let (X,B) be an analytic space and let B0 be a countably generated

sub-σ-field of B which separates points in X. Then B0 = B.

The second lemma shows that quotienting under a suitable equivalence relation pre-

serves the property of being an analytic space.

Lemma 4.2.6 Let X be an analytic space and let ∼ be an equivalence relation on

X. Assume there is a sequence f1, f2, ... of real valued Borel functions on X such
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that for any pair of points x, y ∈ X, x ∼ y if and only if fn(x) = fn(y) for all n.

Then X/ ∼ is an analytic space.

The main theorem can now be stated.

Theorem 4.2.7 The relation ≈ is an α-lax probabilistic bisimulation.

Proof . We first show that S/ ≈ is analytic. Let {φi : i ∈ N} be an indexing of

all formulas. We know that [φi] is a measurable set, so the characteristic function

χφi
: s −→ {0, 1} is also measurable. Then we have that x ≈ y if and only if ∀i ∈ N,

χφi
(x) = χφi

(y). Thus, by Lemma 4.2.6 it follows that S/ ≈ is an analytic space.

Let B = {q([φi]S) : i ∈ N}. Then for any q([φi]) ∈ B, it is clear that

q−1(q([φi])) = [φi] ∈ Σ as shown above. Now σ(B) separates points x, y ∈ S/ ≈,

x 6= y if there is a formula φ so that for all states x′ ∈ q−1(x) and y′ ∈ q−1(y) we

have that x′ ∈ [φ] and y′ /∈ [φ]. This implies x ∈ q([φ]) and y /∈ q([φ]). Thus, since

σ(B) is countably generated, from Lemma 4.2.5 we have that σ(B) = Σ≈.

Let s ≈ t and let a ∈ A. For any B ∈ σ(B), we define ρ(B) = τa(s, q
−1(B)).

Then by Lemma 4.2.4 we know that there is a b ∈ A such that aαb and for any [φ] we

have τa(s, [φ]) = τb(t, [φ]). Note that for any B ∈ B we also have that q−1(B) = [φ]

for some φ and thus ρ(B) = τb(t, q
−1(B)). Now B is closed under finite intersections,

so so from proposition 2.2.1, we have that ρ(B) = τb(t, q
−1(B)) also for any B ∈ Σ≈.

Now if X ∈ Σ is ≈-closed then we have that X = q−1(q(X)) and hence q(X) ∈ Σ≈.

This implies τa(s,X) = ρ(q(X)) = τb(t,X). The other direction follows similarly

and thus ≈ is a bisimulation.

Theorem 4.2.8 Given two states s, t ∈ S we have that s ∼ t if and only if ∀φ ∈ L,

s |= φ ⇐⇒ t |= φ.
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Proof . By Proposition 4.2.2, if s ∼ t then they both satisfy the same formulas.

Conversely, if s and t satisfy the same formulas, then by Definition 4.2.3 s ≈ t. By

Theorem 4.2.7 ≈ is a bisimulation, so ≈⊆∼ which implies s ∼ t.

We have, as a corollary, another avenue to show that ∼ is a bisimulation relation,

at least in this limited context in which α is treated as an equivalence relation.

Corollary 4.2.9 The bisimilarity relation ∼ is itself a bisimulation relation.

The characterization of lax bisimulation can be exploited to more easily demon-

strate whether two states are bisimilar or not. For example, if one wanted to demon-

strate that two states s and t are not bisimilar one can simply present a specific

formula φ that is satisfied by s and not t. Without a logical characterization, a

complex proof by contradiction would have to be presented. Furthermore, for a fixed

finite system, it should be intuitively obvious that the maximum “depth” of formula

needed to differentiate non bisimilar states is also finite. This observation motivates

an algorithm that breaks the state space of a finite system into bisimilarity classes.

4.3 Computing Distinguishing Formulas

In this section we give an algorithm that given a system with a finite state spaces,

finds the bisimilarity classes, and for each pair of non-bisimilar states provides a

formula on which the states disagree. This follows the general ideas of the algorithm

from [DEP02] but the fact that there is a new kind of formula means that the details

and proof are different.

Due to the discreteness of the action and state spaces, we can assume that the

minimum difference in transition probabilities is strictly greater than ǫ. It is then

convenient to consider formulas of the form.
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〈a〉(φ1, . . . , φk; q1 − ǫ, . . . , qk; q1 + ǫ, . . . , qk + ǫ)

which we simply denote by 〈a〉(~φ, ~q).

The algorithm iteratively refines a partition of the state space S until the parti-

tion represents the equivalence classes of the lax bisimilarity relation. D1 is initialized

with to contain only the set of all states. At each step it is split by looking at all

possible transitions to sets already existing in D1. Through this process each set B

in D1 gets assigned a formula F (B) so that B contains all the states that represent

B. This process continues until D1 remains unchanged.

Theorem 4.3.1 Two states satisfy the same formulas iff they belong to the same

sets in D1 after executing the previous algorithm.

