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Abstract

We present a fast, practical method for personalizing a
hand shape basis to an individual user’s detailed hand shape
using only a small set of depth images. To achieve this, we
minimize an energy based on a sum of render-and-compare
cost functions called the golden energy. However, this energy
is only piecewise continuous, due to pixels crossing occlu-
sion boundaries, and is therefore not obviously amenable to
efficient gradient-based optimization. A key insight is that
the energy is the combination of a smooth low-frequency
function with a high-frequency, low-amplitude, piecewise-
continuous function. A central finite difference approxima-
tion with a suitable step size can therefore jump over the dis-
continuities to obtain a good approximation to the energy’s
low-frequency behavior, allowing efficient gradient-based
optimization. Experimental results quantitatively demon-
strate for the first time that detailed personalized models
improve the accuracy of hand tracking and achieve competi-
tive results in both tracking and model registration.

1. Introduction
The ability to accurately and efficiently reconstruct the

motion of the human hand from images promises exciting
new applications in immersive virtual and augmented reali-
ties, robotic control, and sign language recognition. There
has been great progress in recent years, especially with the
arrival of consumer depth cameras [16, 25, 26, 28, 29, 30,
32, 33, 36]. However, it remains a challenging task [31]
due to unconstrained global and local pose variations, fre-
quent occlusion, local self-similarity, and a high degree of
articulation.

Most recent approaches combine the best of discrimina-
tive and generative approaches: the ‘bottom-up’ discrimi-
native component attempts to make a prediction about the
state of the hand directly from the image data, which then
guides a ‘top-down’ generative component by deforming the
parameters of a model to try to explain the data. Discrimina-
tive methods can be faster and typically require no temporal
history. In contrast a good generative model can use its ex-
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Figure 1: We show how to fit a deformable hand shape basis
model [17] to a small set of depth images. Our method
jointly optimizes over the shape β ∈ RK and F poses θf
to maximize the model’s alignment to the data in F depth
images. The initial hand poses are automatically determined
by a hand tracker that uses the mean shape βmean, but there
is clearly poor alignment between model and data. After our
optimization to obtain personalized shape βpersonalized, the
alignment is much better, with remaining errors largely due
to sensor noise.

planatory power and priors to produce what is usually a more
accurate result, even in the presence of occlusion.

Generative models of hands are limited by their capacity
to accurately explain the image observations. High-quality,
though expensive and off-line, models have been shown to
reliably fit both the pose and shape of complex sequences [4].
However, most interactive (real-time) hand tracking systems
(e.g. [25, 30]) approximate the hand surface using primitives
such as spheres or cylinders, parameterized to articulate the
surface geometry. Others [28] use a detailed hand mesh
model, though only attempt to fit the hand poses using a
fixed template shape. To improve the model’s capacity, some
approaches [22, 30] allow shape deformations of primitive
spheres and cylinders, but these models can only compensate
for gross model-data mismatches.

Recent work [35] has investigated an off-line process for
‘personalizing’ a detailed 3D mesh model to an individual’s
hand shape using a set of depth images of the hand in varied
poses, each paired with a manually-annotated initialization
pose. The mesh shape is optimized to jointly explain the



depth data from each frame, yielding the user’s personalized
model. Unfortunately, this system is likely to be too brittle
and slow for an online setting, as the parameterization of
each mesh vertex yields a very high-dimensional optimiza-
tion problem,

A promising alternative is to create a much lower-
dimensional model that parameterizes the hand shape of
an entire population of individuals. Khamis et al. [17] take a
cue from the human body shape modeling literature [3, 14]
and build a detailed 3D shape basis for human hands by
parameterizing a mesh model using a small set of ‘shape
coefficients’. Each setting of these coefficients induces a
hand model whose deformations are parameterized by a set
of semantically meaningful pose parameters (e.g. joint an-
gles). Unfortunately, even though Khamis et al. [17] show
how to personalize their model for a new user, the lack of a
‘background penalty’ leaves local minima where the model
has grown unrealistically in an attempt to explain the data.
To avoid these local minima, they rely on a high-quality
initialization that would be difficult to obtain reliably in an
online setting. Further, they did not investigate whether the
use of a personalized model was important for the accuracy
of online hand tracking systems.

