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Abstract
Fitting an articulated model to image data is often ap-

proached as an optimization over both model pose and
model-to-image correspondence. For complex models such
as humans, previous work has required a good initializa-
tion, or an alternating minimization between correspon-
dence and pose. In this paper we investigate one-shot pose
estimation: can we directly infer correspondences using a
regression function trained to be invariant to body size and
shape, and then optimize the model pose just once? We
evaluate on several challenging single-frame data sets con-
taining a wide variety of body poses, shapes, torso rota-
tions, and image cropping. Our experiments demonstrate
that one-shot pose estimation achieves state of the art re-
sults and runs in real-time.

1. Introduction
We address the problem of estimating the pose and shape

of an articulated human model from static images. Human
pose estimation has long been a core goal of computer vi-
sion, but despite the launch of commodity systems [19],
there is considerable room for improvement in accuracy.

Following recent work, we combine generative and dis-
criminative approaches. Generative approaches aim to ex-
plain the image data by optimizing an energy function de-
fined over the parameters of a graphics-like model. Mod-
els of sufficient capacity can describe the data well, and if
a good minimum of the energy can be found, provide ex-
cellent results. However, it is almost invariably the case
that high-capacity models have many local minima, mean-
ing that finding a good minimum requires either expensive
global search [13, 14], depends on a good initial estimate,
or is applicable only to a limited range of poses. Discrim-
inative approaches [1, 24, 25] directly predict pose param-
eters from the image, e.g. by training a regression model
on many examples. Recently, hybrid methods [22] combin-
ing discriminative and generative models have been shown
to yield impressive results on real-world sequences. For
example, Baak et al. [3] track a skinned surface model in
depth image sequences by combining initial estimates from
the previous frame with discriminative estimates obtained
whenever five body extremities (hands, feet, and head) are
detected by a data-driven process. They show impressive
results on dynamic fast-moving sequences, but the system
is restricted to near-frontal poses, and fast movements re-
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Figure 1. (a) Da Vinci’s Vitruvian Man [11]. (b) The Vitruvian Manifold,
as defined in Sec. 2. Viewed here from back-left, front, and back-right,
using color to indicate position on the manifold. (c) Example (depth, cor-
respondence) training image pairs. Note how the correspondence images
adapt across body shape and pose, allowing us to learn to predict these
correspondences in arbitrary test images.

quire all five extremities to be visible. Another recent sys-
tem of note is that employed in the Kinect video game plat-
form. Precise details of the end-to-end tracking algorithm
are not public. However, it appears clear that the discrim-
inative front-end reported in [23], which produces a set of
hypotheses for each joint independently, is combined with a
skeleton model to produce kinematically consistent pose es-
timates, again from depth sequences. When the input is not
depth images, but multiple 2D silhouettes, hybrid methods
again demonstrate excellent performance [21].

It is common to express generative methods in terms
of correspondences between features in the input images
and points on the model surface. Given correct correspon-
dences, as noted in [21], local optimization converges reli-
ably even from distant poses. Previously, correspondences
have been obtained from an initial estimate of model pose
parameters: the model is rendered in the initial pose, and
correspondences are found using some variant of iterated
closest points (ICP), perhaps with compatibility functions
based on shape contexts or related features [4, 6, 9, 21].
However, this means that the initial estimate of pose must
be close enough that reasonable correspondences are found.

In this paper we propose an alternative approach (illus-
trated in Fig. 2) where we compute an estimate of corre-
spondences from image to model independently of any ini-
tial pose. Specifically, we employ a regression forest [7, 10]
to quickly predict at each pixel the distribution over likely
correspondence to the body model surface. Unlike ICP
methods, we do not need to iterate between optimization
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Figure 2. Overview. Our algorithm applies a regression forest to an image window centered around each pixel. Each leaf node in the forest contains a
distribution over coordinates on the Vitruvian manifold; modes of these distributions are marked by the yellow crosses. The most confident mode across the
forest is taken at each pixel as the correspondence to the model. This allows the use of standard continuous optimization over our energy function (Eq. 11).
The result is one-shot pose estimation: a quick and reliable convergence to a good pose estimate, without separate initialization or alternating minimization
of pose and correspondence.

and correspondence finding: our regression forest is able
to directly estimate correspondences sufficiently reliably to
enable a single ‘one-shot’ optimization to a robust result.