Proof . The loops will terminate the first time D1 does not change. As D1 can only

increase, the loop is executed a maximum of 2|S| times and thus the algorithm will

terminate.

We show necessity by showing that every set in D1 ∪ D2 is represented by a

formula. The whole set S is represented by the formula T . So, suppose that after k

iterations of the inside for loop, every element of D1 ∪D2 represents a formula. We

must then show that each of the sets returned by split(B,[a],~C) represents a formula.

Now we are assuming that B and ~C represent formulas φ and ~ψ. A constructed set

B1 is of the form {s ∈ B : ∃b ∈ [a] ∧ τb(s, C1) ∈ (q1 − ǫ, q1 + ǫ) ∧ ... ∧ τb(s, Cn) ∈

(qn − ǫ, qn + ǫ)} which represents the formula φ ∧ 〈a〉(~ψ, ~q) thus indeed all the sets

added to D1 ∪D2 represent formulas. This means that if two states satisfy the same

formulas then they must be in the same sets of D1 ∪D2.
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Function bisim()
F (S) = T
D1 = {S}
D2 = ∅
while D1 6= D2 do

foreach [a] ∈ Actα and ~C ∈ P(D1)
1 do

D2 = D1

D1 = ∅
foreach B ∈ D2 do

D1 = D1 ∪ split(B, [a],~C)
end

end

end

Function split(B,[a],~C)

(C1, ..., Cn) = ~C;
D = {B}
Q = {(τb(t, C1), . . . , τb(t, Cn) : t ∈ B, b ∈ [a]}
foreach (q1, ..., qn) ∈ Q do

B1 = {s ∈ B : ∃b ∈ [a]∧
τb(s, C1) ∈ (q1 − ǫ, q1 + ǫ) ∧ ... ∧ τb(s, Cn) ∈ (qn − ǫ, qn + ǫ)}

F (B1) = F (B) ∧ 〈a〉(F (C1), ..., F (Cn); ~q)
D = D ∪ {B1}

end

return D

30



To show sufficiency we will show that every element B ∈ D1 ∪D2 represents a

formula φ in the restricted logic

T |φ1 ∧ φ2|〈a〉(~φ, ~q)

To see why this works, assume a formula φ in the original logic separates two

states s and t in such a way that s |= φ but t 6|= φ. Such a formula can contain

arbitrary intervals, but each of these can be shrunk to the size of 2ǫ in such a way

that they are centered around the exact probabilities s needs to satisfy φ. Thus if

two states s and t do not satisfy the same formulas in the original logic, then they

will not satisfy the same formulas in this reduced logic. By showing that all formulas

are represented by sets in the reduced logic we will then have shown that they are

not in the same sets in D1.

We do this by structural induction of the formulas in the restricted logic. First,

the whole set S represents the formula T .

Now let φ1, ..., φk be formulas represented in the sets in D1 by sets C1, ..., Ck.

Assume that 〈a〉(φ1, ..., φk, q1, ..., qk) is not represented for some action a and rationals

q1, ..., qk so necessarily there is some state s that satisfies it. Then D1 will be modified

by the call split(S,[a],~C) which contradicts the algorithm being finished and thus

formulas of this form must be represented in D1.

Now assume that φ and ψ are both represented in D1. By the construction of

φ in the algorithm we can see that it is the result of some finite number of calls to

split and thus can be written as
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φ = 〈a1〉( ~φ1, ~q1) ∧ · · · ∧ 〈an〉( ~φn, ~qn)

where ~φi is represented by a vector of sets from D1 which we call Ci. Now we

will show that φ ∧ ψ is represented in D1 by induction on n. Indeed assume that

ζ ∧ ψ is represented in D1 when ζ is a conjunction of k formulas. Now, for some

formula φ that is a conjunction of k + 1 such terms we can write

φ = ζ ∧ 〈ak+1〉( ~φk+1, ~qk+1)

then by our induction hypothesis we assume that ζ ∧φ is represented by the set

C ′ ∈ D1. Then a set representing φ ∧ ψ will be created in the call to split(C, ak+1,

C ′) contradicting the algorithm being finished.

32



CHAPTER 5

Case Study: Markov Decision Processes

In this chapter, we apply lax bisimulation to a specific type of probabilistic

system called the Markov Decision Process. Markov Decision Processes (MDPs) are

similar to LMPs except that numeric rewards are associated with each choice of action

in each state. Maximizing the long run rewards by choosing appropriate actions in

each state is a very popular formalism for decision making under uncertainty [Put94].