In this paper, we address these concerns and show how to
use the trained shape basis from [17] to robustly personalize
to an individual in a quick and easy calibration step. As
illustrated in Fig. 1, our approach fits a single set of shape
coefficients β and per-frame poses {θf}Ff=1 to a set of F
depth images (each supplied with a rough initialization pose
given by a template-based hand tracking system [28]). To do
so, we exploit the ‘golden energy’ from [28], whose ‘render-
and-compare’ formulation implicitly penalizes protrusions
into free space. The energy appears to be the combination of
a smooth low-frequency function with a high-frequency, low-
amplitude, piecewise-continuous function (see Fig. 4). The
discontinuities in the latter function are the result of occlu-
sion boundaries travelling across locations being discretely
sampled by each pixel. This seems to preclude gradient-
based optimization, as following the exact gradient on either
side of such a jump would not generally yield a good step
direction.

One optimization option might be stochastic search
(e.g. Particle Swarm Optimization) to avoid relying on deriva-
tives, but this converges slowly and typically only works well
for low-dimensional optimization problems. Our optimiza-
tion space (one shape and F poses) is high-dimensional,
however, and thus we would like to use a gradient-based
optimizer. Although we could carefully work out the true
derivatives of a continuous form of this energy [10], it is
not obvious if we could compute them quickly. We thus
choose to instead use an approximate derivative calculated
using central differences. The step size must be right: large
enough to jump over nearby occlusion boundaries, and small

enough to capture the smooth global behavior of the func-
tion. We use a GPU-based tiled renderer to rapidly perform
the extra function evaluations that this finite differencing
requires. Given our ability to calculate the golden energy
and calculate approximate derivatives, we are able to exploit
Levenberg-Marquardt to minimize the energy in under a
second for a small set of images (e.g. F = 5).

We can therefore demonstrate for the first time the poten-
tial for detailed personalization to quantifiably improve the
accuracy of a real-time hand tracker. To this end, we adapt
[28] to track using the personalized model, and compare tem-
plate to personalized model tracking accuracy across several
datasets. We show that our personalized hand tracking is
able to achieve results that are competitive with the state of
the art.

2. Related Work
A large amount of work has been done constructing de-

tailed low-dimensional models of shape and pose variation
for human bodies and faces [1, 2, 6, 9, 12, 13, 18, 19, 37, 38].
While hands may be similar to human bodies in the num-
ber of degrees of freedom, hands exhibit significantly more
self-occlusion. They are also much smaller, which means
images from current depth cameras contain fewer foreground
pixels and suffer from more camera noise. Additionally, the
space of hand poses is likely larger than that of the space
of body poses. Consequently, it is only recently that simi-
lar detailed low-dimensional models were built for human
hands [17]. Given various RGB-D sensor measurements,
these approaches aim to find the low-dimensional shape and
pose subspaces by fitting the entire set of observed data.
This typically amounts to optimizing a very large number
of parameters [7, 17, 21]. Despite the success of these ap-
proaches, the number of parameters prohibits their suitability
for online fitting, although some systems may be close [21].

Recently, morphable subdivision surface models have
been used to model other categories of deformation. Cash-
man and Fitzgibbon [8] demonstrate that extremely limited
data (30 silhouette images) can be used to learn such a model
for a variety of objects and animals. In more closely-related
work, Taylor et al. [35] learn a personalized hand model
from a set of noisy depth images for a single user, which was
the approach adapted by Khamis et al. [17] to train a hand
shape model on a large dataset of hands.

Other related work tackles differentiation for a render-
and-compare energy function, which may at first seem un-
approachable due to occlusion boundaries. When the image
domain is kept continuous, however, one can show that such
energies are naturally differentiable and their exact gradient
can be laboriously worked out [11]. Nonetheless, current
practical systems discretize the image domain by taking a
point sample at each pixel, which introduces discontinuities
in the energy caused by occlusion boundaries moving from



pixel to pixel. In order to avoid such difficulties, it is tempt-
ing to instead approximate the gradient by peering behind
these boundaries [5]. Interestingly, Oberweger et al. [24]
side-stepped this issue completely by training a convolu-
tional neural network to render hands, as gradients are then
easily obtainable using the standard back-propagation rules
for such networks.