Our work builds on Pilet et al. [20]. They predict sparse
correspondences to a deformable 2D mesh using a random
forest trained on multiple views of a rigid exemplar. We
extend this approach by inferring dense correspondences to
the 3D surface of an articulated human mesh model, invari-
ant to pose and shape variations. Illustrated in Fig. 1, this
learned invariance requires training data containing varied
articulation and shape, and yet known correspondences to a
canonical model.

We address real-world pose estimation from depth and
multi-view silhouette images. The challenges include arbi-
trary poses, a wide range of body shapes and sizes, uncon-
strained facing directions relative to the camera, and poten-
tially cropped views of the person. We further focus on the
particularly hard problem of single frame pose estimation
where no temporal information is assumed. Recent work
[23] has shown the value of this approach for scenarios such
as video gaming where fast motion is common and the sys-
tem must be robust over periods of hours.

In summary, our key contributions are the use of an effi-
cient learned regression function to directly predict image to
model correspondences for articulated classes of object, and
the demonstration that this allows one-shot human pose es-
timation that considerably advances the state of the art. An
additional contribution is a much more stringent and realis-
tic test metric (number of fully correct frames) than the vari-
ants on average joint error which previous work has quoted.
For example, in Fig. 3(a) the current state of the art achieves
only 20% accuracy (our algorithm scores around 45%).

2. Preliminaries
Our goal is to determine the pose parameters θ ∈ Rd of a

linearly skinned [3, 4] 3D mesh model so as to explain a set
of image points D = {xi}ni=1. For our main results we use
image points that have a known 3D position, i.e. xi ∈ R3,

obtained using a calibrated depth camera. Following stan-
dard practice, we assume a reliable background subtraction.

The 3D mesh model employs a standard hierarchical
body joint skeleton comprising a set of L = 13 limbs. Each
limb l has an attached local coordinate system related to
the world coordinate system via the transform Tl(θ). This
transform is defined hierarchically by the recurrence

Tl(θ) = Tpar(l)(θ)Rl(θ) (1)
Troot(θ) = Rglob(θ) (2)

where par(l) indicates the parent of limb l in the hierar-
chy, and root indicates the root of the hierarchy. We use
Rl(θ) to denote the relative transformation from the coor-
dinate frame of limb l to that of its parent. This 4x4 matrix
contains a fixed translation component and a parameterized
rotation component formed from the relevant elements of
θ. Finally, Rglob is a global transformation matrix that ro-
tates, translates, and isotropically scales the model based on
particular elements in θ. To allow the use of efficient off-
the-shelf optimizers, we over-parameterize each rotation as
the projection of an unconstrained 4D quaternion onto the
unit sphere. This gives us a total of 4L + 4 + 3 + 1 = 60
degrees of freedom in the parameter vector θ.

Using standard linear skinning [4, 3], the limbs allow
us to define a mesh model surface. The mesh contains m
skinned vertices written V = {vj}mj=1. Each vertex vj is
defined as

vj =
(
pj , {(αjk, ljk)}Kk=1

)
, (3)

where: base vertex pj represents the 3D vertex position in
a canonical pose θ0 as a homogeneous vector; the αjk are
positive limb weights such that ∀j

∑
k αjk = 1; and the

ljk ∈ {1, . . . , L} are limb links. In our model, the number
of nonzero limb weights per vertex is at most 4, so K = 4.
The position of the vertex given a pose θ is then output by a
global transform M which linearly combines the associated
limb transformations:



M(vj ; θ) = π(

K∑
k=1

αjkTljk(θ)T−1ljk
(θ0)pj) (4)

where π is the standard conversion from 4D homogeneous
to 3D Euclidean coordinates.