A significant problem is computing this optimal strategy when the state and action

space are very large and/or continuous. A popular approach is state abstraction,

in which states are grouped together in partitions, or aggregates, and the optimal

policy ie and/or continuous. Li et al (2006) provide a nice comparative survey of

approaches to state abstraction. The work we present here bridges two such methods:

bisimulation-based approaches and methods based on MDP homomorphisms.

Bisimulation has been specialized for MDPs by Givan et al (2003). Indeed,

one can simply use the difference in rewards for state-action pairs as the defining

metric. However, equivalence notions are very brittle for probabilistic systems, as a

small change in the values of the transition probability distributions (or rewards) for

different states can drastically change the equivalence relation between states. Thus,

it is desirable to have a notion that captures the degree in which two states differ.

In recent work, Ferns et al (2004, 2005, 2006) has extended the unlaxed bisimulation

metric to MDPs.
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One of the disadvantages of bisimulation and the corresponding metrics is that

they require that the behavior matches for exactly the same actions. However, in

many cases of practical interest, actions with the exact same label may not match,

but the environment may contain symmetries and other types of special structure,

which may allow correspondences between states by matching their behavior with

different actions. This idea was formalized by [RB04] with the concept of MDP

homomorphisms. MDP homomorphisms specify a map matching equivalent states

as well as equivalent actions in such states. This matching can then be used to

transfer policies between different MDPs. Because MDP homomorphisms specify

equivalence relations, they are also brittle. Hence [RB04] proposed using approximate

homomorphisms, which allow aggregation of states which are not exactly equivalent.

They define an MDP over these partitions and quantify the approximate loss resulting

from using this MDP, compared to the original system. As expected, the bound

depends on the quality of the partition. Subsequent work, e.g. [WB06], constructs

such partitions heuristically.

In this chapter, we attempt to construct provably good, approximate MDP

homomorphisms from first principles. First, we relate the notion of MDP homo-

morphisms to the concept of lax bisimulation. This allows us to define the lax

bisimulation metric on states, similarly to existing bisimulation metrics. Interest-

ingly, this approach works both for discrete and for continuous actions. We show

that the difference in the optimal value function of two states is bounded above by

this metric. This allows us to provide a state aggregation algorithm with provable
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approximation guarantees. Empirical illustrations show that this approach provides

much better state space compression than the use of bisimilarity metrics.

5.1 Background

A finite Markov decision process (MDP) is a tuple 〈S,A, P,R〉, where S is a

finite set of states, A is a set of actions, P : S × A × S −→ [0, 1] is the transition

model, with P (s, a, s′) being the probability of transition from state s to s′ under

action a, and r : S × A −→ R is the reward function with r(s, a) being the reward

for performing action a in state s. For the purpose of this chapter, the state space

S is assumed to be finite, but the action set A could be finite or infinite (as will be

detailed later). We assume without loss of generality that rewards are bounded in

[0, 1]. We will use P a
ss′ and ra

s as shorthand for P (s, a, s′) and r(s, a) respectively.

5.1.1 Policies and their Values

A deterministic policy π : S −→ A specifies which action should be taken in

every state. By following policy π from state s, an agent can expect to receive a

value V π(s) = E(
∑∞

t=0 γ
trt|s0 = s, π) where γ ∈ (0, 1) is a discount factor and

rt is the reward received at time t. In a finite MDP, the optimal value function

V ∗ is unique and satisfies the following formulas, known as the Bellman optimality

equations:

V ∗(s) = max
a∈A

(ra
s + γ

∑

s′

P a
ss′V

∗(s′)),∀s ∈ S

If the action space is continuous, we will assume that it is compact, so the max can be

taken and the above results still hold [Put94]. Given the optimal value function, an

optimal policy is easily inferred by simply taking at every state greedy action with

respect to the one-step-lookahead value. It is well known that the optimal value
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function can be computed through a sequence of iterates: V0(s) = 0 and

Vn+1(s) = max
a

(ra
s + γ

∑

s′

P a
ss′Vn(s′)),

which converges to V ∗ uniformly.

5.1.2 MDP Bisimulation

Ideally, if the state space is very large, “similar” states should be grouped to-

gether in order to speed up this type of computation. Bisimulation can be adapted to

MDPs [GDG03] as a notion of equivalence between states. The traditional definition

is as follows: A relation B ⊆ S × S is a bisimulation relation if

sBt⇔ ∀a.(ra
s = ra

t and ∀X ∈ S/B.P (s, a,X) = P (t, a,X))

.

From this definition, it follows that bisimilar states can match each others’ ac-

tions to achieve the same rewards. Hence, bisimilar states have the same optimal

value [GDG03] (and indeed, will have the same value under any policy). However,

bisimulation is not robust to small changes in the rewards or the transition proba-

bilities so again we are better off moving to a metric.