3. Shape and Pose Model
The model developed by Khamis et al. [17] parameter-

izes both hand pose θ ∈ R28 and hand shape β ∈ RK to
deform an M -vertex triangular mesh, assumed to have a
fixed triangulation and hierarchical skeleton. This defor-
mation proceeds in three steps, the first two of which are
illustrated in Fig. 2.

First, a vector β of shape coefficients produces a mesh
of a hand in a neutral pose, but with a specific hand shape.
Simultaneously, the shape also defines the position of the B
bones of the skeleton. To be precise, given β, the locations
of M vertices fill the columns of the 3 ×M matrix V (β),
and the set of bone locations fill the columns of the 3× B
matrix L(β):

V (β) =

K∑
k=1

βkVk and L(β) =

K∑
k=1

βkLk . (1)

The matrices {Vk, Lk}Kk=1 thus form a linear basis for
the shape of the model. These are the same bases as
[17] for all values of K ∈ {1, 2, 3, 4, 5} for which they
trained. Note that the regularization used during the train-
ing process encouraged the first dimension (V1, L1) to rep-
resent something akin to a mean hand and skeleton with
the other dimensions serving as offsets. We therefore call
βmean = [1, 0, . . . , 0]> ∈ RK the ‘mean’ hand shape (see
Fig. 1).

Second, the model applies a linear blend skinning (LBS)
operator P (θ;V,L) ∈ R3×M to a mesh V and skeleton L
using a set of pose parameters θ ∈ R28 that include global
rotation, translation, wrist and finger joint rotations. LBS is
a standard tool in computer animation; we refer the reader
to [17] for details.

Third, and as a new addition to [17], we implement a
final step Γ : R3×M → R3×M ′

that applies a single step of
Loop subdivision [20] to the mesh to produce a denser mesh
with M ′ vertices. This brings the resulting mesh into closer
alignment with the true ‘limit surface’ that was fitted to the
data in [17], while maintaining efficiency for what follows.

For notational clarity, we combine the steps together as

Υ(θ, β) = Γ(P (θ;V (β), L(β)) ∈ R3×M ′
(2)

to denote the full deformation model that produces a subdi-
vided mesh with shape β in pose θ.
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Figure 2: The model of hand shape deformation [17].

4. The Golden Energy
One way to evaluate whether a specific combination of

shape β and pose θ give rise to an image is to simply render
the deformed mesh Υ(θ, β) and compare it to the image.
If this evaluation can be formulated as an energy function
that assigns a low value when the rendered and observed
images are close, the problem is then reduced to function
minimization.

To this end, we adapt the ‘golden energy’ from [28] in two
ways: (i) we use an L2 penalty (instead of L1) to allow the
use of standard least-squares optimization techniques; and,
(ii) at least conceptually, we operate on a continuous pixel
domain I ⊆ R2 to model the idealized imaging process [10].
We thus define an idealized energy by simply integrating the
difference between the observations and the rendering across
the domain of the image I

Êgold(θ, β) =

∫
(u,v)∈I

ρ(Ĩ(u, v)− R̃(u, v; Υ(θ, β)))2 du dv (3)

where ρ(e) = min(
√
τ , |e|) with a constant truncation

threshold τ . Here, Ĩ(u, v) and R̃(u, v; Υ(θ, β)) give the
observed and the rendered depth at the location (u, v), re-
spectively. Note that we generally observe a discretized
image and thus Ĩ(u, v) will be piecewise constant.

In practice, the integral in (3) is difficult and expensive to
evaluate so practical systems instead create a discretization
by rendering an image of size W × H . The (discretized)
golden energy is thus given by

Egold(θ, β) =
1

WH

W∑
i=1

H∑
j=1

rij(θ, β)2 (4)

with the residual rij(θ, β) for pixel (i, j) defined as

rij(θ, β) = ρ(Iij −Rij(Υ(θ, β)) (5)

where I ∈ RW×H is appropriately resampled from Ĩ(·, ·)
and Rij(Υ(θ, β)) yields the value of pixel (i, j) in the ren-
dered depth image.
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Figure 3: (a) Visualization of the Jacobian with respect to pose parameters θ. Each image is reshaped to form a column of J .
(b) Rows in Jsub represent subterms in the energy; columns represent the pose parameters for one frame. (c) Jacobian of the
full lifted energy E′, including the shape parameters β. (d) Sparsity structure of J>J .

