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Abstract We present a new method for inferring dense1

data to model correspondences, focusing on the application2

of human pose estimation from depth images. Recent work3

proposed the use of regression forests to quickly predict cor-4

respondences between depth pixels and points on a 3D human5

mesh model. That work, however, used a proxy forest train-6

ing objective based on the classification of depth pixels to7

body parts. In contrast, we introduce Metric Space Informa-8

tion Gain (MSIG), a new decision forest training objective9

designed to directly minimize the entropy of distributions in10

a metric space. When applied to a model surface, viewed as11

a metric space defined by geodesic distances, MSIG aims12

to minimize image-to-model correspondence uncertainty. A13

naïve implementation of MSIG would scale quadratically14

with the number of training examples. As this is intractable15

for large datasets, we propose a method to compute MSIG in16

linear time. Our method is a principled generalization of the
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proxy classification objective, and does not require an extrin- 17

sic isometric embedding of the model surface in Euclidean 18

space. Our experiments demonstrate that this leads to corre- 19

spondences that are considerably more accurate than state of 20

the art, using far fewer training images. 21

Keywords Human pose estimation · Model based pose 22

estimation · Correspondence estimation · Depth images · 23

Metric regression forests 24

1 Introduction 25

A key concern in a number of computer vision problems is 26

how to establish correspondences between image features 27

and points on a model. An effective method is to use a 28

decision forest to discriminatively regress these correspon- 29

dences (Girshick et al. 2011; Taylor et al. 2012; Shotton et al. 30

2013). So far, these approaches have ignored the correlation 31

of model points during training, or have arbitrarily pooled the 32

model points into large regions (parts) to allow the use of a 33

classification training objective. The latter, however, can fail 34

to recognize that a confusion between two nearby points that 35

lie in different parts is not necessarily severe. Further, it can 36

fail to recognize that confusion between two distant points, 37

that belong to the same part can be severe. In this work, we 38

propose the Metric Space Information Gain (MSIG) training 39

objective for decision forests (Pons-Moll et al. 2013),1 that, 40

instead, naturally accounts for target dependencies during 41

training and does not require the use of artificial parts. Our 42

MSIG objective assumes that the model points lie in a space

1 Note that this is an extended version of Pons-Moll et al. (2013). Some
portions of Taylor et al. (2012) have been included for clarity.
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in which a metric has been defined to encode correlation43