To this end, Ferns et al (2004) proposed a bisimulation metric, defined as the

least fixed point efix of the following operator on the lattice of 1-bounded metrics :

G(e)(s, t) = max
a

((1 − c)|ra
s − ra

t | + cK(e)(P a
s , P

a
t )) (5.1)

Again, this is simply the unlaxed bisimulation metric using the difference in rewards

to define the underlying metric space.
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5.2 Lax MDP Bisimulation

In many MDPs of practical interest, actions with the exact same label may not

match, but the environment may contain symmetries and other types of special struc-

ture, which may allow correspondences between different actions at certain states.

For example, consider the MDP in Figure 5–1, where a reward of 1 is obtained at

state 3, and the transition dynamics are deterministic for all navigation actions. In

this case, states 1 and 4 have a bisimulation distance of 1. However, the action of

going down in state 1 can be matched perfectly (in terms of effects) by the action

of going up in state 4. Indeed, this is the exact type of matching laxed bisimulation

performs but our definition of lax bisimulation relies on the presence of a metric

between state-action pairs. The formulation of the unlaxed metric in the previous

section gives a hint in how this should be defined. Indeed if we define the underlying

metric as:

α((s, a), (t, b)) = |ra
s − rb

t |

then states should only be equated if they can match each others rewards im-

mediately and transition with equal probabilities to states where the same holds.

1

4

2 3

Figure 5–1: A small grid world.
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This notion is very closely related to the idea of MDP homomorphisms (Ravin-

dran & Barto, 2003). We now formally establish this connection.

Definition 5.2.1 (Ravindran & Barto, 2003) A MDP homomorphism h from M =

〈S,A, P,R〉 to M ′ = 〈S ′, A′, P ′, R′〉 is a tuple of surjections 〈f, {gs : s ∈ S}〉 with

h(s, a) = (f(s), gs(a)), where f : S −→ S ′ and gs : As −→ A′
f(s) such that R(s, a) =

R′(f(s), gs(a)) and P (s, a, f−1(f(s′))) = P ′(f(s), gs(a), f(s′))

Hence, a homomorphism puts states into a correspondence, and has a state-dependent

mapping between actions as well. We now show that homomorphisms are identical

to lax probabilistic bisimulation.

Lemma 5.2.2 Let h be a MDP homomorphism and define the relation B such that

sBt iff f(s) = f(t). Then B is a lax probabilistic bisimulation.

Proof: Let sBt and let a ∈ A (so gs(a) ∈ A). By the hypothesis, f(s) = f(t) and

since gt is a surjection to Af(t) = Af(s), there must be some b ∈ At with gt(b) = gs(a).

Hence,

R(s, a) = R′(f(s), gs(a)) = R′(f(t), gt(b)) = R(t, b)

Let X be a non-empty B-closed set such that f−1(f(s′)) = X for some s′. Then:

P (s, a,X) = P ′(f(s), gs(a), f(s′)) = P ′(f(t), gt(b), f(s′))

= P (t, b,X)

which concludes the proof. ⋄

Analogously, we can construct an MDP homomorphism from a lax bisimulation.

Lemma 5.2.3 Let B be a lax bisimulation relation. Then there exists a MDP ho-

momorphism in which sBt =⇒ f(s) = f(t).
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Proof: Consider the partition S/B induced by the equivalence relation B on set

S. For each equivalence class X ∈ S/B, we choose a representative state sX ∈ X

and define f(sX) = sX and gsX
(a) = a,∀a ∈ A. Then, for any s ∼ sX , we define

f(s) = sX . From the definition of lax bisimulation , we have that ∀a∃b, P (s, a,X ′) =

P (sX , b,X
′),∀X ′ ∈ S/B. Hence, we set gs(a) = b. Then, we have:

P ′(f(s), gs(a), f(s′)) = P ′(f(sX), b′, f−1(f(s′))

= P (sX , b, f
−1(f(s′))

= P (s, a, f−1(f(s′))

Also, R′(f(s), gs(a)) = R′(f(sX), b) = R(sX , a). ⋄

Putting these two lemmas together gives us the following theorem.

Theorem 5.2.4 Two states s and t are bisimilar if and only if they are related by

some MDP homomorphism f, gs : s ∈ S in the sense that f(s) = f(t).

By specifying α above, we have implicitly defined a lax MDP bisimulation metric

dfix analogous to the unlaxed MDP bisimulation metric efix. As both efix and

dfix quantify the difference in behaviour between states, it is not surprising to see

that they constrain the difference in optimal value. Indeed, the bound below has

previously been shown [FPP04] for efix, but we also show that our laxed metric dfix

is even tighter.

Theorem 5.2.5 Let efix be the metric defined in [FPP04]. Then if γ ≤ c, we have

the following bounds.

(1 − c)|V ∗(s) − V ∗(t)| ≤ dfix(s, t) ≤ efix(s, t)
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Proof . We show via induction on n that

(1 − c)|Vn(s) − Vn(t)| ≤ dfix(s, t) ≤ efix(s, t)

and then the result follows by merely taking limits.