5. Shape Fitting Energy
We now have the tools that we need to attack the problem

of inferring a user’s hand shape β from a sequence of depth
images {If}Ff=1. To achieve this goal, we want to minimize

E(β) =

F∑
f=1

min
θ

(Egold(θ, β; If ) + λpriorEprior(θ)) . (6)

To make the resulting value small, a pose θ must be found
for each frame that yields both a low golden energy Egold(θ)
and a low pose prior energy Eprior(θ). The pose prior pro-
vides constraints on the pose in the form of the negative
log-likelihood

Eprior(θ) = (θ − µ)>Σ−1(θ − µ) (7)

of a multivariate normal N (µ,Σ). The mean µ ∈ R28 and
covariance matrix Σ ∈ R28×28 were fitted to a selected set
of valid hand poses {P train

q }Qq=1 ⊆ R22 captured using the
hand tracker of [28], with the variance on the global pose set
to∞.

6. Optimization
Using the standard ‘lifting’ technique (see e.g. [17]), we

define a new lifted energy

E′(Θ, β) =

F∑
f=1

Egold(θf , β) + λpriorEprior(θf ) (8)

where Θ = {θf}Ff=1. As E(β) ≤ E′(Θ, β) for any value
of Θ, we seek to implicitly minimize the former by ex-
plicitly minimizing the latter. For simplicity, we assign
x =

[
vec(Θ) β>

]> ∈ R28F+K as the parameter vector.
Note that E′ has 28F + K parameters, and thus would

be very difficult to optimize using a stochastic optimizer

like PSO [28]. Instead, we use Levenberg-Marquardt, a
gradient-based optimizer that can yield second-order-like
convergence properties when close to the minimum.

The optimizer requires the full Jacobian matrix J of
the residuals with respect to the 28F +K parameters (see
Fig. 3(a-c)). Given the independence of the pose parameters
across the F depth images (we do not assume any order-
ing or temporal continuity in the depth images, only that
they come from the same individual), it follows that 28F
columns of J are sparsely filled by the results of the pixel-
wise derivative of the golden energy from a single image If
with respect to a pose parameter in θf (see Sec. 7). This is
combined with the Jacobian matrix of the pose prior energy.
The shape coefficients, however, are the same for all images,
so the column that corresponds to a shape coefficient in J is
the concatenation of the pixel-wise derivative of the golden
energy from all images.

To find the Jacobian matrix associated to Eprior, we first
use Cholesky decomposition on Σ−1 = LL> and rewrite
the energy as

Eprior(θ) = ‖L(θ − µ)‖2 . (9)

Since we are computing the derivative of the residuals, the
Jacobian matrix of Eprior(θ) with respect to the parameters is
simply L. In addition to the pose prior, we also impose box
constraints on the parameters θ to restrict the hand pose from
unnatural or impossible deformations. These constraints
take the form of limiting values [Pmin, Pmax] ∈ R28 × R28,
which we impose using the projection Π such that Π(x)i =
min(max(Pmin

i , xi), P
max
i )).

Then, using the Levenberg-Marquardt method with a
projected step [15], we propose the following update of the
parameters

xprop = Π(x− (J>J + γ diag(J>J))−1J>r) (10)
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Figure 4: Golden energy as a function of x-axis translation,
for different rendered tile sizes W ×H . Note the globally
smooth nature but local discontinuities, which occur at an
increasingly small scale with larger tile sizes.

where J>J is a sparse matrix as illustrated in Fig. 3(d). If
E(xprop) < E(x), then the update is accepted x ← xprop

and the damping is decreased γ ← 0.1γ. Otherwise, the
damping is increased γ ← 10γ and the proposal is recalcu-
lated. Eventually, progress will be made as this is effectively
performing a back-tracking line search while interpolating
from Gauss-Newton to gradient descent.

