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Figure 1: FlexSense is a fully flexible, transparent, thin-film surface, comprising of sparse printed piezoelectric sensors (left).
Our main contribution is a new set of algorithms that takes these sparse sensor measurements (center), and reconstruct the
dense 3D shape of the device and complex deformations in real-time (right).

ABSTRACT
We present FlexSense, a new thin-film, transparent sensing
surface based on printed piezoelectric sensors, which can re-
construct complex deformations without the need for any ex-
ternal sensing, such as cameras. FlexSense provides a fully
self-contained setup which improves mobility and is not af-
fected from occlusions. Using only a sparse set of sensors,
printed on the periphery of the surface substrate, we devise two
new algorithms to fully reconstruct the complex deformations
of the sheet, using only these sparse sensor measurements.
An evaluation shows that both proposed algorithms are capa-
ble of reconstructing complex deformations accurately. We
demonstrate how FlexSense can be used for a variety of 2.5D
interactions, including as a transparent cover for tablets where
bending can be performed alongside touch to enable magic
lens style effects, layered input, and mode switching, as well
as the ability to use our device as a high degree-of-freedom
input controller for gaming and beyond.
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INTRODUCTION
There has been considerable interest in the area of flexible or
deformable input/output (IO) digital surfaces, especially with
recent advances in nano-technology, such as flexible transis-
tors, eInk & OLED displays, as well as printed sensors. The
promise of such devices is making digital interaction as simple
as interacting with a sheet of paper. By bending, rolling or
flexing areas of the device, a variety of interactions can be
enabled, in a very physical and tangible manner.
Whilst the vision of flexible IO devices has existed for some
time, there have been few self-contained devices that enable

rich continuous user input. Researchers have either created
devices with limited discrete bending gestures, or prototyped
interaction techniques using external sensors, typically camera-
based vision systems. Whilst demonstrating compelling results
and applications for bending-based interactions, the systems
suffer from practical and interactive limitations. For example,
the bend sensors used in [7, 17] are limited to simple bending
of device edges, rather than the complex deformations one
expects when interacting naturally with a sheet of paper. In
contrast, vision-based systems e.g. [31] are not self-contained,
are more costly and bulky, and can suffer from occlusions,
particularly when the hand is interacting with the surface.

In this paper, we present FlexSense, a transparent thin input
surface that is capable of precisely reconstructing complex and
continuous deformations, without any external sensing infras-
tructure (see Figure 1). We build on prior work with printed
piezoelectric sensors (previously used for touch, gesture and
pressure sensing, [23, 41]). Our new design uses only a sparse
set of piezoelectric sensors printed on the periphery of the sur-
face substrate. A novel set of algorithms fully reconstruct the
surface geometry and detailed deformations being performed,
purely by interpreting these sparse sensor measurements. This
allows an entirely self-contained setup, free of external vision-
based sensors and their inherent limitations. Such a device can
be used for a variety of applications, including a transparent
cover for tablets supporting complex 2.5D deformations for
enhanced visualization, mode switching and input, alongside
touch; or as a high degree-of-freedom (DoF) input controller.

In summary our contributions are as follows:

• We present a new sensor layout based on the prior PyzoFlex
system [23], specifically for sensing precise and continuous
surface deformations. This previous work demonstrated the
use of printed piezoelectric sensors for touch and pressure
sensing. In contrast, we present the idea of using these
sensors to enable rich, bidirectional bending interactions.
This includes the design of a new layout, associated sensor
and driver electronics specifically for this purpose.
• Our main contribution are two algorithms that can take

measurements from the sparse piezoelectric sensors and



accurately reconstruct the 3D shape of the surface. This
reconstructed shape can be used to detect a wide-range
of flex gestures. The complexity of the deformations af-
forded by our reconstruction algorithms have yet to be seen
with ‘self-sensing’ (i.e. self-contained) devices, and would
typically require external cameras and infrastructure.
• We train and evaluate the different algorithms using a

ground-truth multi-camera rig, and discuss the trade-offs
between implementation complexity and reconstruction
accuracy. We also compare to a single camera baseline.
• Finally, we demonstrate new interaction techniques and

applications afforded by such a novel sensor design and re-
construction algorithms. In particular as a cover for tablets
where IO is coupled, and as a high DoF input controller.

RELATED WORK
There is broad range of work on flexible sensing and displays.
[31] distinguishes this work into two categories. The first are
external input devices where the sensor is used to control a
remote display and UI, and output is typically non-flexible.
The second are deformable handheld devices, where input and
output is coupled, and the display can also be deformable. We
extend this categorization further, by identifying differences in
sensing approaches. Self-sensing systems contain onboard sen-
sors on the device, which can be used to directly estimate the
deformation (e.g. devices based on embedded bend sensors).
External sensing systems use sensors embedded in the envi-
ronment rather than the device to estimate deformations (e.g.
camera-based deformation systems). In this section we explore
prior work on bendable and deformable surfaces, based on this
broad taxonomy.

Perhaps the first example of a deformable external input de-
vice that supported self-sensing is the work by Balakrishnan et.
al. [1] which used the ShapeTape sensor [3], and a NURBS
(non-uniform rational basis spline) representation for 3D mod-
eling. ShapeTape is a thin long rubber tape subdivided into
a series of fiber optic bend sensors, each detecting bend and
twist (inspired by the sensors used in data gloves e.g. [40]).
This showed the potential for exploiting bimanual input for
modeling 3D curves. [12] demonstrated the use of piezoelec-
tric thin films to produce a device similar to ShapeTape. [2]
use external sensing in the form of camera and vision tech-
niques to reconstruct complex curves from long passive pieces
of wire. The form-factor of these devices make them ideal for
3D curve drawing, but more complex 2D and 2.5D flexing and
bending interactions are less natural.