between target points. Among the larger class of problems44

where MSIG could apply, we focus on the challenging appli-45

cation of general activity human pose estimation from single46

depth images.47

Human pose estimation has been a very active area of48

research for the last two decades. Algorithms can be classi-49

fied into two main groups, namely generative (Pons-Moll50

and Rosenhahn 2011) and discriminative (Sminchisescu51

et al. 2011). Generative approaches model the likelihood of52

the observations given a pose estimate. The pose is typi-53

cally inferred using local optimization (Bregler et al. 2004;54

Brubaker et al. 2010; Stoll et al. 2011; Pons-Moll et al. 2011;55

Ganapathi et al. 2012) or stochastic search (Deutscher and56

Reid 2005; Gall et al. 2010; Pons-Moll et al. 2011). Regard-57

less of the optimization scheme used, such approaches are58

susceptible to local minima and thus require good initial pose59

estimates.60

Discriminative approaches (Urtasun and Darrell 2008; Bo61

and Sminchisescu 2010; Lee and Elgammal 2010; Memi-62

sevic et al. 2012) learn a direct mapping from image63

features to pose space from training data. Unfortunately,64

these approaches can struggle to generalize to poses not65

present in the training data. The approaches in Shotton et al.66

(2011), Girshick et al. (2011) bypass some of these limi-67

tations by discriminatively making predictions at the pixel68

level. This makes it considerably easier to represent the69

possible variation in the training data, but yields a set of inde-70

pendent local pose cues that are unlikely to respect kinematic71

constraints.72

To overcome this, recent work has fit a generative model73

to these cues (Ganapathi et al. 2010; Baak et al. 2011; Taylor74

et al. 2012). The most relevant example of such a hybrid75

system is that of Taylor et al. (2012) who robustly fit a mesh76

model to a set of image-to-model correspondences predicted77

by a decision forest.78

Decision forests are a classic method for inductive infer-79

ence that has recently regained popularity by yielding excel-80

lent results on a wide range of classification and regression81

tasks. The canonical example in pose estimation is Shot-82

ton et al. (2011) where a forest is used to segment the83

human body into parts. These parts are manually specified84

and the segmentation is used to define a per-pixel classifi-85

cation task. To train the forest, split functions are evaluated86

using a parts objective (‘PARTS’) based on discrete infor-87

mation gain. Specifically, the split is chosen to reduce the88

Shannon entropy of the resulting body part class distrib-89

utions at the left and right child nodes. Motivated by the90

success of Hough forests (Gall et al. 2011) for object detec-91

tion and localization, a follow-up paper (Girshick et al. 2011)92

directly regressed at each pixel an offset to several joint loca-93

tions. They showed, surprisingly, that retrofitting a forest94

for this task that had been trained using the PARTS objec-95

tive (Shotton et al. 2011) outperforms forests that had been 96

trained using a standard regression objective based on vari- 97

ance minimization. The work of Taylor et al. (2012) followed 98

suit in retrofitting a PARTS trained classification forest to 99

predict model-image correspondences. Despite these suc- 100

cesses, the somewhat arbitrary choice to bootstrap using 101

a PARTS objective, clashes with the experience of several 102

authors Buntine and Niblett (1992), Liu and White (1994), 103

Nowozin (2012) who show that the objective function has 104

a substantial influence on the generalization error of the 105

forest. 106

We address this by showing that the image-to-model cor- 107

respondences used in Taylor et al. (2012), can be predicted 108

with substantially higher accuracy by training a forest using 109

the ‘correct’ objective—an objective that chooses splits in 110

order to minimize the uncertainty in the desired predictive 111

distributions. When the target outputs lie in a metric space, 112

minimizing the continuous entropy in that space is the natural 113

training objective to reduce this uncertainty. 114

Our main contribution is showing how this continuous 115

entropy can be computed efficiently at every split function 116

considered in the training procedure, even when using mil- 117

lions of training examples. To this end, we estimate the 118

split distributions using Kernel Density Estimation (KDE) 119

(Parzen 1962) employing kernels that are functions of the 120

underlying metric. To make this computationally tractable, 121

we first finely discretize the output space and pre-compute 122

a kernel matrix encoding each point’s kernel contribution 123

to each other point. This matrix can then be used to effi- 124

ciently ‘upgrade’ any empirical distribution over this space 125

to a KDE approximation of the true distribution. Although 126

staple choices exist for the kernel function (e.g. Gaussian), its 127

underlying metric (e.g. Euclidean distance) and discretiza- 128

tion (e.g. uniform), they can also be chosen to reflect the 129

application domain. In our domain of human pose estima- 130

tion, the targets are points on a 3D mesh model surface. 131

Interestingly, our MSIG objective can encode the body part 132

classification objective (Shotton et al. 2011) by employing a 133

non-uniform discretization. It is, however, much more nat- 134

ural to have a near uniform discretization over the manifold 135

and to use the geodesic distance metric to encode target cor- 136

relation on this manifold, see Fig. 1. As articulated shape 137

deformations are ε−isometric with respect to the geodesic 138

distance, all computations in this space are independent of 139

pose which removes the need to find an extrinsic isometric 140

embedding in the Euclidean space as used in Taylor et al. 141

(2012). 142

Our experiments on the task of human pose estimation 143

show a substantial improvement in the quality of inferred 144

correspondences from forests trained with our objective. 145

Notably, this is achieved with no additional computational 146

burden since the algorithm remains the same at test time. We 147

further observe that with orders of magnitude less training 148
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Fig. 1 We propose a method to quickly estimate the continuous dis-
tributions on the manifold or more generally the metric space induced
by the surface model. This allows us to efficiently train a random forest

to predict image to model correspondences using a continuous entropy
objective. Notation is explained in Sect. 3

data, we can obtain state of the art human pose performance149

using the same fitting procedure as Taylor et al. (2012).150

2 Forest Training151

We employ the standard decision forest training algorithm152

and features. A forest is an ensemble of randomly trained153

decision trees. Each decision tree consists of split nodes and154

leaf nodes. Each split node stores a split function to be applied155

to incoming data. At test time, a new input will traverse the156

tree branching left or right according to the test function until157

a leaf node is reached. Each leaf stores a predictor, computed158

from the training data falling into that leaf. At training time,159

each split candidate partitions the set of training examples160

Q into left and right subsets. Each split function s is chosen161

among a pool F in order to reduce the average uncertainty162

of the predictions. This is achieved using a training objective163

I (s) that assigns a high score if s reduces this uncertainty.164

Training proceeds greedily down the tree, locally optimiz-165

ing I for each node, until some stopping criterion is met. In166

more detail, the forest is trained using the following algo-167

rithm (Breiman 1999)168

1. At every node of the tree, generate a random set of split169

functions out of a pool si ∈ F .170

2. For every split function, split the training examples Q171

falling into that node into a left subset QL(si ) and a right172

subset Q R(si ).173

3. Choose the split function that maximizes some aproxi-174

mate measure Î (s; Q) of information gain I175

s∗ = arg max
si

Î (s; Q) (1)176

Î (s; Q) = Ĥ(Q) −
∑

i∈{L ,R}

|Qi |
|Q| Ĥ(Qi ), (2)177

where Ĥ is some approximation of the entropy computed 178

from the empirical distribution Q. 179

4. Iterate until one of these conditions is satisfied (1) the 180

tree depth is lower than the maximum allowed tree depth, 181

(2) the information gain is bigger than a suer specified 182

minimum, (3) the number of training examples in the 183

node is lower than a chosen minimum. 184

In all of our experiments, we use the same binary split 185

functions as Shotton et al. (2011) which consist of fast 186

depth comparisons executed on a window centered at the 187

input depth pixel xi which are described in more detail in 188

Sect. 4.2. For more details, we refer the reader to Criminisi 189

and Shotton (2013). Notably, we are able to improve results 190

significantly by changing only the measure of information 191

gain I . 192

As our main contribution, we propose Metric Space Infor- 193

mation Gain (MSIG) as the natural objective to learn to 194

regress image-to-model correspondences where the target 195

domain is a metric space. This objective aims to reduce the 196

continuous entropy of the data on the metric space. In the 197

case of a metric space induced by a reference 3D human mesh 198

model with standard body proportions, this translates into the 199

correspondence uncertainty over the model surface. To train 200

a forest using MSIG we first need to define the metric for the 201

target space which determines the correlation between the 202

targets. Instead of assuming a uni-modal Gaussian distribu- 203

tion (e.g. Shotton et al. 2013) we use KDE to approximate the 204

density where the kernels are functions of the metric chosen; 205

see Fig. 2. Informally, distributions with probability mass at 206

nearby locations will result in lower entropies than distrib- 207

utions with probability mass spread to distant locations. As 208

we will show, MSIG outperforms the PARTS (Shotton et al. 209

2011; Taylor et al. 2012) and standard regression (Girshick 210

et al. 2011) objectives, and can be computed efficiently in 211

linear time. 212
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(b)(a)