For the base case note that

(1 − c)|V0(s) − V0(t)| = d0(s, t) = e0(s, t) = 0

Now, assume this holds for n. By the monotonicity of F , we have that

F (dn)(s, t) ≤ F (en)(s, t)

Now, for any a, it is clear that

δ(en)((s, a), (t, a)) ≤ G(en)(s, t)

but then it is easy to see that

F (en)(s, t)

≤ max(max
a
δ(en)((s, a), (t, a)),max

b
δ(en)((s, b), (t, b))

≤ max(max
a
G(en)(s, t), G(en)(s, t))

= G(en)(s, t)

and so dn+1 ≤ en+1

40



Without loss of generality, assume that Vn+1(s) > Vn+1(t). Then

(1 − c)|Vn+1(s) − Vn+1(t)|

= (1 − c)|max
a

(ra
s + γ

∑

u

P a
suVn(u)) − max

b
(rb

t + γ
∑

u

P b
tuVn(u))|

= (1 − c)|(ra′

s + γ
∑

u

P a′

suVn(u)) − (rb′

t + γ
∑

u

P b′

tuVn(u))|

= (1 − c) min
b

|(ra′

s + γ
∑

u

P a′

suVn(u)) − (rb
t + γ

∑

u

P b
tuVn(u))|

≤ (1 − c) max
a

min
b

|(ra
s + γ

∑

u

P a
suVn(u)) − (rb

t + γ
∑

u

P b
tuVn(u))|

≤ max
a

min
b

((1 − c)|ra
s − rb

t | + c|
∑

u

(P a
su − P b

tu)
(1 − c)γ

c
Vn(u)|)

Now since γ ≤ c,

0 ≤
(1 − c)γ

c
Vi(u) ≤

(1 − c)γ

c(1 − γ)
≤ 1

and by the induction hypothesis

(1 − c)γ

c
Vn(s) −

(1 − c)γ

c
Vn(t) ≤ (1 − c)|Vn(s) − Vn(t)| ≤ dn(s, t)

So { (1−c)γ
c

Vn(u) : u ∈ S} is a feasible solution to the LP for K(dn)(P a
s , P

b
t ). We then

continue the inequality:

(1 − c)|Vn+1(s) − Vn+1(t)|

≤ max
a

min
b

((1 − c)|ra
s − rb

t | + cTk(dn)(P a
s , P

b
t ))

= F (dn)(s, t) = dn+1(s, t)
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5.3 State Aggregation

A MDP homomorphism allows one to aggregate states into Partitions by defining

a relabeling of each state’s actions in the Partition so that each state in the Partition

can accumulate long run rewards in the same manner. That said, sensible models can

be defined [FPP04] in which Partitioned states are not homomorphic by averaging

the transition probabilities within each Partition. Here, we merge these two ideas by

defining a relabeling of each state’s actions and then taking averages.

Definition 5.3.1 Given a MDP M , an aggregated MDP M ′ is given by (S ′, A, {P a
CD :

a ∈ A;C,D ∈ S ′}, {ra
C : a ∈ A,C ∈ S ′}, ρ, gs : s ∈ S) where S ′ is a partition of S,

ρ : S −→ S ′ maps states to their aggregates, each gs : A −→ A (we say ga
s as shorthand

for gs(a)) relabels the action set and we have that ∀C,D ∈ S ′ and a ∈ A that

P a
CD =

1

|C|

∑

s∈C

P ga
s

s (D) and ra
C =

1

|C|

∑

s∈C

rga
s

s

When a MDP homomorphism defines a homomorphism, all the states in a par-

tition have actions that are relabeled specifically so they can exactly match each

others behaviour. Thus a policy in the aggregate MDP can be lifted to the original

MDP by choosing the relabeled actions.

Definition 5.3.2 If M ′ is an aggregation of a MDP M and π′ is a policy in M ′

then the lifted policy is defined by π(s) = gs(π
′(a)).

Using a lax bisimulation metric, it is possible to choose appropriate relabellings

so that states within a Partition can approximately match each others actions.
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Definition 5.3.3 Given a lax bisimulation metric d and a MDP M , we say that

an aggregated MDP M ′ is d-consistent if each aggregated class C has a state s ∈ C

which we call the representative of C in which ∀t ∈ C we have that

δ(d)((s, ga
s ), (s, g

a
t )) ≤ F (d)(s, t)

When the relabellings are chosen in this way, we can solve for the maximum value

function of the aggregated MDP and be assured that the original state’s maximum

value is quite close to the maximum value of the Partition it is contained in.