The first conceptual deformable handheld device was the
Gummi system [28]. The project was motivated by innova-
tions in flexible displays and transistors. The prototype device
could be considered self-sensing but used bend sensors placed
behind a TFT display and a 2D trackpad at the rear. Only
small discrete bending gestures were supported, but the work
demonstrated some of the interactive possibilities that bending
interfaces afford. [32] use a similar prototype setup to Gummi,
for flicking through pages in an e-reader. Whilst IO is coupled
in these systems, the display remains rigid.

PaperPhone was one of the first devices that coupled flexible
IO into a single self-contained device [17]. A flexible PCB
housed five bend sensors, and a kNN-based classifier was used
to detect discrete bend gestures. A user study proposed a clas-
sification scheme that categorized bend gestures by location

(top corner, side, or bottom corner) and direction (up or down).
[36] also use a flexible PCB but with different bend sensor
layout, to extend this classification scheme to include bend size
and angle. The Kinectic Phone by Nokia [15] demonstrates a
full color bendable phone, a manifestation of the early Gummi
vision. Using this device, Kildal et al. [3] explore bending
and twisting, and propose design guidelines for deformable
devices. PaperTab [33] is a self-contained electronic-reader
with two bidirectional FlexPoint sensors for input. The system
demonstrates a progression of the digital desk concept [9, 38],
which is a clear motivation for flexible, paper-like devices,
but for the first time uses self-contained IO, as opposed to
projectors and cameras.

Other self-sensing systems look purely at input sensing. Book-
isheet used two bend sensors on the back of acrylic sheets to
create both a dual and single sheet flexible input device [37].
Bend gestures were coarsely categorized into four discrete
classes, and mapped to turning pages in eBooks. FlexRemote
[21] consists of 16 flex sensors on the periphery of a thin
acrylic sheet which can recognize eight deformation gestures
for remote input. Twend [8] uses eight fiber optic bend sensors
embedded into a thicker substrate to detect 18 unique bends.

All these systems can be thought as self-sensing allowing for a
great deal of mobility and compactness, and avoiding occlu-
sions. These systems typically are not focused on accurate 3D
reconstructions of surface shape, and most detect discrete bend
gestures. This is partly because of the complexity of mapping
from raw sensor readings to precise continuous deformations.
An exploratory study by Lee et al. [20] captures data from
users deforming a variety of non-digital substrates including
paper, plastic as well as stretchable fabrics, demonstrating
the richness and complexity of deformations afforded. These
types of interactions can be difficult to capture purely using
discrete gestures.

To enable such types of reconstructions, systems have em-
ployed external sensors, generally in the form of cameras. [6]
use retro-reflective tags embedded into a deformable substrate
to support flexing and folding gestures. [18] use the Vicon
motion tracking system to reconstruct sparse 3D points and fit
a mesh for simple 3D modeling. [16] use a magnetic tracker
and spherical projection onto a deforming sheet of diffuse
acrylic. [39] use a combination of external WiiMote sensor
and projector, coupled with onboard pressure and bend sensors
to create a hybrid deformable projected display. [31] use a
Kinect and projector for advanced manipulations of a sheet of
paper with coupled output. A 25×25 vertex plane is deformed
to fit the observed Kinect data. Eight distinct poses can be
linearly combined using a weighted interpolation scheme to
form more complex shapes. Further, the system analyses the
Kinect dot pattern to disambiguate the user’s hand from the
deformation surface.

Related to this area, is work on projector-vision based fold-
able [19, 13], rollable [14] and shape-changing displays [25].
Another related field is the shape sensing of malleable sur-
faces and materials. In Jamming User Interfaces [5], for
example, the authors use two different techniques, namely
structured light and electric field sensing for deriving shape
information. DeforMe [22] projects images realistically onto
deformed surfaces by tracking the deformation with an invis-
ible infrared-based dot pattern on the material. In contrast,



PhotoelasticTouch [26] detects changing optical properties of
a transparent deformable material, and Digital Foam [29] in-
troduces a deformable device with embedded pressure sensors
for 3D modeling.

Whilst interesting areas of research, our work is firmly focused
on reconstructing the 3D shape and continuous deformations
of a thin transparent surface. PrintSense demonstrates capaci-
tive touch and proximity sensing on a flexible substrate, and
allows for bend sensing using transmit and receive electrodes.
Flexible touch and pressure sensors have been demonstrated,
either using transparent piezoelectric sensors [23] or opaque
IFSR sensors [24]. Murata have developed a high-transparency
organic piezoelectric film for bend sensing on mobile devices1

although details are currently limited.

Our work is inspired by and builds on these previous systems.
We support rich, continuous and accurate 3D reconstructions
of deformations of the surface, allowing high DoF input. Our
system is fully self-sensing, enabling a compact, mobile form-
factor, but without limiting the range of deformations. Our
sensor is semi-transparent, allowing for unique capabilities,
such as allowing placement at the front of a display rather than
embedded in the back. Our sensor therefore supports both,
the use as an external input device, or coupled closely with a
display to support novel application scenarios.

