
Session T1A

Memview: A Pedagogically-Motivated
Visual Debugger

Paul Gries, Volodymyr Mnih, Jonathan Taylor, Greg Wilson, Lee Zamparo
University of Toronto, Department of Computer Science

Toronto, Ontario M5S 3G4

Abstract - Novice programmers often have difficulty
understanding the interactions between the objects in their
programs. Many studies have shown that visual
representations of computer memory can aid students
comprehension. One such representation, developed by Gries
and Gries, divides computer memory into three areas: one for
the call stack, one for static objects allocated on the heap
("static space"), and one for normal heap objects ("object
space"). Memview, an extension to the DrJava IDE developed
at Rice University, is a dynamic, interactive display of
computer memory based on this model. Its simple three-pane
representation shows novices the life cycle of objects, and
helps them understand three key concepts: the notion of an
"address" in memory, how storing an address creates a
reference from one object to another, and the differences
between the heap, the stack, and static space. User tests
conducted during the summer of 2004 demonstrated that
Memview facilitated faster completion of common
introductory programming problems. Since then, Memview
has been used in introductory programming courses to
illustrate basic data structures such as linked lists. We are
presently refining the tool based on further feedback from
students and instructors.

Index Terms - CS1, CS2, Debugging Aids, Java, Program
Visualization

INTRODUCTION

Many CS1 and CS2 students have difficulty with the
following concepts, in roughly this order:
• the difference between a variable and an object;
• the difference between primitive and reference

variables;
• how local, static, and instance information

interacts;
• how method calls work;
• inheritance and polymorphism;
• recursion.

Several visual representations of computer memory have
recently been proposed in order to help students understand
these concepts [4], [5]. The representation developed by
Gries and Gries divides computer memory into three areas,

drawn as panes: one for the call stack, one for static objects
allocated on the heap (“static space”), and one for normal
heap objects (“object space”).

In exercises, students were required to trace the execution
of simple programs, drawing the memory model after specific
events. Experience shows that doing so helps them master the
concepts listed in the bulleted list more quickly [5]. However,
students often complain about these exercises, as drawing (and
re-drawing) diagrams is tedious.

Having adopted DrJava [1] (a lightweight pedagogic IDE)
for first-year teaching, Gries began a project to add a dynamic,
interactive representation of the memory model to it. The
work was done by three senior undergraduate students (Mnih,
Taylor, and Zamparo) as a course project, for which Wilson
acted as project manager. The result is now fully functional,
and was used successfully in a CS1 class during the 2004 fall
semester. In addition, the project received the attention of a
new team of undergraduates who further developed the code
base during this time leading to a more polished product.

RELATED WORK

Many projects have produced tools to aid beginning
programmers in visualizing or understanding programs.
CMeRun augments C++ code with output statements that print
each of the executable statements in the unaugmented code
along with current values of all variables of primitive type
referenced in the statement [3]. LIVE automatically creates
data structure visualizations by parsing source code, and
includes support for multiple languages, including Java and
C++ [2]. Tango [7] is one of the many existing frameworks
for building algorithm animations with the help of code
augmentation.

After evaluating the above systems we did not find any of
them to be suitable for our needs, mainly because they do not
place enough emphasis on object-oriented concepts. Giving
students the ability to see a visual representation of computer
memory will leave them with a better understanding of the
usually problematic concepts we presented in the introduction.

MEMORY MODEL

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-1

Session T1A
The memory model represents computer memory as three
areas, drawn as panes: one for the call stack, one for static
objects allocated on the heap (“static space”), and one for
normal heap objects (“object space”).

Consider the following code, which counts the number of
times the letter 'a' appears in the word "abracadabra"; the line
numbers for each file appear on the right. We use this code to
illustrate the memory model.

FIGURE 1
THE MEMORY MODEL AT LINE 6 OF METHOD D.COUNT

public class C { 1
 public static void main(String[] args) { 2
 int num = D.count('a', "abracadabra"); 3
 } 4
} 5

public class D { 1
 /** Return how many times c occurs in s. */ 2
 public static int count(char c, String s) { 3
 int num = 0; 4
 for (int i = 0; i != s.length(); i++) { 5
 if (s.charAt(i) == c) { 6
 num++; 7
 } 8
 } 9
 10
 return num; 11
 } 12
} 13

Figure 1 shows the state of memory at line 6 in D.java,
just inside the first iteration of the for loop, as if a breakpoint
had been reached in a debugger. The left pane contains the
call stack, the upper right pane the static space, and the bottom
right the object space.