Fig. 2 a On the left we show an example of an empirical distribu-
tion and on the right our estimated continuous distribution. b Examples
of the continuous distributions induced by KDE at different levels of

the tree. The MSIG objective reduces the entropy of the distributions
through each split resulting in increasingly uni-modal and lower entropy
distributions deeper in the tree

3 Metric Space Information Gain213

We use the surface of a canonical human body to define the214

metric space (U, dU) of our targets. Here, U denotes the con-215

tinuous space of locations on this model and dU denotes the216

geodesic distance metric on the manifold induced by the sur-217

face model. Let U denote a random variable with probability218

density pU whose support is a set U and let B(s) be a ran-219

dom variable that depends on a split function s and takes the220

values L (left) or R (right). The natural objective function221

used to evaluate whether a split s reduces uncertainty in this222

space is the information gain,223

I (s) = H(U ) −
∑

i∈{L ,R}
P(B(s) = i)H(U |B(s) = i) (3)224

where H(U ) is the differential entropy of the random vari-225

able U . For a random variable U with distribution pU this is226

defined as227

H(U )=EpU (u)

[− log pU (u)
]=−

∫

U

pU (u) log pU (u)du.

(4)228

In practice the information gain can be approximated229

using an empirical distribution Q = {ui } drawn from pU230

as231

I (s) ≈ Î (s; Q) = Ĥ(Q) −
∑

i∈{L ,R}

|Qi |
|Q| Ĥ(Qi ), (5)232

where Ĥ(Q) is some approximation to the differential233

entropy and ‖ · ‖ dennotes the cardinality of a set. One way234

to approach this is to use a Monte Carlo approximation of235

Eq. (4)236

H(U ) ≈ − 1

N

∑

ui ∈Q

log pU (ui ) . (6)237

As the continuous distribution pU is unknown, it must 238

also be estimated from the empirical distribution Q. One 239

way to approximate this density pU (u) is using KDE. Let 240

N = |Q| be the number of datapoints in the sample set. The 241

approximated density fU (u) is then given by 242

pU (u) � fU (u) = 1

N

∑

u j ∈Q

k(u; u j ), (7) 243

where k(u; u j ) is a kernel function centered at u j . Plugging 244

this approximation into Eq. (6), we arrive at the KDE estimate 245

of entropy: 246

ĤKDE(Q) = − 1

N

∑

ui ∈Q

log

⎛

⎝ 1

N

∑

u j ∈Q

k
(
ui ; u j

)
⎞

⎠ . (8) 247

That is, one evaluates the integral at the datapoint locations 248

ui ∈ Q in the empirical distribution, a calculation of com- 249

plexity N 2. To train a tree, the entropy has to be evaluated 250

at every node of the tree and for every split function s ∈ F . 251

Thus this calculation could be performed up to 2L × |F | 252

times, where L is the maximum depth of the tree. Clearly, for 253

big training datasets one cannot afford to scale quadratically 254

with the number of samples. For example, the tree struc- 255

tures used in this paper are trained from 5000 images with 256

roughly 2000 foreground pixels per image, resulting in 10 257

million training examples. Therefore, as our main contribu- 258

tion, we next show how to train a random forest with a MSIG 259

objective that scales linearly with the number of training 260

examples. 261

To this end, we discretize the continuous space into V 262

points U
′ = (u′

1, u′
2 . . . , u′

V ) ⊆ U. This discretization sim- 263

plifies the metric to a matrix of distances DU =
(

dU(u′
i , u′

j )
)

264

that can be precomputed and cached. Even better, the kernel 265

functions can be cached for all pairs of points (u′
i , u′

j ) ∈ U
′. 266

For our experiments, we choose the kernel function on this 267

space to be an exponential 268
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k(u′
i ; u′

j ) = 1

Z
exp

(
−dU(u′

i , u′
j )

2

2σ 2

)
(9)269

where dU(u′
i , u′

j ) is the geodesic distance on the model and270

σ is the bandwidth of the kernel. The normalization constant271

Z ensures that the total amount of contribution coming from272

each point equals one and is thus invariant to the discretiza-273

tion. The geodesic distances are pre-computed on a high274

resolution triangulated mesh model using Dijkstra’s algo-275

rithm (Dijkstra 1959). The discretization would ideally be276

uniformly distributed over the model surface, but we find that277

that simply using an appropriate sampling of the vertex loca-278

tions of the original mesh sufficient to obtain good results.279

In all the experiments shown in this paper we use σ = 3cm280

which roughly corresponds to the average nearest neighbor281

distance in the empirical distributions. A detailed discussion282

on kernel bandwidth selection can be found in Silverman283

(1986). Since the kernels fall off to zero, only a small sub-284

set of indices Ni ⊆ {1., ..., V } indicate neighboring points285

{u′
j } j∈Ni that contribute to u′

i . Hence, for efficiency, we only286

store the significant kernel contributions for each discretized287

point u′
i . For ease of explanation in the following, we assume288

here that each point has a constant number of neighbors289

|Ni | = M for all i ∈ {1, ..., V }. Let Ji, j denote a look-290

up table that contains the node index of the j-th neighbor of291

the i-th node. This leads to the following kernel matrix that292

is pre-computed before training:293

K =

⎡

⎢⎢⎢⎢⎢⎣

k(u′
1; u′

J1,1
) k(u′

1; u′
J1,2

) . . . k(u′
1; u′

J1,M
)