DESIGNING FLEXSENSE
Our work builds on the flexible, transparent PyzoFlex sensor
[23, 41]. In this section we provide a brief introduction to
this work, which specifically relates to using these sensors for
bending. We refer the reader to [23] for further technical de-
tails regarding the underlying piezoelectric sensor. Whereas in
this prior work, the sensors were used for pressure sensing, our
main goal in this paper is to exploit these sensors for precise
3D reconstruction of surface shape and bending to facilitate
deformation-based interactions. This requires a rethinking of
the existing sensor layout, as detailed in this section.

Piezoelectric bend sensors
Piezoelectric sensors work as follows: deformations of a piezo
element causes a change in the surface charge density of the
material resulting in a charge appearing between the electrodes.
The amplitude and frequency of the signal is directly propor-
tional to the applied mechanical stress. Since piezoelectricity
reacts to mechanical stress, continuous bending is a well-suited
application for such sensors. We propose an entirely printed,
semi-transparent, and bidirectional bend sensor based on differ-
ent functional inks (see Figure 2). The active sensor material
is formed by a poled copolymer P(VDF-TrFE) which shows
a large piezoelectric coefficient (32 pC/N) and can be printed
as a 5µm thick transparent layer [41]. The screen printing
process in general ensures low-cost and simple fabrication
without cleanroom requirements or evaporation.

All components of the sensor have relatively good transparency
values with low distracting absorbency (∼ 85%). Note that
the current sensors are optimized to provide a good trade-off
between signal strength and transparency. If even higher trans-
parency (> 90%) is desired, metal nanowire inks can be used
as electrode material instead of PEDOT:PSS. For reading sen-
sor measurements printed, non-transparent conductive silver
wires are used. In order to limit occlusions caused by silver

1http://murata.com/new/news_release/2011/0921
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Figure 2: Our piezoelectric bend sensors consist of differ-
ent, entirely printable functional inks. To have less (non-
transparent) conductive silver lines all bend sensors printed
on one substrate share one bottom electrode.

Figure 3: Layout of original PyzoFlex sensor (left) and our
deformable sensor (right).

lines, all sensors on one substrate share one bottom electrode,
which is separately wired to the driver electronics. The conduc-
tive traces can be placed freely across the surface, depending
on application scenarios e.g. on the periphery or more central.

Sensor Layout
Multiple sensors must be combined together in order to be able
to reconstruct the full deformations of the surface. We chose
an A4 like form-factor because this matches commercially
available flexible displays as well as common tablet screens,
but is also big enough to be used as standalone input sensor.
Figure 3 (left) shows the original PyzoFlex sensor layout. As
this layout was specifically designed for touch and pressure
sensing, a dense grid of 16 × 8 sensors was employed in an
active matrix arrangement. However, for bend sensing and
shape reconstruction, this design is non-optimal. First, there is
a large amount of sensor redundancy across the film. Second,
the active matrix requires a large part of the outer film to be
used for the printed silver wires. Finally, the active matrix
scheme can suffer from ambiguities when many sensor mea-
surements must be read at once, making such an arrangement
problematic when bending (for more details see [23]).
Instead for FlexSense, we sought to use a sparse set of sensors,
but placed in a more meaningful arrangement to optimize
for a wide variety of continuous and smooth deformations,
including extreme bends. The final design of our layout is
shown in Figure 3 (right). In the remainder of this section, we
provide more rationale for this sensor layout.

Existing Layouts in Related Work From related work, we
identified the following, most essential requirements for our
sensor layout: In order to track complex deformations an opti-
mal bend sensor should consider properties such as location
(where does the bend action happens), direction (upwards
or downwards), size (involved surface area), angle (sharp or
round angle), speed, and duration of bend actions [36].
To infer an optimal layout, we investigated arrangements used
in prior work [7, 17, 36] in terms of the presented requirements
and their sensor alignment. We recreated those layouts using

http://murata.com/new/news_release/2011/0921


Figure 4: Paper prototyping to evaluate designs further (left).
Our final layout (top right) and final printed clear surface
(bottom right) is an optimal trade-off between limited amount
of sensors and strong deformation sensing capabilities.

off-the-shelf bend sensor strips (as used in the papers) to be
able to understand their strengths and weaknesses. Hence, we
combined different concepts of existing sensor configurations
into one solution, which is capable of tracking the identified
requirements and therefore complex deformations.

Our Layout To create and evaluate several different sensor
patterns, we used paper and Scotch tape for fast prototyping
(see Figure 4, left). This enabled us to quickly evaluate dif-
ferent designs “hands-on”. The flexibility of paper and tape
allowed us to bend the prototypes into all directions revealing
the pros and cons for each pattern, and a ruler was used to
follow bend directions/orientations and to identify spots which
are not covered by any sensors.
The final layout arranges 16 sensors at an outer ring of the
sheet (see Figure 4, right). Since we use a plastic foil as
substrate, it is not possible to deform the sheet only in the
center. Therefore, every deformation changes the shape of
the edges, which means that by tracking the edges accurately
nearly every shape deformation can be reconstructed. Another
strength of this layout is that each sensor overlaps with one or
multiple other sensors resulting in additional information as
to where a bend actually happens (as proposed in [36]). For
example, the corner areas which are particularly interesting
for bend interaction are covered by three sensors, one at a
45◦ angle and two at right angles. From this arrangement it
is possible to accurately detect how the corner is bent (bend
angle) as well as where the bend happens (bend position). Due
to the permanent overlap of sensors nearly every deformation
actuates multiple sensors, which enables the detection of a
wide variety of possible deformations. Those complex patterns
of sensor actuations allows for the reconstruction of complex
and continuous deformations.