Call Stack

The call stack contains a stack of boxes. The function main is
on the bottom because it was called first. As the program runs
each line of code is executed, and at line 3 of C.java method
count is called, which places the box for count on the call
stack. Again, Figure 1 shows that the count method is paused
on line 6.

Each box in the call stack is labeled with the name of the
method and the line number that is being executed in that
method. The contents of the boxes include parameters and
local variables, drawn as flat boxes labeled with the variable
names. (We do not show main's String[] parameter.)

Objects

There is a single object shown in the object space: the String
representing "abracadabra". x30F2 is a unique, made-up
hexadecimal number, which we call the “memory address” of
the object. There are two parts to this object: instance
information inherited from class Object, and instance
information declared in the String class.

Static Information

Static variables and static methods are drawn in the static
space. Each class is represented by a box containing the static
information. Boxes exist for C and D. They each have only
one method; if any static variables were declared they would
appear inside the appropriate box. The upper-right subbox of
each indicates the superclass; in this case both C and D derive
from Object.

Name and Scope

Each memory box (method call, object, static box) looks
roughly the same: the upper-left subbox indicates the “name”
of the box, and the upper-right subbox indicates the scope of
that box. The scope box indicates where to look for more
information.

DRJAVA

DrJava is a lightweight, yet powerful, integrated development
environment for Java developed at Rice University. Its simple
interface and syntax-aware editor allow students to
concentrate on developing their programming skills instead of
struggling with an environment. DrJava includes a built-in
debugger, and an interactions pane, which allows students to
type Java expressions and statements and see them
immediately evaluated in a read-eval-print loop [6].

CS1 classes at the University of Toronto use DrJava in
two ways: to help beginning programmers focus on concepts,
rather than mechanics, and to demonstrate new concepts live
during lecture. Students find that seeing new Java features “in
action” as soon as they are introduced aids comprehension and
speeds learning. In particular, the DrJava debugger and
interactions pane are invaluable when trying to clarify ideas
for confused students.

DrJava is open source software, available under a very
liberal license. Thanks to the generosity of the Rice University
team in making its full source available, we were able to
implement Memview as an extension of DrJava's built-in
debugger.

MEMVIEW

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-2

Session T1A
Memview’s primary goal is to aid in the average CS1/CS2
students understanding of objects and their interactions. We
start by explaining the design decisions made that help
Memview achieve this goal. In particular, the choice was
made to provide Memview as an extension to the regular
DrJava debugger. We then describe how this choice gives
Memview a robust architecture resistant to upstream
developments. The results of preliminary user testing are
presented with an analysis of the problems these tests
revealed. These tests were conducted with individual CS1 and
CS2 students and provided us with a chance to polish
Memview before taking it into the classroom. The
performance of Memview in the classroom is the true test for
its success so in the final subsection we discuss our
experiences with taking Memview into a real CS1 class.

Design

In order to leverage the existing debugging functionality of
DrJava, we decided to implement Memview as an extension
that can coexist with the standard DrJava debugger. This
means that anyone who has used DrJava in the past will be
able to debug with Memview using the familiar interface for
setting breakpoints and stepping through code.

Like the standard debugger, Memview is presented as a
pane within the main window. This pane can be brought up
through the Debug menu at any time during a debugging
session. Since Memview uses the memory model we
described in an earlier section as its visualization format, the
Memview pane is divided into three sections - one for each
part of the memory model.

Still following our memory model, the call stack is
visualized by a series of boxes. Each box represents a method
on the call stack. As shown in Figure 3, method boxes used by
Memview closely resemble the ones pictured in Figure 1. A
tree component is used to display parameters and local
variables in separate folders. This allows users to view only
information that is relevant to them.

FIGURE 2
SCREENSHOT OF A STRING INSIDE MEMVIEW

Figure 2 shows a partial screenshot of a String object on
the heap with the String part expanded and the Object part
collapsed. At the top is what the object represents,
"abracadabra".

We represent a process' heap by populating a panel with
boxes representing objects on a heap. Memview uses an
object discovery algorithm that recurses through the objects
on the stack in an acyclic manner. The objects are placed
from left to right along a three column grid as they are
discovered. The user level customization of this grid is a
future goal for the project.