k(u′
2; u′

J2,M
) k(u′

2; u′
J2,2

) . . . k(u′
2; u′

J2,M
)

...
. . .

...

k(u′
V ; u′

JV,1
) k(u′

V ; u′
JV,M

) . . . k(u′
V ; u′

JV,M
)

⎤

⎥⎥⎥⎥⎥⎦
.

(10)294

Thus, given a discretization U
′ we can smooth the empirical295

distribution over this discretization using the kernel contri-296

butions as297

gU ′(u′
i ; Q) � 1

N

∑

j∈Ni

π j (Q)k(u′
i ; u′

j ) (11)298

where the weights π j (Q) are the number of data points in the299

set Q that are mapped to the bin center u′
j . In other words,300

{π j (Q)}V
j=1 are the unnormalized histogram counts of the301

discretization given by U
′. In this way, we can use a simple302

histogram as our sufficient statistic to estimate the density, see303

Fig. 1. The expression in Eq. (11) can be efficiently computed304

using the precomputed kernel matrix K in Eq. (10)305

gU ′(u′
i ; Q) = 1

N

M∑

m=1

πJi,m (Q)Ki,m . (12) 306

We can use this to further approximate the continu- 307

ous KDE entropy estimate of the underlying density in 308

Eq. (7) as 309

pU (u) � fU (u; Q) � gU ′(α(u); Q) (13) 310

where α(u) maps u to a point in our discretization. Using this, 311

we approximate the differential entropy of pU (u) using the 312

discrete entropy of gU ′ defined on our discretization. Hence, 313

our MSIG estimate of the entropy on the metric space for an 314

empirical sample Q is 315

ĤMSIG(Q) = −
∑

ui ∈U′
gU ′(u′

i ; Q) log gU ′(u′
i ; Q) (14) 316

where the terms only need to be calculated when 317

gU ′(u′
i ; Q) 	= 0. 318

Note that this is also equivalent to approximating the 319

entropy defined in Eq. (4) by evaluating the integral only 320

at the V points of the discretized space U
′. Note that in 321

contrast to Eq. (6) we need to re-weight by gU ′(u′
i ; Q) 322

because we are sampling uniformly on a grid of points 323

in the space as opposed to Eq. (6) where the samples are 324

drawn from the empirical distribution Q. This is equiv- 325

alent to importance sampling with a uniform proposal 326

distribution. 327

The complexity of Eq. (14) is V × M . When training a 328

tree, each new split s requires a linear pass through the data to 329

compute the left and right histograms. The total complexity 330

of evaluating a split using Eq. (5) is thus N + V × M 
 N 2
331

allowing trees to be trained efficiently. By using our approx- 332

imation of the continuous entropy we can capture target 333

correlations, as MSIG encourages distributions with mass 334

localized in nearby locations which is crucial for obtain- 335

ing good correspondences. This would be more difficult to 336

achieve using a parts classification objective or a vertex his- 337

togram (see Fig. 3). 338

4 Pose Estimation 339

We now investigate the ability of MSIG trained forests to 340

improve the accuracy of model based human-pose estima- 341

tion. Hence, we follow the procedure of Taylor et al. (2012) 342

as closely as possible. Our goal is to determine the pose 343

parameters θ ∈ R
d of a linearly skinned (Pons-Moll and 344

Rosenhahn 2011; Balan et al. 2007) 3D mesh model so as to 345

explain a set of image points D = {xi }n
i=1. 346
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Empirical distribution 1 Histogram
Ĥ = 3.55

Density approximation
ĤMSIG = 6.47

Empirical distribution 2 Histogram
Ĥ = 3.55

Density approximation
ĤMSIG = 7.91

Fig. 3 We demonstrate here the result of using different approxima-
tions of the continuous entropy given an empirical distribution. On the
left, show two empirical distributions. The top first distribution is highly
concentrated in a single mode. In the second distribution, the mode
has been split into three smaller modes. In the remaining columns,
we show histograms representing the discretized empirical distribution
before (middle columns) and after (right column) the kernel density
approximation has been applied. What is important to note here is that
the calculation of the Shannon entropy directly on the raw histogram
(middle column), results in nearly the same entropy for both cases. By
contrast, when the calculation is done on the smoothed distributions

(right column), the resulting MSIG entropy is much higher for distri-
bution 2 than 1. This is due to the fact that the kernel smooths the
probability mass so that it accumulates in a localized point for the first
distribution. Informally, distributions with points located at distant loca-
tions should result in higher entropies. As a result, distribution 2 should
have a higher entropy than distribution 1. Therefore, our objective will
favor splits that cluster points in nearby locations. It is also important
to note that the absolute value of the entropy obtained using a given
approximation is not important, what is important for training is that
the relative entropies can be used to disambiguate peaked distributions
(top) from uninformative distributions (bottom)