Driver Electronics
As mentioned earlier, every piezoelectric sensor creates a sur-
face charge which correlates to the applied deformation. Since
the total number of sensors in our layout is small, we can con-
nect each individually using conductive silver ink to the driver
board. This removes the issues associated with the active ma-
trix described earlier. Each sensor is connected to a LMC6482
CMOS rail-to-rail amplifier. These are placed on a small PCB
board that is connected to the foil. Before the amplification the
signals run through a low pass filter, which protects it against
electrostatic discharge. After the amplification a second low
pass filter protects the signal from anti-aliasing issues. Each
signal gets measured through a MAX127 12-bit data acquisi-
tion system which sends the data via a two-wire serial interface
to a microcontroller board (Atmel SAM3X8E).

Signal Processing
The electric charges generated in a piezoelectric sensor decay
with a time constant determined by the dielectric constant,
the internal resistance of the active material and the input
impedance of the readout electronics. Due to this fact, the
raw signal of a piezoelectric sensor are not usable for absolute
measurements. However, once the parameters of the exponen-
tial signal discharge of the piezoelectric sensors are known it
is possible to predict the signal progression over time. Every
deformation applied to the sensor will cause a deviation of this
predicted signal, which is directly proportional to the applied
mechanical stress. Integration over these deviations leads to
absolute sensor measurements, which directly correlate with
the strength of the applied deformations [23]. Note there is a
trade-off with this approach, as integrated errors can persist
over time and lead to sensor drift. This can be eliminated with
a heuristic which resets the signal e.g. when there is no active
interaction on the sensor. In the next section, we describe two
reconstruction algorithms where one relies on the integrated
signal and one is able to bypass the described issues working
directly from the raw signal.

RECONSTRUCTING FLEXSENSE
Now that we have described the FlexSense hardware and sen-
sor layout, we turn our attention to how these sparse (raw or
integrated) sensor measurements can be used to accurately
recover the 3D shape of the surface during deformation.

Main Pipeline
Reconstructing the full 3D surface shape from a sparse set of
sensor measurements is clearly a challenging task. Each sensor
reading from our foil is an amplified voltage measurement,
and somehow we need to map these combined values to a
real-world reconstruction of the surface. In this section we
present two data-driven algorithms that tackle this problem.
Both of our methods are first trained using pairs of sensor
measurements and ground truth 3D shape measurements of
the foil. This pre-processing training phase is what enables
our algorithms to infer the shape of the foil from the sparse
sensor data at runtime.

To collect ground truth measurements of the shape of the foil
together with corresponding sensor measurements, we follow
the approach illustrated in Figure 5. We print an array of
markers on a sheet of paper covering our sensor foil. Then
we use a custom-built multi-camera rig (described later) to
track the 3D position of the markers with high accuracy. We
leverage multiple cameras in order to track as many markers
as possible despite occlusions due to the deforming foil and
interacting hands. To estimate the positions of the remaining
occluded markers (shown in red in Figure 5 and 7) we exploit
the prior knowledge that the foil is locally rigid to extrapolate
the reconstructed surface (described later).

We use this sequence of resulting ground truth shapes along
with the corresponding sparse sensor measurements to train
our two algorithms. In the upper left part of Figure 6 we show
the training for our linear interpolation based approach. It
clusters the training data into K = 30 common shapes. The
mean shape of each cluster is called a blendshape and is stored
together with its averaged corresponding sensor measurements.
At runtime (see Figure 6, bottom left) the sensor data is used
to retrieve the K = 7 blendshapes which match the input
sensor data (based on a distance metric described later). The



Flexible sensor 
with fiducial markers

Sequence of N x 16 
sensor measurements

(raw + integrated signal)

Sequence of N meshes

As-Rigid-As-Possible
based mesh fitting

Marker detection + 
sparse 3D point triangulation

right camera left camera

st
er

eo
 ri

g 
1

st
er

eo
 ri

g 
2

Figure 5: Processing pipeline for ground truth capture. We
place fiducial markers on the front and backside of the foil
and record their 3D position using a two stereo camera rig,
together with the recorded sensor measurements (see text
for more details).

final estimated shape is a weighted average of the retrieved
blendshapes. This scheme is similar to the approach of [31]
and its main benefit is that it is simple to implement, and can
yield compelling results. However, a shortcoming of this ap-
proach is that it does not generalize well to large sensor signal
variations. In practice, the measured sensor signal depends
on many variables such as bending speed, temperature and
whether the sensor is being grasped. In certain scenarios, this
can result in inaccuracies and accumulation of error over time
(see detailed discussion later).

To tackle these challenges we propose to use a more sophisti-
cated machine learning algorithm. We train this method using
the raw sensor data (see Figure 6, top right) to learn a (non-
linear) mapping function from the raw sensor measurements to
the mesh model. At runtime (see Figure 6, bottom right) it can
efficiently infer the geometry given the learned mapping func-
tion and the sparse sensor data. This method generalizes well
to unseen variations in the sensor signal and hence performs
superior to the linear interpolation approach. However, it is
more complex to implement. As shown later, there is value
in each approach and we describe both in detail in the next
section.