Objects in the JVM's (Java Virtual Machine) static space
are represented by boxes in a left to right fashion in a static
space panel. These objects show the static object's fields and
methods. Unfortunately, some of the different flavours of
JVMs provide these fields and methods only after they are
used. Devising a method to force all JVMs to perform
consistently in this manner is a high priority for the Memview
team.

Architecture

Users are able to manipulate the JVM by setting breakpoints
and stepping in/over instructions via DrJava's debugger as
usual. When the program being debugged is suspended,
DrJava notifies Memview, which updates its display. This is
accomplished by querying the JVM for information
concerning the target program through the standard Java
Platform Debugger Architecture (JPDA) interfaces [8].

At present, the only interaction between Memview and
the standard debugger is that Memview listens (via JPDA) for
breakpoint occurrences, which have been set through the
standard debugger. At this point, Memview refreshes itself
with information from the JVM. We chose to keep the two
separate in order to minimize development time, and to avoid

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-3

Session T1A
complicating DrJava's interface any more than necessary.
This separation will also shield us from complications that
might arise from the overhaul of DrJava's debugger planned
for later in 2005.

User Testing

We evaluated Memview's usefulness by conducting usability
studies with several students and instructors. Test subjects
were presented with Java code for a simple linked list class.
We then used this class to create a short linked list, and asked
our test subjects to use Memview to find the value stored at
the tail item of the linked list without looking at the code that
had originally generated it.

Before the study began, the instructors who took part
believed that the memory model was useful, but that drawing
memory model diagrams in class was tedious. After using

Memview, the instructors agreed that using it interactively to
generate such diagrams would be faster, easier, and also more
compelling, since students would see the diagram evolve in
step with the debugger's traversal of example programs.

The user tests did reveal some problems with the current
implementation of Memview. Perhaps the most serious is the
system's lack of scalability. While Memview was able to
handle programs from CS1 assignments from past years, the
visualizations became increasingly cluttered for programs
representative of the larger CS2 assignments. Since these tests
were conducted, the code has been patched by the fall 2004
team. Object boxes may now collapse by double clicking on
the appropriate box. This partially addresses the shortcoming
but new ways of limiting the amount of information that is
displayed are still being considered.

FIGURE 3
DEBUGGING A PROGRAM WITH MEMVIEW

Second, Memview has no knowledge of the Java source
files being worked on, but instead retrieves data directly from
the JVM of the target program. This means that Memview
cannot differentiate between objects created directly by users,
objects created by DrJava, and objects internal to the the JVM.
These last two categories generally account for over two

hundred objects, which, if visualized, would saturate the
interface with useless information. By implementing
namespace filters (e.g. do not display objects from packages
edu.rice.cs.drjava.*), we were able to restrict our display to
the subset of objects most likely to have been created by the
user. In the future, this static system will be replaced by a

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-4

Session T1A
customizable filter set which will both solve this problem and
allow instructors to zoom in on sets of objects deemed most
important.

Finally, at the time of these tests, Memview did not
preserve context between debugging breaks. When the next
breakpoint is reached, Memview would rebuild the visual
display without regard to what was being visualized in the
previous step, effectively collapsing all expanded folders in
every object. Users found this tiresome, since they would
have to re-expand all the same tree tables just to see the same
information every subsequent break. The fall 2004 team
implemented a caching mechanism that stores information
regarding object state across breakpoints. When the display is
rebuilt, this cache is queried and if an object has already been
displayed, it is restored to its previous visual state.

Overall, we found the user tests very encouraging, and
signified that Memview was ready to be used in the
classroom. We were particularly pleased by the interest of
instructors in using Memview to teach CS1. In particular,
Memview was used in the fall 2004 CS1 class. This is
discussed in the next subsection. Feedback gathered from
these tests determined the most promising directions for the
future development of Memview. The fall 2004 capitalized
on the information we gained from these tests in order to
prioritize various features most useful to the target audience.
With this newer polished version of Memview, the responses
from such user tests would only be more positive.

Classroom Experience

In the fall of 2004, Gries taught the CS1 course. Memview
was used to both demonstrate the use of objects within the
classroom and to help students understand concepts during
office hours.

Objects are introduced early in CS1 at the University of
Toronto, in the second lecture hour. Students are shown a
model of memory that is equivalent to the one in Memview.
This has traditionally been done on the blackboard alternating
with showing the same code in a debugger. Especially for
students who had programming experience from high school,
the model of memory can be a shock: each term several
students argued that thinking about call stacks, objects, how
and where variables are stored, and so on was not helpful.
(Some even argued that it was inaccurate, although after much
argument and many examples they always recanted.)