The mesh further contains a set T of triangles as triplets
of vertex indices. Our mesh is watertight and the trans-
formed vertices thus define a closed continuous surface as
the union of triangles

S(θ) =
⋃

(j1,j2,j3)∈T

Triangle(M(vj1 ; θ),M(vj2 ; θ),M(vj3 ; θ)) .

(5)
Because the canonical pose θ0 induces a surface S(θ0) that
resembles the Vitruvian Man [11], we call S(θ0) the Vitru-
vian Manifold (see Fig. 1(b)).

The goal, restated, is then to find the pose θ, whose in-
duced surface S(θ) best explains the image data. A stan-
dard way to approach this is to introduce a set of correspon-
dences U = [u1, ..., un], such that each correspondence
ui ∈ V . One then minimizes

Edata(θ, U) =

n∑
i=1

wi · d(xi,M(ui; θ)) (6)

where wi weights data point i and d(·, ·), is some distance
measure in R3. An alternating minimization (or block coor-
dinate descent) over θ and U would yield a standard articu-
lated ICP algorithm. Unfortunately, convergence is unlikely
without a good initial estimate of either θ or U . The key to
the success of our method is the use of a discriminative ap-
pearance model to estimate U directly instead of the more
common approach of initializing θ. Our experiments show
that these correspondences further prove accurate enough to
avoid the need to alternate optimization of θ and U .

3. Predicting Correspondences
Random forests [2, 7] have proven powerful tools for

classification [18], regression [16], and more [10]. We em-
ploy a regression forest to predict the correspondences U by
regressing from images to distributions over an embedding
of our surface model, and thus to mesh vertices.

A regression forest is a set of binary trees. Each non-
terminal node contains a binary split function. This is a
decision function computed on an image window centered
at pixel i, for which we employ the fast depth comparison
split functions of [23]. Each terminal (leaf) node contains a
regression model, to which we will come back shortly. At
test time, each foreground pixel i is passed into each tree
in the forest. A path is traversed from the root down to a
leaf, branching left or right according to the evaluation of
the split functions. Finally, we aggregate across trees the
regression models at the leaves reached.

Ideally, our regression models would store a distribution
over the model surface, but this is hard to represent effi-
ciently. As a proxy to this, we use distributions defined over

the 3D space in which the Vitruvian manifold S(θ0) is im-
plicitly embedded. So long as these distributions lie close
to the manifold, they should be fairly accurate. For further
efficiency, we represent the distributions as a small set of
confidence-weighted modes G = {(û, ω)}, where û ∈ R3

is the position of the mode in the embedding space, and ω
is the scalar weighting. This set G can be seen as an ap-
proximation to a Gaussian mixture model. To aggregate the
regression models across the different trees, we simply take
the union of the various leaf node modes G.

We are left with the task of predicting pixel i’s corre-
spondence ui ∈ V from these aggregated distributions. To
do this, we take the mode û with largest confidence value
ω, and perform a nearest-neighbor projection onto the man-
ifold as u = argminv∈V ‖û − M(v; θ0)‖2. This simple
‘winner-takes-all’ correspondence prediction approach has
proven highly effective, partly due to our use of a robust
distance measure d(·, ·); see below. Some qualitative ex-
amples of the correspondences achieved are illustrated in
Figs. 2 and 4. Of course, there is potentially a rich source
of information in the regression models that we are not cur-
rently using. Exploiting this effectively remains as future
work. For an optimized implementation, one can thus store
at each leaf only the single vertex index j and confidence
weight ω resulting from projecting the mode with largest
confidence in advance.

3.1. Learning the forest
To train the random forests we use the data from [23].

This is a set of synthetic images, each rendered using com-
puter graphics, to produce a depth or silhouette image. The
parameters of the renders (pose, body size and shape, crop-
ping, clothing, etc.) are randomly chosen such that we can
aim to learn invariance to those factors. Alongside each
depth or silhouette image is rendered a correspondence im-
age, where colors are used to represent the ground truth cor-
respondences that we aim to predict using the forest. Exam-
ples are given in Fig. 1(c).