A tale of two algorithms
In this section we provide a deeper formulation of our two
algorithms to aid replication.

Preliminaries Raw sensor measurements are represented as
a vector x ∈ RF and integrated measurements as z ∈ RF
(F = 16 for our sensor foil). Our goal is then to estimate the
3D “vertex” positions V = {v1, ...,vN} ⊆ R3 of N = 96
canonical locations arranged in a 12 × 8 grid on the sheet.
When the sheet is at rest, these vertices take on their known
positions V̄ = {v̄1, ..., v̄n} ⊆ R3.

In the following, it will sometimes be helpful to vectorize the
vertex positions V = {vn}Nn=1 into a column vector V ∈ R3N

that we wish to estimate given the raw or x ∈ RF or integrated
signal z ∈ RF . Further, when we are required to deal with
a set of J instances of these variables, we will often label
these variables as Vj = {vjn}Nn=1, Vj and xj . In the case
of a temporal sequence of length T we will instead use t to

index these variable instances. We will, however, often leave
off these indices when speaking of a single instance of these
variables or when doing so makes equations more clear.

Ground Truth Capture As mentioned we take a data-driven
approach for reconstructing the deformations of FlexSense
and therefore require training data in order to correlate the
sensor measurements of the flexible sensor with the 3D vertex
positions. In this section, we therefore explain how to obtain
ground truth for a variety of deformations.

In order to generate data of this form, we print an array of
N = 12×8 fiducial markers onto the front and backside of the
flexible sensor foil as to coincide with the N vertex positions
we wish to estimate (see Figure 5, top left). Although it is
possible to directly estimate the position (and even orientation)
of each marker with a single camera [11], this estimation is
unreliable when the markers are considerably deformed as in
our scenario. We therefore create a calibrated stereo rig (i.e.,
two cameras with known relative position and orientation)
that we label A. In rig A, we are able to detect some subset
CA ⊆ {1, ..., N} of theN markers in both of the rig’s cameras.
For such a marker n ∈ CA, we use triangulation to estimate
v̂An ∈ R3 of vertex n.

Note that due to occlusions and strong deformations often only
a small number of the marker positions can be estimated with
stereo rig A. To increase the number of vertex positions that
we can estimate, we use a second stereo rig that we label B to
obtain estimates for a second set of markers CB ⊆ {1, ..., N}.
The set of indices with estimations from both rigs CA ∩ CB
defines two input point clouds in one-to-one correspondence.
We obtain the optimal rigid transformation by using the Kabsch
algorithm [10] to minimize

Erigid(R, τ) =
∑

n∈CA∩CB

‖v̂An − (Rv̂Bn + τ)‖2 (1)

where R ∈ SO3 is a rotation matrix and τ ∈ R3 is a trans-
lation. Using this transformation, we can obtain a set C =
CA ∪ CB in a common coordinate frame. To do this for n ∈ C,
we estimate the corresponding vertex as

v̂n =


1
2 (v̂An +Rv̂Bn + τ) n ∈ CA ∩ CB
v̂An , n ∈ C − CB
Rv̂Bn + τ n ∈ C − CA

(2)

As-Rigid-As-Possible Refinement Unfortunately, we are gen-
erally unable to estimate the locations of allN points even with
two stereo rigs. Therefore, we exploit our prior knowledge
that the sheet is locally rigid to extrapolate the reconstructed
surface and provide estimates for the remaining points. To
do this, we utilize the as-rigid-as-possible (ARAP) regularizer
[30] which measures how locally non-rigid a point cloud with
a neighborhood structure is. Here the local-rigidity for point n
is measured in relation to the other points in a neighborhood
N (n) ⊆ {1, ..., N}, which in our case is simply the neighbors
of n in the 12 × 8 grid. The ARAP measure of deformation
with respect to the rest configuration V̄ is

EARAP(V) =

N∑
n=1

min
R

∑
n′∈N (n)

‖(v̄n′ − v̄n)−R(vn′ −vn)‖2
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Figure 6: We present two reconstruction algorithms, both with different trade-offs. On the left: A weighted linear interpolation
scheme using kNN. On the right: A machine learning based approach (see text for more details).

Figure 7: Ground truth capture. Markers are detected in
each camera image (green and orange dots), and triangu-
lated as a 3D point across each stereo pair (green dots in
images and mesh). An ARAP refinement step regularizes
for unseen or occluded vertices (red dots on mesh).

where R ∈ SO3. This energy will be low for the smooth
deformations that we expect (see Figure 4) as a rigid rotation
can be used to approximate the deformation of the local defor-
mation of each neighborhood. When this is impossible (e.g.
sharp creases), however, the energy will be high. We therefore
formulate the following energy

E(V) =
∑
n∈C
‖v̂n − vn‖2 + λARAPEARAP(V) (3)

defined over the vertex positions V . By minimizing this en-
ergy, we are seeking to find a set of vertex positions V that
approximately match the estimates {v̂n : n ∈ C} while not
substantially deforming (in the ARAP sense) from the rest
configuration.
To minimize (3), we follow the lead of [34] and label each
rotation matrix in (3) with latent variables R = {Rn}Nn=1 ⊆
SO3. This allows one to define

E′ARAP(V,R) =

N∑
n=1

∑
n′∈N (n)

‖(v̄n′ − v̄n)−Rn(vn′ −vn)‖2

with the property thatEARAP(V) = minRE
′
ARAP(V,R). Plug-

ging this into (3), we get that E(V) = minRE
′(V,R) where

E′(V,R) =
∑
n∈C
‖v̂n − vn‖2 + λARAPE

′
ARAP(V,R) . (4)