Theorem 5.3.4 If γ ≤ c and M ′ is a dζ-consistent aggregation of a MDP M and

n ≤ ζ then ∀s ∈ S we have that

(1 − c)|Vn(ρ(s)) − Vn(s)| ≤ m(ρ(s)) +M

n−1
∑

k=1

γn−k

and if π′ is any policy in M ′ and π is the lifted policy to M then

(1 − c)|V π′

n (ρ(s)) − V π
n (s)| ≤ m(ρ(s)) +M

n−1
∑

k=1

γn−k

where m(C) = 2 maxt∈C dζ(s
′, t) such that s′ is the representative state of C and

M = maxC m(C).
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Proof .

|Vn+1(ρ(s)) − Vn+1(s)|

= |max
a

(ra
ρ(s) + γ

∑

D∈S′

P a
ρ(s)DVn(D)) − max

a
(ra

s + γ
∑

u

P a
suVn(u))|

≤
1

|ρ(s)|

∑

t∈ρ(s)

max
a

(|r
ga

t

t − rga
s

s |

+ γ|
∑

D∈S′

∑

u∈D

P
ga

t

tu Vn(D) −
∑

u

P ga
s

su Vn(u)|)

≤
1

|ρ(s)|

∑

t∈ρ(s)

max
a

(|r
ga

t

t − rga
s

s | + γ|
∑

u

P
ga

t

tu Vn(ρ(u)) − P ga
s

su Vn(u)|)

≤
1

|ρ(s)|

∑

t∈ρ(s)

max
a

(|r
ga

t

t − rga
s

s | + γ|
∑

u

(P
ga

t

tu − P ga
s

su )Vn(u)

+ γ|
∑

u

P
ga

t

tu (Vn(ρ(u)) − Vn(u))|)

≤
1

(1 − c)|ρ(s)|

∑

t∈ρ(s)

max
a

((1 − c)|rga
s

s − r
ga

t

t | + c|
∑

u

(P
ga

t

tu − P ga
s

su )
(1 − c)γ

c
Vn(u)|)

+
γ

|ρ(s)|

∑

t∈ρ(s)

max
a

∑

u

P
ga

t

tu |Vn(ρ(u)) − Vn(u)|

Now from the previous theorem we know that { (1−c)γ
c

Vn(u) : u ∈ S} is a feasible

solution to the primal LP for K(dn)(P
ga

s
s , P

ga
t

t ). So, let z be the representative used

for ρ(s) then we have
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Figure 5–2: Computed Metrics after 100 Iterations. Left: The MDP structure.
Center: The lax metric. Right: The unlaxed metric.

≤ (1 − c)|rga
s

s − r
ga

t

t | + cK(dn)(P ga
s

s , P
ga

t

t )

≤ (1 − c)|rga
s

s − r
ga

t

t | + cK(dζ)(P
ga

s
s , P

ga
t

t )

≤ (1 − c)|rga
s

s − rga
z

z | + cK(dζ)(P
ga

s
s , P ga

z
z )

+ (1 − c)|rga
z

z − r
ga

t

t | + cK(dζ)(P
ga

z
z , P

ga
t

t )

= dζ(s, z) + dζ(z, t) ≤ m(ρ(s))

We continue with the original inequality using these two results.
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≤
1

(1 − c)

∑

t∈ρ(s)

((1 − c)|rga
s

s − r
ga

t

t | + cK(dn)(P ga
s

s , P
ga

t

t ))

+
γ

|ρ(s)|

∑

t∈ρ(s)

max
a

∑

u

P
ga

t

tu max
u

|Vn(ρ(u)) − Vn(u)|

≤
1

(1 − c)|ρ(s)|

∑

t∈ρ(s)

m(ρ(s)) + γmax
u

|Vn(ρ(u)) − Vn(u)|

≤
m(ρ(s))

(1 − c)
+ γmax

u
(
m(ρ(s))

(1 − c)
+M

n−1
∑

k=1

γn−k)

≤
1

(1 − c)
(m(ρ(s)) + γmax

u
m(ρ(u)) +M

n−1
∑

k=1

γn+1−k)

≤
1

(1 − c)
(m(ρ(s)) +M

n
∑

k=1

γ(n+1)−k)

The second proof is nearly identical except that instead of max’ing over actions

the action selected by the policy, a = π′(ρ(s)), and lifted policy ga
s = π(s) is used.

By taking limits we get the following theorem.

Theorem 5.3.5 If γ ≤ c and M ′ is an dfix-consistent aggregation of a MDP M ,

then ∀s ∈ S we have that

(1 − c)|V ∗(ρ(s)) − V ∗(s)| ≤ m(ρ(s)) +
γ

1 − γ
M

and if π′ is any policy in M ′ and π is the lifted policy to M then

(1 − c)|V π′

(ρ(s)) − V π(s)| ≤ m(ρ(s)) +
γ

1 − γ
M
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where m(C) = 2 maxt∈C dfix(s
′, t) such that s′ is the representative state of C

and M = maxC m(C).