Crucially, the ground truth correspondences must align
across different body shapes and sizes. For example, the
correspondence for the tip of the right thumb should be the
same, no matter the length of the arm. This was accom-
plished by deforming a base mesh model, by shrinking and
stretching limbs, into a set of 15 models ranging from small
child to tall adult. The vertices in these models therefore
exactly correspond to those in the base model, as desired.
This allows us to render the required correspondence image
using a simple vertex lookup, no matter which body model
is randomly chosen. This can also be seen in Fig. 1(c).

Given this data, we can now train the trees. Following
[16] we use a forest where the tree structure is trained for
the body part classification objective in [23]. This proxy to
a regression objective was shown to work better on multi-
modal data than the standard variance minimization. We



then ‘retro-fit’ the regression models at the leaves, as fol-
lows. We collect the set of training pixels reaching each
leaf, and compute for each pixel i the embedding space po-
sition ûi = M(ui; θ0) ∈ R3 given the ground truth ui ∈ V .
We then cluster the ûs using mean shift mode detection [8],
adopting a Gaussian kernel with a fixed bandwidth param-
eter. The design of the Vitruvian pose allows the use of
Euclidean distance in the embedding space to efficiently ap-
proximate geodesic distances locally on the manifold. The
weight ω is set as the number of training pixels clustered to
each mode.

4. Energy Function
The energy defined in Eq. 6 is quite standard, and be-

cause it sums over the data, it avoids some common patholo-
gies such as an energy minimum when the model is scaled
to zero size. To deal with mislabelled correspondences, it
is sensible to specify d(x, x′) = ρ(‖x − x′‖) where ρ(·)
is a robust error function. We use the Geman-McClure [5]
function ρ(e) = e2

e2+η2 due to its high tolerance to outliers.
We choosewi = z2i as the pixel weighting, derived from the
point’s depth zi = [ 0 0 1 ] xi to compensate for proportion-
ately fewer pixels and therefore contributions to the energy
function as depth increases.

Unfortunately, deficiencies remain with Eq. 6, particu-
larly with self-occlusion. In the following sections, we build
up further terms to form our full energy Eq. 11.

Visibility term. For given parameters θ, the data term
in Eq. 6 allows either visible or invisible model points
to explain any observed image point. A more realistic
model might include hidden-surface removal inside the
energy, and allow correspondences only to visible model
points. However, a key to our approach, described be-
low in Sec. 4.1, is to use fast derivative-based local opti-
mizers rather than expensive global optimizers, and thus
an efficient energy function with well-behaved derivatives
is required. Despite some excellent recent work in com-
puting derivatives of mesh projections under visibility con-
straints [12], handling visibility remains quite difficult. One
common strategy, holding visibility fixed during the opti-
mization, greatly hinders the optimizer.

We adopt a useful approximation which is nevertheless
effective over a very large part of the surface: we define
visibility simply by marking back-facing surface normals.
To do so, we define function N(u; θ) to return the surface
normal of the model transformed into pose θ at M(u; θ).
Then u is marked visible if the dot product betweenN(u; θ)
and the camera’s viewing axisA (typicallyA = [0, 0, 1], the
positive Z axis) is negative. One might then write

Evis =

n∑
i=1

wi

{
d(xi,M(ui; θ)) N(u; θ)>A < 0

τ otherwise
(7)

with τ a constant that must be paid by backfacing vertices.

In practice, using a logistic function σβ(t) = 1
1+e−βt

with
‘sharpness’ parameter β is preferable to a hard cutoff:

E′vis =

n∑
i=1

wi
[
Vi(θ)·d(xi,M(ui; θ))+(1−Vi(θ))·τ

]
(8)

where visibility weight Vi(θ) = σβ(−N(ui; θ)
>A).