We thus minimize E′(V,R) using Levenberg-Marquardt2. We
initialize this procedure by setting vn = v̄n and Rn = I3 for
each n ∈ {1, ..., N}. Finally, we parameterize the rotations
using an axis-angle representation to enforce the constraint
that each Rn remains a rotation matrix. In practice, this leads
to a robust and real-time method for recovering the full mesh
from a sparse set of vertices (see Figure 7).
2https://code.google.com/p/ceres-solver/

Dataset Construction We have shown how to capture ground
truth vertex positions V to associate with a signal x ∈ F .
As we are capturing temporal sequences, in addition to the
raw signal xt and vertex positions Vt at time t, we will also
record the integrated signal zt ∈ RF up to time t and the
instantaneous vertex displacements Dt = {dt1, ...,dtN} ⊆ R3.
The vertex displacement for vertex n is simply vtn − vt−1n . By
capturing this information for a wide variety of sequences, we
obtain a large fixed dataset {(xj , zj ,Vj ,Dj)}Jj=1 that we will
use for training.
Learning to Infer Shape and Deformation
In this section, we describe how to leverage this training set
to predict the positions V of the vertices. In particular, as
the rest pose V̄ is easily detected when x ≈ 0, we assume
that we have seen a subsequent t time steps and attempt to
predict Vt. In order to estimate the 3D points Vt at time t, we
propose two different approaches, both data-driven. The first
uses a distance metric in the sensor input space (i.e. voltage
measurements) to interpolate a set of key deformation modes.
The second one uses machine learning techniques to directly
regress the 3D vertex displacements.
Nearest Neighbor Lookup and Linear Interpolation Our first
method assumes that the vertex position vector V ∈ R3N is a
linear combination of a set of K blendshapes or deformation
modes which we denote as {B1, ...,BK} ⊆ R3N . That is,

V =

K∑
k

αkBk (5)

where αk defines the weight of the k’th deformation mode
{vnk}Nn=1 ⊆ R3. To find these K deformations we run K-
means to extract K modes {v̄k}Kk=1 ⊆ from our set and which
appear to cover all the common configurations we expect to
use. For each k, we average the integrated signal

z̄k =
1

|ζk|
∑
j∈ζk

zj (6)

where ζk ⊆ RF is the set of integrated signals in the training
set whose corresponding vertex positions were assigned to
mode k in K-means. At runtime we see a new integrated
signal z and compute αk as

αk =

(
1−

( |z̄k − zt| Ffk∑
j |z̄j − zt| Ffj

))β
, (7)

https://code.google.com/p/ceres-solver/


where F
fk

weights the distances based on the number of sensors
involved during the bending gesture. In particular F is the total
number of sensors attached to the sheet and fk are the activated
sensors of the model k, those absolute values are greater than
θ = 200; β is a regularization term to ensure smoothness
during the transition between different configurations. We
then plug these weights into (5) to reconstruct the positions V .
Learning-based Continuous Regression The basic method
proposed in the previous section assumes that all the possible
poses can be generated through a linear combination of K
modes. Also, recall that the signal z comes from an integration
process that could lead to drift effects over the time. Unfor-
tunately, these properties can lead to inaccuracies in the final
reconstruction.
To address these issues, we consider regression-based methods
that directly estimate the vertex displacementsD using the raw
signal x ∈ RF . In particular, we seek to leverage our large
training set to directly learn a mapping

fin : x→ din ∀n = 1, . . . , N ∀i = 1, 2, 3 (8)

from the raw signal x to the displacement din in coordinate
i of vertex n. For coordinate i of vertex n, we extract from
our training set the following set of tuples {(xj ,djin)}Jj=1 of
size J . We use this to learn a function fin that minimizes the
empirical risk

1

J

J∑
j=1

L
(
fin(xj ,d

j
in

)
) +R(f), (9)

where L(◦) is the loss function and R(◦) is a regularization
term that gives a tradeoff between the accuracy and the com-
plexity of the model.
Linear Model. Since we want to predict the position of all the
N vertices with real-time performance we use a linear regres-
sion model: fin(x) = x>win, with win ∈ RF . Indeed, with a
high sampling rate of the signal, it is reasonable to assume that
the relation between the input and output can be approximated
by such a linear function. Let X = [x1, . . . ,xJ ]> ∈ RJ×F be
the matrix of all the examples J and given the groundtruth ver-
tex displacements Y = [D>1 , . . . ,D

>
J ] ∈ RJ×3N where Dj

is just the set {djin : n ∈ {1, ..., N}, i ∈ {1, 2, 3}} vectorized
into a column vector. This allows us to rewrite (9) for all N
vertices simultaneously as

W? = arg min
W
‖Y −XW‖22 + λ‖W‖2 (10)

where W ∈ RF×3N is the matrix of all the linear regressors,
and ‖ ◦ ‖2 is a regularizer that favors smaller norms (i.e. lower
complexity). The above optimization problem is known as
Tikhonov regularization or Regularized Least Square (RLS)
[35, 4] and it has the close form solution:

W? = (X>X + λI)−1X>Y (11)

with I ∈ RF×F being the identity matrix.
We also extended this approach to handle non-linear functions
by using the Representer Theorem [27]. Both the linear and
non-linear model are able to describe the relation between
the sensor signal and vertices. However, due to the higher

complexity of the non-linear model (linear growth with the
number of examples T ), our machine learning based approach
relies on the linear model.
Run-Time. At run time, given the current signal xt we com-
pute the N vertex displacements as Dt = W>xt. The current
position of the sheet is then computed as Vt = Vt−1 + Dt.
The initial position V0 is assumed to be known (i.e. the resting
pose). The learning method we propose ensures enough robust-
ness against drift effects, which has little impact in the final
reconstruction. However, it is always possible to accurately
detect the resting pose when there is no activity on the sensor:
by simply computing the standard deviation σ of the signal xt
and classify the current pose as initial position if σ < θ.
RESULTS AND EXPERIMENTS
We now evaluate the proposed surface reconstruction methods,
whereas the core question of the experiment is to measure our
system accuracy with regard to the two proposed algorithms.
For this we again use our ground truth rig. We acquire 10
sequences of bending gestures covering the most common
deformations for interaction scenarios. Each sequence con-
tains approximately 4, 000 frames, in total, so our data-set is
composed of 40, 000 frames. We randomly split the data-set
into training and validation set, where 30, 000 examples are
used for training and the remaining 10, 000 for testing.
The error (in meters) is computed using the average Euclidean
distances between the ground truth vertices and the predicted
configuration.
Reconstruction Error
We first compare the reconstruction performances of the linear
interpolation (blendshape model) and regularized least squares
(RLS). In Figure 9 (left) the average error over 10, 000 bending
poses is reported, as a function of number of training examples.
The learning methods achieve the best results with an average
error of 0.015 ± 0.007m. Thanks to the strong correlation
between the signal and the actual vertex displacement, the
linear regressions are able to describe the relation between
the sensor signal and the vertices. The blendshape approach,
despite its simplicity also performs very well, with an average
error of 0.018± 0.009m. Notice that around 10, 000 training
frames are enough for achieving the best results: this corre-
spond roughly to a video sequence of 5 mins. A comparison
of the running times shows, that both linear interpolation and
RLS have a complexity equal to O(MN) where MN is the
grid size. Qualitative examples of the shape reconstructions
are shown in Figure 8 (left).
As a second experiment we evaluated which part of the flexible
sheet obtains the highest error. We show the qualitative results
in Figure 9 (right). As expected most of the errors are around
the corners, where the interaction is mostly occurring. RLS
has a maximum and minimum error of 0.021 ± 0.013m and
0.006± 0.001m respectively. Linear interpolation instead has
a maximum error equal to 0.032± 0.024m and minimum of
0.007± 0.015m.
Comparisons with Marker-Based Vision Systems
Although camera-based systems have certain different con-
straints compared to our self-contained setup (i.e. spatial reso-
lution of the camera, depth dependency, occlusions), we feel
that existing camera-based systems (e.g. FlexPad [31]) offer
the greatest degree of reconstruction quality currently. There-
fore, being able to reconstruct our deformations without this
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Figure 8: Left: Qualitative results showing the reconstruction performances of the linear interpolation (blendshapes) model
versus the regularized linear regression of the vertex positions. Right: Reconstruction comparisons between RLS and a single
stereo camera using markers. Most of the errors in the vision based system are due to occlusions.
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Figure 9: Left: Error [m] for the three reconstruction algo-
rithms as a function of training samples. Right: Error maps
of the linear interpolation and the regularized linear regres-
sions with respect to the vertex positions. As expected, most
of the error is located where the interactions often occurr.

type of sensing infrastructure felt like an important question
to answer. For that reason, we compared our reconstructions
with a single-view marker-based system. In Figure 8 (right)
we show some examples where a single stereo camera is not
able to reconstruct the surface of the sheet. This mainly occurs
when the hands are occluding the markers and surface. On
average, the single stereo marker-based system has an error
of 0.023 ± 0.014m, whereas the machine learning approach
achieves 0.011± 0.06m. This not only motivates our need for
two stereo cameras for the ground truth capture, but also high-
lights that occlusions are a big challenge for systems that make
use of single depth or regular cameras for surface tracking.

APPLICATIONS AND INTERACTION TECHNIQUES
In this section we cover some of the interactive affordances
of FlexSense in two different application scenarios. These
strongly highlight the benefit of the continuous, smooth and
detailed level of reconstruction capabilities of our system, its
transparency, and its compact and self-contained form-factor.

Transparent smart cover for tablets
In the first scenario, we used FlexSense as a replacement for
existing tablet covers. By just adding a thin, transparent cover
our sensor layout allows for paper-like interaction with rigid
displays. Figure 10 depicts novel and natural usage exam-
ples, like switching between different layers in Photoshop
or in online maps, performing rapid application switching to
copy&paste content, comparing rendering enhancements for
image or video filters, similar to tangible magic lens, or re-
vealing on-demand solutions for games or education. Initial
user feedback suggests that the paper-like feeling provides a
completely novel, highly intuitive and natural interaction ex-
perience. The one-to-one mapping and directness of the input,
as the user peels the foil back and forth, greatly utilizes the
accuracy of the detailed reconstruction and lets the users ac-
curately choose the area to reveal, providing direct immediate
feedback.