Because switching from the blackboard to a projector
involves changing the lighting and raising or lowering the
screen, teaching using Memview was much more natural: the
debugger is the picture of memory. The presentation went
more quickly, with no pauses while waiting for the screen to
raise or lower. More interestingly, for the first term ever no
student argued that learning a model of memory was not
helpful.

During office hours, weaker students ask questions
demonstrating that they do not understand fundamental
concepts such as how a method call works, or how references

to objects work. Memview has invariably proved helpful, not
only because it demonstrates what is happening in memory
but also because it provides a focus for discussion.

AVAILABILITY

Memview is currently residing on the server reserved for
Professor Wilson’s supervised course projects, at
http://pyre.third-bit.com. It is available under the same open
source license as DrJava itself. Currently, the only access is
through CVS, as up until recently there has been very active
development. There are, however, CVS tags indicating
useable milestones. In the future we would like to provide a
1.0 release at which time we will concentrate efforts to
integrate Memview into the official DrJava codebase.
Inquiries about Memview should be directed to Professor
Wilson (gvwilson@cs.toronto.edu).

CONCLUSIONS AND FUTURE WORK

Memview is now functional and has been through two rounds
of development. Following the positive initial tests,
Memview was given a trial run, being used in a CS1 course at
the University of Toronto in the Fall 2004 term. As reference
din the classroom experience section, the success of that trial
demonstrates that Memview can be a useful tool in the
classroom, and affirms that Memview has achieved its original
goals.

During the Fall 2004 term, the development of Memview
was continued by a fresh team of undergraduates under the
direction of Gries and Wilson. The new team was able to:
• update the Memview code to be in line with the

official DrJava codebase
• address scalability and robustness issues through

the use of caching
• improve Memview's running speed
• allow objects to minimize when double clicked
• achieve persistent customizations to the user

interface (e.g. expanded folders) across
breakpoints

• polish the user interface and remove bugs

Although our tests have shown that Memview, in its
current state, is ready for use in the classroom, these features
will make Memview a more attractive choice for instructors
looking for an in class teaching tool. As well, first year
students struggling to understand the basics of Java's memory
management will find it useful to use Memview on their own
to walk through example code from textbooks and
assignments.

ACKNOWLEDGMENT

We wish to thank the JavaPLT group at Rice University for
creating DrJava, and for making it open source. We would
especially like to thank Charlie Reis, a former JavaPLT

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-5

Session T1A
member now at the University of Washington, for explaining
some of the trickier features of DrJava to us, and for providing
so much helpful feedback on our designs. As well, we give
our gratitude to the instructors and students who took part in
our tests and thank them for their valuable feedback. Lastly,
we thank the fall 2004 team consisting of Adrian Horodeckyj,
Ryan Liang and Qian Zhu who continued the development of
Memview.

REFERENCES

[1] Allen, E. and Cartwright, R. and Stoler, B., "DrJava: a lightweight
pedagogic environment for Java", Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education, 2002, pp
137-141.

[2] Campbell, A. E. and Catto, G. L. and Hansen, E. E., “Language-
independent interactive data visualization”, Proceedings of the
34th SIGCSE Technical Symposium on Computer Science
Education, 2003, pp 215-219.

[3] Etheredge, J., “CMeRun: Program Logic Debugging Courseware
for CS1/CS2 students”, Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 2004, pp 22-25.

[4] Gries, P. and Gries, D., “Frames and Folders: A Teachable
Memory Model for Java”, Journal of Computing Sciences in
Colleges, Vol 17, No 6., 2002, pp 182-196.

[5] Holliday, M. A. and Luginbuhl, D., “CS1 Assessment using
Memory Diagrams”, Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 2004, pp 200-204.

[6] Sandewall, E., “Programming in an Interactive Environment: The
'Lisp' Experience”, Computing Surveys, Vol 10, No 1., 1978, pp
35-71.

[7] Stasko, J. T., “A Framework and System for Algorithm
Animation”. IEEE Computer, Vol 23, No 9., 1990, pp 27-39.

[8] Sun Microsystems. “The Java Platform Debugger Architecture”,
http://java.sun.com/products/jpda/doc/ , 2003.

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T1A-6