Pose Prior. To further constrain the model, particularly
in the presence of heavy occlusion, we use a conventional
prior, the negative log of a Gaussian on the pose vector:

Eprior = (θ − µ)>Λ(θ − µ) (9)

where µ and Λ, the mean and inverse covariance of the
Gaussian, are learned from a set of training poses.

Intersection Penalty. Lastly, we add a term to discour-
age self intersection by building a coarse approximation
to the interior volume of S(θ) with a set of spheres Γ =
{(ps, rs, ls)}Ss=1.1 Each sphere s has radius rs and homo-
geneous coordinates ps in the canonical coordinate system
of θ0. The center of the sphere can be seen as a virtual
vertex attached to exactly one limb, and thus transforms
via cs(θ) = π

(
Tls(θ)T

−1
ls

(θ0)ps
)
. Intersection between

spheres s and t occurs when ‖cs(θ) − ct(θ)‖ < rs + rt =
Kst. We thus define a softened penalty as

Eint =
∑

(s,t)∈P

σγ(Kst − ‖cs(θ)− ct(θ)‖)
‖cs(θ)− ct(θ)‖

(10)

where P is a set of pairs of spheres, and σγ is again a logis-
tic function with constant ‘sharpness’ parameter γ.

The sphere parameters are chosen so that the centers
cs(θ0) are distributed along the skeleton and the radii rs are
small enough so that the spheres lie within the interior of
S(θ0). In practice, only leg self-intersections have caused
problems, and thus we place 15 spheres equally spaced
along each leg, with P containing all pairs containing one
sphere in each leg.

Full energy. Combining the above terms, we optimize an
energy of the form

E(θ, U) = λvisE
′
vis(θ, U) + λpriorEprior(θ) +

λintEint(θ) (11)

where the various weights λ• along with any other parame-
ters are set on a validation set. Values for these parameters
are provided in the supplementary material. Further en-
ergy terms, such as silhouette overlap or motion priors, are
straightforward to incorporate and remain as future work.

4.1. Local optimization over θ
Although there are many terms, optimization of our en-

ergy function (Eq. 11) is relatively standard. For fixed
correspondences U inferred by the forest, optimization of

1Distinct subscripts indicate whether p and l refer to vertices or spheres.



Eq. 11 over θ is a nonlinear optimization problem. Deriva-
tives of θ are straightforward to efficiently compute using
the chain rule. The parameterization means that E is some-
what poorly conditioned, so that a second order optimizer
is required. However, a full Hessian computation has not
appeared necessary in our tests, as we find that a Quasi-
Newton method (L-BFGS) produces good results with rel-
atively few function evaluations (considerably fewer than
gradient descent). To maintain reasonable speed, in our ex-
periments below we let the optimization run for a maximum
of 300 iterations, which proved sufficient in most cases.

We initialize the optimization as follows. For the pose
components of θ, we start at µ, the mean of the prior. For
the global scale, we scale the model to the size of the ob-
served point cloud. Finally we use the Kabsch algorithm
[17] to find the global rotation and translation that best
rigidly aligns the model. Our experience has been that a
good initialization might be helpful in obtaining faster con-
vergence but is not crucial in obtaining good results.

4.2. Multiple views and 2D images
The data term written above applies to a single 3D depth

image, but can be easily extended to deal with combinations
of depth images and 2D silhouettes. For this, we assume
that Q images were captured by cameras with viewing ma-
trices {Pq}Qq=1 yielding Q sets of observed image points
{xqi}

nq
i=1 and corresponding weights {wqi}

nq
i=1. In the case

of a depth image, camera q’s observed points live in its own
3D coordinate system and Pq will transform our 3D model
points into that system. For 2D silhouettes, the observed
points are pixel locations in 2D, the weights are set to unity,
and Pq suitably transforms and projects model points onto
the 2D image plane. By defining Aq to be A rotated so it
points along camera q’s optical axis we can reformulate the
visibility-aware data term as

E′vis =

Q∑
q=1

nq∑
i=1

wqiφqi (12)

φqi = Vqi(θ) · d(xqi, PqM(uqi; θ)) + (1− Vqi(θ)) · τ

where now Vqi(θ) = σβ(−N(uqi; θ)
>Aq). One can see

that our original energy is just the special case whereQ = 1
and Pq is the identity. To initialize the global translation, ro-
tation, and scaling components of θ for multi-view data, we
simply place the model near the intersection of the camera
setup and perform a local optimization of these parameters.