4.1 Human Body Model347

The surface of our human body model, denoted as S(θ)348

to indicate its dependence on θ , is a triangulated mesh349

supported by V vertices V = {v j }V
j=1. The model is parame-350

terized using a kinematic tree, or skeleton, consisting of L351

limbs. Each limb l has a rigid transformation Rl(θ) encoding352

the transformation from that limbs coordinate system to its353

parents. The rotational component of that transformation is354

parameterized by a 4D quaternion encoded in θ . In addition,355

a final global similarity transform Rglob(θ) scales the model356

and places it in world space. This transformation is para-357

meterized by an additional 4D quaternion, 3D translation358

and isotropic scaling encoded in θ . The transform Tl(θ) then 359

encodes the transformation from limb l’s coordinate system 360

to the world and is defined by simply combining the trans- 361

forms one encounters while walking up the tree to the root 362

with Rglob(θ). 363

Each vertex v j in the mesh is defined as 364

v j = (
p j , {(α jk, l jk)}K

k=1

)
, (15) 365

where: base vertex p j is the homogenous coordinates of 366

the 3D vertex position in a canonical pose θ0; the α jk are 367

positive limb weights such that ∀ j
∑

k α jk = 1; and the 368

l jk ∈ {1, . . . , L} are limb links. In our model, the number 369
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of nonzero limb weights per vertex is at most K = 4. The370

position of the vertex given a pose θ is then output by a371

global transform G which linearly combines the associated372

limb transformations:373

G(v j ; θ) = �

(
K∑

k=1

α jk Tl jk (θ)T −1
l jk

(θ0)p j

)
(16)374

where � is the standard conversion from 4D homogeneous to375

3D Euclidean coordinates. By applying this transformation376

to all the vertices in our mesh we obtain the human surface377

S(θ) in a given pose θ .378

4.2 Correspondence based Energy379

For our main results we use image points that have a known380

3D position, i.e., xi ∈ R
3, obtained using a calibrated depth381

camera. Following standard practice, we assume reliable382

background subtraction. The goal, restated, is then to find383

the pose θ that induces a surface S(θ) that best explains the384

observed depth image data. A standard way to approach this385

is to introduce a set of correspondences between image pixels386

and mesh points C = {ui }n
i=1, such that each correspondence387

ui ∈ U . One then minimizes388

Edata(θ, C) =
n∑

i=1

wi · d
(
xi , G(ui ; θ)

)
(17)389

where wi weights data point i and d(·, ·), is some distance390

measure in R
3. The energy defined in Eq. (17) is quite stan-391

dard, and because it sums over the data, it avoids some392

common pathologies such as an energy minimum when the393

model is scaled to zero size. To deal with mislabelled corre-394

spondences, it is sensible to specify d(x, x ′) = ρ(‖x − x ′‖)395

where ρ(·) is a robust error function. We use the Geman-396

McClure (Black and Rangarajan 1996) function ρ(e) =397

e2

e2+η2 due to its high tolerance to outliers. We choose wi = z2
i398

as the pixel weighting, derived from the point’s depth via399

zi = [ 0 0 1 ] xi to compensate for proportionately fewer pix-400

els and therefore contributions to the energy function as depth401

increases.402

Unfortunately, deficiencies remain with (17), particularly403

with self-occlusion. In the following, we build up further404

terms to form our full energy in Eq. (22).405

4.2.1 Visibility Term406

For given parameters θ , the data term in Eq. (17) allows either407

visible or invisible model points to explain any observed408

image point. A more realistic model might include hidden-409

surface removal inside the energy, and allow correspondences410

only to visible model points. However, a key to our approach,411

described below in Sect. 4.4, is to use fast derivative-based 412

local optimizers rather than expensive global optimizers, and 413

thus an efficient energy function with well-behaved deriv- 414

atives is required. We thus adopt a useful approximation 415

which is nevertheless effective over a very large part of the 416

surface: we define visibility simply by marking back-facing 417

surface normals. To do so, we define the function n̂(u; θ) 418

to return the surface normal of the model transformed into 419

pose θ at G(u; θ). Then u is marked visible if the dot product 420

between n̂(u; θ) and the camera’s viewing axis A (typically 421

A = [0, 0, 1], the positive Z axis) is negative. One might 422

then write 423

Evis =
n∑

i=1

wi

{
d(xi , G(ui ; θ)) n̂(ui ; θ)� A < 0

τ otherwise
(18) 424

with τ a constant that must be paid by backfacing vertices. 425

In practice, using a logistic function σβ(t) = 1
1+e−βt with 426

‘sharpness’ parameter β is preferable to a hard cutoff: 427

E ′
vis =

n∑

i=1

wi
[
Vi (θ) ·d(xi , G(ui ; θ))+(1−Vi (θ)) ·τ ]