The importance of the pose prior in our energy becomes
more evident in self-occluded poses where the fingers or
forearm are not visible in the rendered image. When per-
forming a finite difference with respect to transformation
parameters, zero pixel residuals can occur. Thus, without the
pose prior, J and J>J become rank-deficient. By including
the pose prior, the angles of the occluded joints approach
the conditional mean of the occluded joints given the visible
joints as they remain unobserved by the image.

7. Differentiating the Golden Energy

Note that (4) is only piecewise continuous (see Fig. 4),
as moving occlusion boundaries cause jumps in the value
of rendered pixels. Our desired optimization procedure re-
quires gradients (see Sec. 6), but it is evident that the exact
derivative of Egold at any specific point of our approximation
will generally not be helpful. One option would be to return
to the idealized continuous energy [11]. However, the edge
overdraw antialiasing used is considerably more expensive
than a simple render on the GPU. Another approximation [5]
is engineered to look behind the occlusion boundary to try
to anticipate what will come into view. Nevertheless, we
take a different approach that lets us exploit standard GPU-
accelerated rendering techniques.

To this end, we note that the curves in Fig. 4 appear to
be the combination of a well-behaved smooth function at
a global scale and a low-amplitude non-smooth function
at a local scale. If we could somehow recover the former,
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Figure 5: Convergence of E′ for the five subjects in the
FingerPaint dataset. Dots represent successful Levenberg-
Marquardt iterations.

its gradient would provide a good candidate direction for
minimizing (4). One option would be to try to smooth out
the discontinuities in the approximation using a Gaussian
kernel, but this would require the function’s evaluation at
positions across the entire basin of support of the kernel. For
efficiency, we therefore attempt to approximate the function
locally by fitting a line to two points that are sufficiently far
from each other as to capture the dominant smooth behav-
ior of the energy. Hence, we assign φ =

[
θ> β>

]
with

the parameters associated to an image and approximate the
gradient using central differences

∂Egold(φ)

∂φk
≈
Egold(φ+ ∆k

2 )− Egold(φ− ∆k

2 )

εk
(11)

where the constant step size εk is set empirically (see Table 1)
and the value of the kth element of the vector ∆k ∈ R28+K

is set to εk while zero elsewhere.
As with (4), the residual at pixel (i, j) is only piecewise

continuous, although with a sparser set of more dramatic
jumps. Similarly then, we find that a central difference with
a large step size allows us to approximate the derivative of
the residual

∂rij(φ)

∂φk
≈
rij(φ+ ∆k

2 )− rij(φ− ∆k

2 )

εk
. (12)

Although one might be concerned about the various ap-
proximations above, our use of Levenberg-Marquardt pro-
vides a safeguard against catastrophic failure. When steps
fail, the algorithm implicitly performs a back-tracking line
search as it interpolates from Gauss-Newton to gradient de-
scent. This means that in the worst case, the approximate
gradient need only point uphill for progress to be made. In
practice, however, we find the approximate derivatives to
work quite robustly resulting in few rejected steps, indicated
by the many dots (acceptances) in the convergence plots in
both Fig. 5 and Fig. 6.



Parameter (each row maps to several ks) Step size

X, Y and Z translations 10mm
X rotation 5◦

Y and Z rotations 2.5◦

Metacarpal-phalangeal joint flexions 5◦

Metacarpal-phalangeal joint abductions 5◦

Proximal interphalangeal joint flexions 10◦

Distal interphalangeal joint flexions 15◦

Table 1: Step sizes εk used in central differences (12).

8. Experimental Results
We use both synthetic and real data to elucidate our ef-

fectiveness at rapidly minimizing our shape-fitting energy.
We show that this shape calibration gives us an accuracy
improvement on three separate datasets and that our results
are competitive with the state of the art. We refer the reader
to the supplementary material for more experiments and a
video of the live system in action.

For all experiments, we use the step sizes in Table 1 to cal-
culate finite differences, a tile size of 256×256 pixels, which
gave a good balance of global smoothness and performance
(see Fig. 4), and a truncation threshold

√
τ = 10cm. While

one could minimize our energy using LM for tracking (as
opposed to shape calibration), it performs only a fairly local
optimization. Instead we use an implementation of [28]1,
augmented with our own pose prior.