5. Experiments
We now describe our evaluation and comparison with re-

lated work on several challenging datasets. Remember that
in generating the results below, our algorithm does not use
any temporal context: independently for each frame, it must
infer both the pose and also the shape. Parameter settings
are given in the supplementary material.

5.1. Setup
Skeleton. We parameterize and predict the following 19
body joints: head, neck, shoulders, elbows, wrists, hands,
knees, ankles, feet, and hips (left, right, center).
Regression forest. We use a forest of 3 trees trained to
depth 20. To learn the structure and split functions of the
trees we use 300k synthetic images per tree. Given this
trained tree structure, we pass a smaller training set of 20k
(depth, correspondences) image pairs down each tree to
learn the regression models at the leaves. In investigating
these regression forests we found the final pose estimation
accuracy to be largely insensitive to even substantially var-
ied tree training parameters (e.g. number of images, cluster-
ing bandwidth). Training the forest structure took around
a day on a large cluster, but training the regression models
only took around an hour on a single workstation.
Test sets. As our main test set we employ 5000 synthetic
images containing full 360◦ facing directions (0◦ means
facing the camera), separate from the images used to train
the forest. Synthetic depth data was shown in [23] to accu-
rately validate pose estimation accuracy. Our images were
rendered from 15 different body models (from thin to obese,
with heights ranging ∼ 0.8− 1.8m), and contain simulated
camera noise, cropping where the person is only partially
in frame, and challenging poses from a large mo-cap cor-
pus. For comparison with previous work we also evaluate
on (i) the synthetic MSRC-5000 dataset from [23] which is
limited to ±120◦ facing direction and thus somewhat eas-
ier than our test set; and (ii) on the Stanford set [15] of real
depth images.
Metrics. We choose an extremely challenging error metric
for our main results: the proportion of test images that have
all predicted joints within a certain maximum Euclidean
distance from their respective ground truth joint positions.
We plot this proportion as a function of the distance thresh-
old. This ‘worst-case’ error metric allows us to easily see
how many of our images are essentially fully correct, for a
range of definitions of correct. As further information, we
also include graphs of the proportion of joints across all test
images within the threshold (‘joints average’). In our met-
rics we do not count any joints for which both the ground
truth and the inferred joint positions are off-screen. How-
ever, we do still count inaccurate predictions for occluded
joints as errors. In the graphs of worst-case accuracy below,
we include a dotted line at D=0.2m, which, based on visual
inspection, we believe to be a rough approximation to the
maximum that might be useful for an interactive system.
5.2. Results
Accuracy of regression forest. The discriminative model
of Sec. 3 clearly has a hard task: to predict u correspon-
dences directly from image patches regardless of body pose
and shape. We show here the proportion of pixels for which
the Euclidean distance of the inferred correspondence to the
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Figure 3. (a) Comparison with [23, 16]. Note the solid curves represent real algorithms, while the dotted curves are theoretical. (b) Comparison with the
Kinect SDK on single frames. (b) Comparison on the Stanford dataset [15]. Best viewed digitally at high zoom.

ground truth correspondence is less than a threshold in Vit-
ruvian units (‘vit’, where 1 vit = 1m for a 1.8m tall individ-
ual): Threshold 0.1 vit 0.2 vit 0.3 vit