One appropriate way to aggregate states is to choose some desired error bound

ǫ > 0 and ensure that the states within each partition are within an ǫ-ball. A simple

way to do this is given in the following algorithm.

Partitions = ∅;

while S 6= ∅ do

s = RandomElementOf(S);

Partition = {t ∈ S : d(s, t) ≤ ǫ};

S = S − Partition;

Partitions = Partitions ∪ {Partition};

end

It has been noted that when the above condition holds, then under the unlaxed

bisimulation metric efix, we can be assured that for each state s, that |V ∗(ρ(s)) −

V (s)| is bounded by 2ǫ
(1−c)(1−γ)

. The theorem above shows that under the lax bisim-

ulation metric dfix this difference is actually bounded by 4ǫ
(1−c)(1−γ)

. Despite this,

we will later illustrate that a massive reduction in state space can be achieved by

moving from efix to dfix even when moving from ǫ to ǫ′ = ǫ
2
.

Indeed the two sets of policies that yield optimal value in the original and

aggregated MDP are not explicitly related. That said there is an obvious way [RB04]

to construct a policy for the original MDP from a policy for the aggregated MDP.

For large systems, it might not be feasible to compute the metric efix in the

original MDP. In this case, we might want to use some sort of heuristic or prior

knowledge to create an aggregation. In this case, it was recently shown by [RB04]
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using work from [Whi78] that a bound the difference in values between an optimal

policy in the aggregated MDP and the lifted policy in the original MDP can be

obtained. We will now derive a result in which this bound is a simple corollary to.

Theorem 5.3.6 If M ′ is an aggregation of a MDP M , π′ is an optimal policy in

M ′, π is the policy lifted from π′ to M and d′fix corresponds to our metric computed

on M ′ then

|V π(s) − V π′

(ρ(s))|

≤
2

1 − γ
max

s,a
|rga

s
s − ra

ρ(s)| +
γ

(1 − c)
max

s,a
K(d′fix)(P

ga
s

s , P a
ρ(s))

Proof .

|V π(s) − V π′

(ρ(s))|

≤
2

1 − γ
max

s,a
|rga

s
s − ra

ρ(s) + γ
∑

C

(P
ga

s

sC − P a
ρ(s)C)V π′

(C)|

≤
2

1 − γ
max

s,a
|rga

s
s − ra

ρ(s)| + max
s,a

γ|
∑

C

(P
ga

s

sC − P a
ρ(s)C)V π′

(C)|

≤
2

1 − γ
max

s,a
|rga

s
s − ra

ρ(s)| + max
s,a

γ

(1 − c)
K(d′fix)(P

ga
s

s , P a
ρ(s))

The first inequality originally comes from [Whi78] and is applied to MDPs in

[RB04]. The last inequality holds since π′ is an optimal policy and thus by the proof

of theorem 5.2.5 we know that {V π′

(C)
(1−c)

: C ∈ S ′} is a feasible solution.
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As a corollary, we can get the same bound as in [RB04] by bounding the Kan-

torovich by the total variation metric.

Corollary 5.3.7 Let ∆ = maxC,a r
a
C − minC,a r

a
C be the maximum difference in re-

wards in the aggregated MDP then

|V π(s) − V π(ρ(s))|

≤
2

1 − γ

(

max
s,a

|rga
s

s − ra
ρ(s)| +

γ

1 − γ
∆ · TV (P ga

s
s , P a

ρ(s))

)

Proof . This follows from the fact that

max
C,D

d′fix(C,D)

≤ (1 − c)∆ + cmax
C,D

d′fix(C,D)

. . .

≤
(1 − c)∆

1 − c

≤
(1 − c)∆

1 − γ

and using the total variation as an approximation [GS01] then

K(d′fix)(P
ga

s
s , P a

ρ(s)) ≤ max
C,D

d′fix(C,D) · TV (P ga
s

s , P a
ρ(s))

However, it is better to be able to make some guarantees just from the input

MDP in order to avoid enumerating the exponential number of possible MDP aggre-

gations.
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5.4 Illustration

We illustrate how the lax metric dfix differs from the non-lax metric efix. We

have made the claim that while the unlaxed metric does capture behavioural bisimi-

larity, it does not capture performance similarity. We illustrate this on a small MDP

consisting of 15 states as illustrated in Figure 5–2. There is a small reward in state

10 but nowhere else. There are the four obvious navigational actions {U,D,L,R}.

For each state and each of these actions we sampled a value p from the uniform

distribution over [0.85, 0.95] and assigned p as the probability that the action will

succeed and 1 − p as the probability that the agent stays in the current state. The

most interesting state pair in this metric is 0 and 14. The convergence of the metric

for this state pair is illustrated in Figure 5–3.