(19) 428

where the visibility weight is set according to a logistic func- 429

tion Vi (θ) = σβ(−n̂(ui ; θ)� A). 430

4.2.2 Pose Prior 431

To further constrain the model, particularly in the presence 432

of heavy occlusion, we use a conventional prior, the negative 433

log of a Gaussian on the pose vector: 434

Eprior = (θ − μ)��(θ − μ) (20) 435

where μ and �, the mean and inverse covariance of the 436

Gaussian, are learned from a set of training poses. 437

4.2.3 Intersection Penalty 438

Lastly, we add a term to discourage self intersection by build- 439

ing a coarse approximation to the interior volume of S(θ) 440

with a set of spheres  = {(ps, rs, ls)}S
s=1.2 Each sphere s 441

has radius rs and homogeneous coordinates ps in the canon- 442

ical coordinate system of θ0. The center of the sphere can be 443

seen as a virtual vertex attached to exactly one limb, and thus 444

transforms via cs(θ) = �
(
G(ps, θ)

)
. 445

Intersection between spheres s and t occurs when ‖cs(θ)− 446

ct (θ)‖ < rs + rt = Kst . We thus define a softened penalty 447

as 448

2 Distinct subscripts indicate whether p and l refer to vertices or
spheres.
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Fig. 4 Model based human pose estimation with correspondences
inferred using a regression forest. From left to right: every pixel in
the depth image is pushed through each tree in the forest. A series of
split functions are applied to every pixel until a leaf node is reached.
The correspondence distributions in different trees are aggregated and

the correspondence for that pixel is taken as the top mode of the distri-
butions. The inferred dense correspondences are then used to optimize
the model parameters θ , i.e., the pose and scale of the person. We show
at the right most image, the result obtained for the test images shown
on the left

Eint =
∑

(s,t)∈P

σγ (Kst − ‖cs(θ) − ct (θ)‖)
‖cs(θ) − ct (θ)‖ (21)449

where P is a set of pairs of spheres, and σγ is again a logistic450

function with constant ‘sharpness’ parameter γ .451

The sphere parameters are chosen so that the centers cs(θ0)452

are distributed along the skeleton and the radii rs are small453

enough so that the spheres lie within the interior of S(θ0). In454

practice, only leg self-intersections have caused problems,455

and thus we place 15 spheres equally spaced along each leg,456

with P containing all pairs containing one sphere in each leg.457

4.2.4 Full Energy458

Combining the above terms, we optimize an energy of the459

form460

E(θ, C) = λvis E ′
vis(θ, C) + λprior Eprior(θ)461

+λint Eint(θ) (22)462

where the various weights λ• along with any other parame-463

ters are set on a validation set. Further energy terms, such464

as silhouette overlap or motion priors, are straightforward to465

incorporate and remain as future work. An alternating min-466

imization (or block coordinate descent) over θ and C would467

yield a standard articulated ICP algorithm (Besl and McKay468

1992). Unfortunately, convergence is unlikely without a good469

initial estimate of either θ or C. Therefore, we will use our470

proposed metric regression forest to estimate a set of image471

to model correspondences discriminatively. The key to the472

success of our pose estimation method is the use of a dis-473

criminative appearance model to estimate C directly instead474

of the more common approach of initializing θ .475

4.3 Predicting Correspondences 476

We use a metric regression forest to predict a set of correspon- 477

dences C to initialize the optimization of Eq. (22), see Fig. 4. 478

To accomplish this, every foreground pixel x will be pushed 479

down each tree in the forest in the following manner. When 480

a non-terminal node is encountered, a binary split function 481

will determine whether the left or right branch is taken. Let 482

x = (u, v) denote the image coordinates of the depth pixel x. 483

The value of the split function is then computed on an image 484

window centered at image coordinates (u, v), for which we 485

employ the fast depth comparison split functions of Shotton 486

et al. (2011) 487

fφ = dI

(
x + m

dI (x)

)
− dI

(
x + n

dI (x)

)
(23) 488

where φ = (m, n) are a pair of 2D displacement vectors, 489

see Fig. 5. A path is traversed from the root down to a leaf, 490

branching left or right according to the evaluation of the split 491

functions. In more detail, if fφ < τ the left branch will be 492

taken and the right otherwise. Each leaf terminal leaf node 493

contains a regression model. 494

At training time, we employ the MSIG objective and split 495

functions defined above to construct the tree. The regression 496

model stored in each terminal leaf node is built from the 497

training data falling into the leaf in the following way. For 498

further efficiency, we represent the leaf distributions as a 499

small set of confidence-weighted modes S = {(û, ω)}, where 500

û ∈ R
3 is the position of the mode in the embedding space, 501

and ω is the scalar weighting. This set S can be seen as an 502

approximation to a Gaussian mixture model. To aggregate 503

the regression models across the different trees, we simply 504

take the union of the various leaf node modes G. 505

We are left with the task of predicting pixel i’s corre- 506

spondence ui ∈ U from these aggregated distributions. To 507
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Fig. 5 Split functions: we use the depth offset features used in Shot-
ton et al. (2011). The feature consists on comparing the depths of two
pixels. If the difference is bigger than a chosen threshold the function
takes value 1 and 0 otherwise. Every feature in itself is too simple to
discriminate but many features combined together can be very descrip-
tive: local appearance will be captured by small displacements whereas
context will be captured by larger displacements. This is ilustrated in
the right image with green squares