Proportion 41.5% 68.2% 77.3%

Comparison with [23] & [16]. We compare with [23, 16]
on the MSRC-5000 test set on their 16 predicted joints:
head, neck, shoulders, elbows, wrists, hands, knees, an-
kles, feet. A direct comparison is difficult: their approaches
predict only individual joints (zero or more hypotheses for
each), not whole skeletons. But, to obtain a reasonable com-
parison, we perform the following two experiments. First,
we take their highest confidence prediction for each joint
and treat these together as a skeleton. (For on-screen joints
where no prediction was made, we create a virtual predic-
tion as the mean of the other joint predictions to keep errors
tolerably small). This first comparison is slightly overly
critical as algorithms [23, 16] were designed with a sub-
sequent model fitting stage in mind. As a second, fairer
comparison, we allow an oracle to tell us which of their top
5 most confident predictions for each joint is closest to the
ground truth, effectively simulating a perfect combinatorial
optimization over their hypotheses for each joint.

As one can see in Fig. 3(a), beyond about D = 0.1m,
our approach performs considerably better even than the
best-of-5 oracle, indicating the potential gain from model
fitting to our densely predicted correspondences instead of
their sparse joint predictions. This improvement can be
achieved at similar computational cost: an optimized im-
plementation of our algorithm runs at around 120fps on a
high-end desktop machine.
Comparison with the Kinect SDK. The Microsoft Kinect
for Windows SDK is designed to track people from live
video. As such, a direct comparison with our single frame
approach is hard. However, we managed to obtain an in-
dicative comparison, by repeatedly injecting a single test
frame multiple times into the SDK. For many of our test
frames, this resulted in a sensible skeleton being output.
(The frames for which the SDK did not produce a skele-
ton output tended to be the more challenging ones). In
the results in Fig. 3(b) we compare our algorithm with the
SDK on only these successful test frames, using the ±120◦

test set since the SDK does not handle back-facing poses.2

The results indicate a marked improvement over the SDK,
though are indicative only for single frames. In visual in-
spection, the main improvements seem to be due to better
scale estimation, handling of cropped frames, and handling
of side-on poses.
Comparison on the Stanford dataset. We report re-
sults on the Stanford dataset [15] of real depth images in
Fig. 3(c), using the mean joint error for comparison. This
dataset contains depth images of a single person, and is con-
siderably less varied (and thus less challenging) than our
main synthetic test set (results below). Although these are
real images, the pose variation is much smaller than the
other test sets, and the current state-of-the-art algorithms
make use of temporal information, which we eschew as
discussed above. Furthermore, the marginal improvements
provided over the current state of the art [25] are bolstered
by our algorithm running at least two orders of magnitude
faster. For this experiment we used a forest regressor trained
on data limited to ±120◦ as almost all sequences contain
only frontal depth images. The marker position predictions
were generated from our model as virtual skinned vertices
with bone offsets estimated by hand from 10 images with
ground truth.
Main test set. We present a selection of results on our chal-
lenging test set in Fig. 4, with accuracy graphs in Fig. 5(a,b).
On the worst-case metric, our algorithm (blue curve) gets
around 55% of frames essentially correct (all joint within
0.2m). This is an extremely difficult test set and metric, and
the comparisons above with related work suggest that this is
actually a rather good score. The corresponding mean joint
error is 0.092m. Note that the best achievable pose (‘opti-
mal θ’), obtained by minimizing the error in joint positions
given the ground truth, does not give a perfect result (red
curve). This is because the test set was rendered from mod-
els with more degrees of freedom than we fit (e.g. global
scale poorly approximates the shape differences between a
4 year-old child and an overweight 2m tall adult). The re-
sult obtained given the ground truth correspondences (green
curve) shows that there is considerable room for improve-

2For this experiment we did not include the hip joint predictions in the
metrics as the definition of these joints differs considerably.
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Figure 4. Example inference results. Each block shows the test depth image, a visualization of the inferred dense surface correspondences, and (front,
right, top) views of the inferred skeleton after optimization (crosses are ground truth). Note high accuracy despite wide variety in pose, body shape and
height, cropping, and rotations. The optimization of the model parameters can deal with large errors in the correspondences (e.g. the chest in row 1, column
3). Only single frames are used; there is no tracking. The third row shows some failure modes, including inaccurate predictions of occluded joints and
confusion between legs.
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Figure 5. (a, b) We compare our algorithm’s result to the result of optimizing our energy given the ground truth correspondences, and to the accuracy
metrics computed at the optimal θ. See text for discussion. (c, d) Scatter plots of facing direction and height estimation accuracy.

ment of our algorithm by (i) estimating the correspondences
more accurately, and (ii) improving the energy function or
optimization. However, note that even with perfect corre-
spondences, incorrectly predicted occluded joints are still
penalized in our metric as errors. Fig. 6 further highlights
the effect of noise in the correspondences.