Also displayed in Figure 5–2 are representations of the two metrics after conver-

gence has been established. The values on one axis range from 0 to 14 and represent

the state. Thus the i, j’th entry in the matrix represents the distance from state i

to state j. White would indicate a distance of 1 and black a distance of 0.

One should draw their attention towards the bottom left and bottom right of

each plot. In the lax metric, the bottom left mirrors the bottom right much better

than in the unlaxed metric. This is because in the unlax metric, there is a divergence

between the two halves of the vertical hallway. In the lax version of the metric, up

and down actions are being matched together and thus the only divergence is due to

the noise we added.

Now let us consider the utility of these metrics in aggregating MDPs. Consider

the cross MDP displayed in Figure 5–4. There is a reward of 1 in the center and
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Figure 5–3: Convergence of the Metrics

the probability of succeeding in movement has some noise as described before. For a

given ǫ, we used the random partitioning algorithm outlined earlier to create a state

aggregation. In Figure 5–5 you can see the size of the aggregated MDPs plotted

against ǫ. In the case of the lax metric, we used ǫ′ = ǫ
2

to compensate for the

factor of 2 difference in the error bound. It is very revealing that the number of

partitions drops very quickly and levels at around 6 or 7 for our algorithm. This

is because the MDP is collapsing to a state space close to the natural choice of

{{C}} ∪ {{Ni, Si,Wi, Ei} : i ∈ {1, 2, 3, 4, 5, 6}}. Under the unlaxed metric, this is

not likely to occur, and thus the first states to be partitioned together are the ones

neighbouring each other (which can actually have quite different behaviours).

5.5 Discussion

Although the metric is potentially quite expensive to compute initially there are

many domains in which having an accurate aggregation is worth it. This is especially

true when one has large computing resources available initially to compute the metric
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Figure 5–4: Cross MDP
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and collapse the MDP into a close approximation. The smaller aggregation might

then be small enough to fit on a small mobile device. Also, a policy optimized to

yield any value function can be calculated quickly and lifted to yield actions in the

original space. This will be of great benefit when the goal is to achieve a certain

value and this value changes over time.

The metric can also be used to find subtasks in a larger problem that can be

solved using controllers from a pre-supplied library. For example, if a controller is

available to navigate single rooms, the metric might be used to lump states in a

building schematic into “rooms”. The aggregate MDP can then be used to solve the

high level navigational task using the controller to navigate specific rooms.
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CHAPTER 6

Conclusion

In this thesis we addressed some of the limitations of the standard notion of

probabilistic bisimulation and associated metrics. The standard theory allows states

to be equated if they behave similarly by matching the same actions. We relax this

requirement by considering what happens when matching is allowed amongst related

actions.

The theory follows the same general pattern as the usual theory but includes

the following crucial differences:

1. The suitability of action matches was specified by a metric over actions; a

distance of zero between actions is all that is necessary to satisfy the relaxed

version of bisimulation;

2. The logical characterization needs new types of formulas; the logic used to

characterize bisimulation does not correctly characterize lax bisimulation.

3. The metric analogue lifts the action metric to the level of states by looking at

the worst case action matches; the Hausdorff metric is leveraged to accomplish

this.

Lax bisimulation and its corresponding metric provide a sound theoretical basis

for analyzing the symmetry in very general probabilistic systems. As a case study we

considered measuring the similarity of state-action pairs in a Markov Decision Process

and used it in an algorithm for constructing approximate MDP homomorphisms.
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Our approach works significantly better in practice than the bisimulation metrics of

Ferns et al. The theoretical bound on the error in the value function presented in

(Ravindran & Barto, 2004) can be derived using our metric.

6.1 Future Work

The work in this thesis has been of a theoretical nature. Algorithms were de-

veloped mostly to hint towards some of the possibilities such a theory might yield.

Thus, a main avenue for future work is reducing the computational complexity of

these algorithms. Two sources of complexity include the quadratic dependence on

the number of actions, and the evaluation of the Kantorovich metric.

The first issue can be addressed by various approximations. For example, one

might use prior knowledge to prune action matchings that are believed to be bad

performers. Alternatively, greater flexibility could be achieved using a randomized

approach in which a heuristic was used to sample pairs of actions, rather than con-

sidering all possibilities.

It is also worth investigating the possibility of replacing the Kantorovich metric

(which is very convenient from the theoretical point of view) with a more practical

approximation. There has already been work [FCPP06] on approximating the un-

laxed metric centered around sampling either the Kantorovich metric directly or the

Total Variation metric as an approximation. The results are encouraging and these

methods should be adapted to the unlaxed case.

Finally, an extension to continuous actions is very important. Under some mild

assumptions a large portion of the results go through. Unfortunately, some of the

proofs explicitly count actions to arrive at contradictions. It is quite conceivable that
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these issues can be worked out and the metric can be used to explore discretizing

fully continuous systems.
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