do this, we take the mode û with largest confidence value508

ω. We also explored more sophisticated strategies such (i)509

minimizing expected loss with resepect the leaf distributions510

or (ii) predicting a set of confidence weighted correspon-511

dences for every image pixel or (iii) randomly sampling512

correspondences from the leave distributions. Unfortunately,513

these alternative strategies resulted in no improvement with514

respect to just retrieving the correspondence with highest515

confidence weight. For efficiency, one can thus store at each516

leaf only the single vertex index j and confidence weight ω517

resulting from projecting the mode with largest confidence518

in advance.519

4.4 Local Optimization Over θ520

Although there are many terms, optimization of our energy521

function in Eq. (22) is relatively standard. For fixed corre-522

spondences C inferred by the forest, optimization of (22)523

over θ is a nonlinear optimization problem. Derivatives of524

θ are straightforward to efficiently compute using the chain525

rule. The parameterization means that E is somewhat poorly526

conditioned, so that a second order optimizer is required.527

However, a full Hessian computation has not appeared nec-528

essary in our tests, as we find that a Quasi-Newton method529

(L-BFGS) produces good results with relatively few func-530

tion evaluations (considerably fewer than gradient descent).531

To maintain reasonable speed, in our experiments below we532

let the optimization run for a maximum of 300 iterations,533

which proved sufficient in most cases.534

4.4.1 Initialization535

We initialize the optimization as follows. For the pose com-536

ponents of θ , we start at the mean of the prior. For the global537

scale, we scale the model to the size of the observed point 538

cloud. Finally we use the Kabsch algorithm (Kabsch 1976) to 539

find the global rotation and translation that best rigidly aligns 540

the model. Our experience has been that this initialization is 541

helful to obtain faster convergence and improved accuracy. 542

However, the accuracy of the initialization is not crucial in 543

obtaining good results, i.e., the energy minimum found does 544

not depend on initialization as long as the surface model is 545

reasonably close to the observed data in the image. 546

4.4.2 Alternation Between θ and C 547

In contrast to Taylor et al. (2012), we also consider a further 548

ICP optimization to achieve additional gains. After optimiz- 549

ing θ , we hold θ fixed and update C by finding the closest 550

visible model point to each depth pixel, instead of minimizing 551

Eq. (22) keeping the C fixed to the forest predictions. This 552

allows C to be updated efficiently using a k-D tree (Bent- 553

ley 1975). To update θ , the non-linear optimizer is simply 554

restarted with the new correspondences. 555

5 Experiments 556

We evaluate our approach using the same test set of 5000 557

synthetic depth images as used in Taylor et al. (2012). We 558

examine both the accuracy of the inferred correspondences 559

and their usefulness for single frame human pose estimation 560

from depth images. 561

5.1 Setup 562

5.1.1 Forests 563

We use two forests in our experiments: MSIG and PARTS, 564

indicating respectively that they were trained with our pro- 565

posed MSIG objective or the standard PARTS based objective 566

of Shotton et al. (2011), see Fig. 6. 567

Both forests contain three trees and were trained to depth 568

20. To learn the structure and split functions of each tree we 569

use 5000 synthetic images per tree. The extra complexity in 570

training a MSIG tree resulted in them taking roughly three 571

times as long as the PARTS trees. This complexity does not 572

exist at test time and thus speeds reported in Taylor et al. 573

(2012) are obtainable using either type of tree. 574

To train the random forests we use the data from Shot- 575

ton et al. (2011). This is a set of synthetic images, each 576

rendered using computer graphics, to produce a depth or sil- 577

houette image. The parameters of the renders (pose, body 578

size and shape, cropping, clothing, etc.) are randomly cho- 579

sen such that we can aim to learn invariance to those factors. 580

Alongside each depth or silhouette image is rendered a cor- 581
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respondence image, where colors are used to represent the582

ground truth correspondences that we aim to predict using583

the forest. Examples of the training images are given in584

Fig. 7.585

Crucially, the ground truth correspondences must align586

across different body shapes and sizes. For example, the cor-587

respondence for the tip of the right thumb should be the same,588

no matter the length of the arm. This was accomplished by589

deforming a base mesh model, by shrinking and stretching590

limbs, into a set of 15 models ranging from small child to591

tall adult. The vertices in these models therefore exactly cor-592

respond to those in the base model, as desired. This allows593

us to render the required correspondence image using a sim-594

ple vertex lookup, no matter which body model is randomly595

chosen. This can also be seen in Fig. 7. Given this data, we596

can now train the trees MSIG and PARTS using the corre-597

sponding training objectives.598

Fig. 6 Difference between PARTS and MSIG forest output domains.
Left The outputs of a PARTS based forest is a body part label. The
PARTS forest is trained using an objective that minimizes the Shannon
entropy of a discrete distribution over the body part labels. This corre-
sponds to a classification task, where a label has to be assigned to every
depth pixel. Right The output of the MSIG forest are points on the mani-
fold defined by the human surface model. The MSIG attempts to directly
minimize the continuous entropy of the distribution of correspondences
over the human surface model. This corresponds to a regression task,
where every depth pixel is mapped to a point on the human surface
model. The left image is courtesy of Shotton et al. (2011) and the right
image of Taylor et al. (2012)