One exciting use case for the transparent smart cover is in
expanding traditional animation, where each frame is painstak-
ingly drawn by hand. This work is mainly done with so-called
‘animation desks’, where animators sketch sequences on sheets
of semi-transparent drafting film. These sheets are usually put
on top of a light table and the animator is able to switch be-
tween the different frames by flipping the paper. Although,
these light tables are being increasingly replaced by graphics
tablets, many designers still use this “old style” of animation3.
Our transparent sensor is thin enough to sense the stylus-input
on the tablet. This allows the user to sketch directly on top of
the transparent FlexSense and flip between different frames by
bending the sensor, ushering this manual approach to anima-
tion back into digital domain.

With the use as cover of course certain practical implications
arise, in particular general “wear and tear” issues of the foil,
which are a general challenge of flexible devices. For later
prototypes it will be necessary to think about other issues like
durability, which we have not considered in this paper. How-
ever, we feel that new exciting possibilities are enabled through
this configuration and inspire HCI researchers (including us)
to work further in this space.

External high-DoF input device
As highlighted in related work, flexible sensors have also been
used as external input devices [1]. What makes these types of
sensors appealing is that they afford both 2.5D interactions,
resting on a surface, as well as true in-air 3D interactions,
while maintaining a level of tangible feedback (a problem
for touchless interfaces in general). In Figure 10 (right) we
demonstrate how the accurate reconstructions of the flexible
sheet can be used in a 3D game. Continuous and discrete
gestures are easily mapped to actions such as flying, steering,
and firing a gun at varying rates. These gestures are simple to
implement as we provide a fully tracked, temporally consistent
mesh. A further example shown in Figure 10 (far right), is a
physically realistic game where the reconstructions of shape
and deformations, enable interactions with virtual objects (e.g.
to catapult an object). The diversity of control in the exam-
ples would be difficult to achieve without the accuracy of our
system and shows that continuous and precise reconstructions
are crucial for these scenarios (as shown by prior work [1]).
Whilst these are fun “toy” examples and exemplary show our
system’s capabilities, there are certain other scenarios, which
could greatly benefit of the accurate reconstruction, such as
3D modeling and manipulations.

3http://www.youtube.com/watch?v=fR3IDisAQwE
(from 4:50 mins)

http://www.youtube.com/watch?v=fR3IDisAQwE


Figure 10: Example applications created using our sensor. A transparent tablet cover example, which acts as a magic lens
revealing hidden metadata, applying rendering effects in photoshop, supporting window management, and allowing paper-like
digital animation. Far right: using the foil as a high DoF 3D controller.

DISCUSSION & LIMITATIONS
We have discussed our sensor layout, reconstruction algo-
rithms, and potential application scenarios. Our methods
of reconstructing real-world shape and deformation from a
sparse set of piezoelectric measurements are novel, and af-
fords new interactive capabilities in self-contained lightweight
form-factor. This combined with the transparent nature of the
sensors creates many new application possibilities.

In describing our reconstruction algorithms, we have purpose-
fully presented two methods, which have worked incredibly
well in practice. Our linear interpolation model is relatively
simple to implement, and works well even for complex mod-
els. Indeed some of the clear cover application scenarios were
implemented with this model. The model can be trained and
extended with new examples, in a relatively straightforward
manner, and with limited samples can generate compelling
results. The main need for an extended algorithm, however,
comes in dealing with larger variations of shapes and deforma-
tions, and generalizing to unseen training data. For example,
if we wanted to develop a 3D modeling tool using the precise
surface deformation as input. However, given that the latter
requires machine learning knowledge, we feel that both meth-
ods will have great value for practitioners. It is also worth
noting, that our method should in theory generalize to other
self sensing or external sensing setups, including other bend
sensors. However, this remains future work. In terms of our
algorithm, we have experimented with using ARAP during the
prediction phase, at runtime. This type of regularization leads
to over-smoothing, but another area of future investigation is
to think about such a run-time regularizer particularly if more
complex materials or geometries are to be modeled.

In terms of hardware, developing a new sensor is challenging
and the FlexSense sensor does have limitations. The sensors
deteriorate over prolonged periods when performing extreme
gestures. Gestures such as folding are also problematic. The
sensors are also not fully transparent, although indium tin
oxide (ITO) used in traditional touch screens, has similar trans-
missive capabilities. Another limitation is, that the integrated
sensor signal used in the linear interpolation approach can
suffer from drift issues when performing rapid interactions.

Generally, however, the sensor is highly promising and has
a lot of potentials for further projects. It will be interesting

to conduct more profound user studies, particularly as new
interaction techniques are developed further. Moreover, de-
tailed comparisons of different existing sensor configurations
with the FlexSense setup would be highly interesting. From
a more general point of view, we would like to combine our
input sensor with a flexible display (e.g. eInk / OLED). Smart
watches are becoming more and more popular; especially, if
they are combined with deformable shapes, we can imagine
devices which have not been possible before. Another interest-
ing area is that of touch/pressure sensing in combination with
bend sensors. In particular the signal processing challenges of
differentiating one from the other.

CONCLUSIONS
In this paper, we presented FlexSense, a new thin-film, trans-
parent self-sensing surface, which can reconstruct complex
deformations without the need for any external sensing, such
as cameras. We have built on prior work to demonstrate a new
piezoelectric bendable input device, with sensors printed on
the periphery of the surface substrate. Our main contribution
has been to devise a novel set of algorithms to fully reconstruct
the complex deformations of the sheet, using only these sparse
sensor measurements. We have demonstrated a number of new
types of applications for such a device that exploit the accurate
shape and deformations afforded.
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