To highlight the variability in our test set, we show in
Fig. 5(c,d) scatter plots comparing the ground truth to in-
ferred estimates of facing direction and person height (via
the global scale parameter) across the 5000 frames in our
test set. The large majority of frames have the facing direc-
tion accurately estimated by our algorithm across the full
360◦ range, though there are clearly some outliers which are
flipped, probably because the forest sometimes fails to dis-
ambiguate the highly symmetric front and back sides of the
body. Height estimation is also generally good, though with
perhaps more spread. If temporal information were avail-
able one might expect these parameters to be more accu-
rately inferred (height in particular is stationary over time),
which should in turn improve the joint prediction accuracy.

Multi-view experiments. In Fig. 7 we show results on
multi-view silhouette and depth data using the energy de-
fined in Sec. 4.2; the silhouettes were generated by sim-

ply flattening the depth images, so a direct comparison is
possible. Note that accurate 3D pose can be inferred even
from 2D silhouettes. Having more views improves accu-
racy, and the much stronger cues from depth images result
in superior pose estimation accuracy. For this experiment
we fixed virtual cameras at 0◦,±30◦,±45◦ around a circle
at 3m from the subject, and rendered a synthetic multi-view
test set. During optimization we assume a known extrin-
sic calibration of the cameras. The reduction in occlusion
given multiple views meant that the best results we obtained
obtained were with λprior = 0. Due to the inherent ambigu-
ity in facing direction given only silhouettes, we restrict the
facing direction to ±60◦ from the central camera. We also
trained separate regression forests for each view; for exam-
ple, the −45◦ view was trained with with facing directions
in the range [−15◦, 105◦]. Perhaps these restrictions might
be relaxed given the facing direction from tracking.

6. Discussion
This paper has proposed the use of regression forests to

directly predict dense correspondences between image pix-
els and the vertices of an articulated mesh model. These
correspondences allow us to side-step the classic ICP prob-
lem of requiring a good initial pose estimate. Our exper-



Accuracy vs noise in correspondences 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0% 20% 40% 60% 80% 100%%
 f

ra
m

e
s 

w
it

h
 a
ll 

jo
in

ts
 

w
it

h
in

 D
=2

0
cm

 o
f 

G
T 

% noise added 
Figure 6. Effect of noisy correspondences. Starting at ground truth u,
a given proportion of correspondences are randomly assigned a new mesh
vertex. As more noise is added pose estimation accurate deteriorates.

iments on several challenging test sets have validated that
these correspondences further allow accurate human pose
estimation using one-shot optimization of the model param-
eters, for both depth and multi-view silhouette images. This
efficient one-shot approach means that our algorithm can
run at super real-time speeds.

The accuracy numbers we quote may in some cases ap-
pear low in absolute terms. We argue that tackling problems
with such hard metrics and challenging test sets should be
encouraged to drive progress. Indeed, our comparisons with
other techniques should convince the reader that even these
seemingly low scores are a significant improvement over
the state of the art.

However, many aspects of the algorithm can still be im-
proved: the inferred correspondences are quite noisy; the
optimizer does not always find a good minimum; and sev-
eral of the model hyper-parameters have not been properly
optimized. The regression models in the tree leaves contain
further information about correspondence that is not cur-
rently used. We believe our approach to be fairly general
and as future work plan to investigate other models such
as faces, as well as adding motion priors to allow smooth
tracking of sequences.
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