To populate the leaf distributions in both types of trees, 599

we replicate the strategy of Taylor et al. (2012): we push the 600

training data from 20000 (depth, correspondences) image 601

pairs through the trees and find the mode of the distribution 602

in the extrinsic isometric embedding of a human shape (the 603

‘Vitruvian’ pose) using mean-shift. 604

5.1.2 Pose Estimation 605

For human pose estimation we parametrize a model using 606

a skeleton. We predict the following 19 body joints: head, 607

neck, shoulders, elbows, wrists, hands, knees, ankles, feet, 608

and hips (left, right, center). 609

5.1.3 Metrics 610

To evaluate the accuracy of the inferred correspondences, 611

we use the correspondence error defined as the geodesic 612

distance between the prediction and the ground truth model 613

location. We use a model with standard proportions and thus 614

a correspondence error of 25 cm is roughly the length of the 615

lower arm. To measure pose accuracy we use the challenging 616

worst joint error metric introduced in Taylor et al. (2012): the 617

proportion of test scenes that have all predicted joints within 618

a certain Euclidean distance from their ground truth locations 619

(Figs. 9, 10). 620

5.2 Results 621

We evaluate the performance of our forest regressors to pre- 622

dict dense image to model correspondences. We quantify the 623

proportion of predicted correspondences with an error less 624

than a certain distance. We find that correspondences with an 625

error of less than 15 cm tend to be useful for pose estimation 626

whereas those with higher errors are usually treated as out- 627

liers. In Fig. 8 we show the correspondence accuracy for both 628

the MSIG forest and PARTS forest at depths of 17, 18, 19 629

and 20. As it can be seen, the MSIG forest produces cor- 630

Fig. 7 Training data used to train the PARTS and MSIG forests. We
show here three example training images in triplets. For every triplet,
we show left to right: (1) the synthetic depth image, (2) the body PARTS
output label and (3) the MSIG output. Because the synthetic images have
been generated using the model, every pixel can be annotated with the

ground truth correspondence on the the human surface model. Training
images are randomly generated varying different factors: pose, shape
and image cropping. The forest will have to learn invariances to all these
factors
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Fig. 8 Correspondence error comparison of PARTS forest with the proposed MSIG forest. We evaluate the accuracy for forests of depths
17, 18, 19, 20. It can be observed that our proposed method consistently produces considerably more accurate correspondences

Fig. 9 Pose accuracy comparison using correspondences from both PARTS and proposed MSIG forests at depths 17, 18, 19 and 20. For both
forests, we use the pose estimation algorithm of Taylor et al. (2012) as explained in Sect. 4.2 and evaluate using the worst joint error metric
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Fig. 10 Left Pose accuracy of our MSIG forest trained with 5000
images per tree compared to accuracy reported by Taylor et al. (2012)
which used 300,000 training images. Right Pose accuracy for both

PARTS and MSIG forests after 10 iterations of ICP. Note that the curve
labelled MSIG in both the left (solid red) and right (dashed red) plots
are the same

respondences that are consistently more accurate than those631

produced from the PARTS forest. This is very encouraging632

since forests trained using a PARTS objective had previously633

shown state of the art performance, far superior to those634

using other objectives such as the Hough-regression (Gir-635

shick et al. 2011). We attribute the better performance of636

our approach to the fact that MSIG favors distributions with637

mass concentrated (in the sense of the defined metric) in close638

locations.639

Although the inferred dense correspondences can be used640

for a large number of tasks, we consider the task of single641

frame pose estimation as a motivational example. Therefore,642

we also show the impact in the pose accuracy again for forests643

of depth 17, 18, 19 and 20. As one would expect, better cor-644

respondences translate into more accurate pose estimates.645

As can be seen in Fig. 9, the MSIG forest produces a small646

but significant improvement w.r.t. to the PARTS forest. The647

smaller gains in pose accuracy are expected as the energy of648

Taylor et al. (2012) is designed to be robust to outliers from649

their forest. We also compare in Fig. 10 directly to the results650

provided by Taylor et al. (2012), which appears to be the651

state of the art for single frame pose estimation from depth652

images. Despite our MSIG forest using orders of magnitude653

less training images (300K images vs. 5K images per tree),654

we achieve equivalent performance.655

We further demonstrate that our correspondences can be656

used to initialize classical registration methods such as artic-657

ulated ICP as explained in Sect. 4.2. Contrary to what was658

alluded to in Taylor et al. (2012) we find that using just 10659

such ICP alternations provides an additional performance660

gain of up to 10% with both PARTS and MSIG correspon-661

dences as demonstrated in Fig. 10. Furthermore, it can be seen662

that the gap between the MSIG and PARTS is not washed663

out by this downstream ICP processing. The resulting MSIG664

poses after ICP refinement, thus represent the state of the art665

on this dataset.666

6 Conclusion 667

We have introduced MSIG, an objective function that eval- 668

uates a split function’s ability to reduce the uncertainty over 669

an arbitrary metric space using KDE. Using a discretiza- 670

tion of this space, an efficient approximation to MSIG was 671

developed as to facilitate its use in training random forests. 672

Although the general framework can be tuned through the 673

specification of an appropriate metric space, kernel function 674

and discretization, natural choices exist making this approach 675

widely applicable. 676

We employed MSIG in the context of human pose 677

estimation to both simplify and enhance the inference of 678

dense data to model correspondences by avoiding two 679

arbitrary requisites of previous work: (i) our work does 680

not require a segmentation of the human body into parts, 681

and (ii) it does not require an extrinsic isometric embed- 682

ding of the human shape. A number of experiments show 683

that the more principled MSIG objective allows the infer- 684

ence of superior correspondences compared to those pro- 685

vided by standard training objectives. Additionally, these 686

results translate into state of the art accuracy for sin- 687

gle frame human pose estimation using far fewer training 688

images. 689
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