Synthetic Ground Truth. We begin with an experiment
on synthetic data to evaluate our optimization strategy and its
ability to find a good hand shape. To this end, we randomly
choose a ground truth shape βgt ∈ RK . We then sample a set
of F = 40 poses Θgt = {θgt

f }Ff=1 from our pose prior, and
render a set of depth images {If}Ff=1. We then initialize our
energy minimization at the mean with β = βmean. In Fig. 6,
we show the convergence when we optimize E(Θ, β). One
can see in Fig. 6 (left) that we rapidly descend the energy
landscape in the first 20 iterations. This is clearly correlated
with a rapid reduction of |β1−βgt

1 | to near zero, which shows
that we quickly obtain the correct scale. Due to the way the
shape basis was trained in [17], β1 is in a unit that roughly
corresponds to the scale of the mean hand whereas the units
of the other components are less interpretable. Nonetheless,
one can see in the right of Fig. 6 that once scale (i.e. β1) is
taken care of, the error in these components is lowered to
refine detail. Fig. 7 shows that minimizing the energy also
gives strong agreement between the vertex positions V (β)
and the corresponding ground truth positions V (βgt).

Marker Localization. We now begin exploring the use-
fulness of our shape calibration procedure in improving

1Despite statements to the contrary [22], [28] optimizes over pose only.
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Figure 7: Heat maps showing the distance of each vertex to
the corresponding ground truth position, for the (a) initial
and (b) final iteration of the synthetic experiment (Fig. 6).

tracking accuracy, for which the most common metric is
prediction error for a set of marker positions that localize se-
mantic points on the hand. As these locations differ between
datasets, we need to create a mapping from the combined
shape-and-pose parameters φ to a marker position. To do
so, for each marker t = 1, . . . , T we identify four vertices
on the correct region of the model using a fixed picking
matrix2 Yt ∈ R4×M , and define an affine combination of
these vertices using the barycentric coordinates wt ∈ R4

with
∑
wt = 1. We then solve

wt = argmin
w

∑
f∈H

‖P (θf ;V (β), L(β))Y >t w −Gft‖2

where Gft ∈ R3 is the ground truth location of marker t
in frame f , and H ⊆ {1, ..., N} is an equally spaced 5%
sampling of the N frames in the dataset.

NYU Dataset. We test our method on the popular NYU
Hand Pose dataset [36], which comprises N = 8,252 test
frames with captures of two different subjects (i.e. only two
different shapes). Each frame is provided with ground truth
locations Gft for 36 positions of the hand. To compute 3D
error for Tompson et al. [36] on this dataset, we follow recent
papers [23, 24, 27] that augment the inferred 2D positions

2A picking matrix contains zeros except for a single unity entry per row.
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Figure 8: Marker localization error on NYU dataset.

with the captured depth at each location where valid, and
the ground truth depth otherwise. We also obtained inferred
positions from Tang et al. [33], Oberweger et al. [24] and
Taylor et al. [34], selecting a common subset of T = 10
positions (2 per digit) for comparison between all methods.

We give quantitative results for four different settings
(S1-4) in Fig. 8. (S1) Since Tompson et al. use no temporal
information to estimate hand pose, we also configure the
tracker [28] to rely only on its discriminative initializer to
seed each frame independently. (S2) We used F = 20 evenly
distributed poses output by (S1) to initialize our calibration
and create a K = 5 personalized model for each of the
two subjects. We then re-ran (S1) using the appropriate
personalized model. (S3) We re-enable temporal coherency
in the hand tracker (a more realistic setting for tracking),
and report the result using the template. (S4) We follow
the same procedure as in (S2) but using poses from (S3) to
create personalized models. Again, we report the result when
tracking is run using the appropriate personalized model.

Notice first that our personalized tracker provides a re-
sult comparable to Tang et al. [33]. This machine learning
approach was trained directly on the NYU training set, and
thus benefits from the reduced search space induced by this
largely front-facing, limited pose variation dataset. Second,
the personalized tracker provides a much better result than
the template tracker. We hypothesize that the superior fit of
the personalized model (see Fig. 10) creates a much deeper
‘correct’ local minimum closer to the true pose, making it
easier to find the deep ‘correct’ local minimum in the next
frame. In contrast, personalization does not assist as much
when temporal coherence is turned off. Nonetheless, our
calibration tool lets us simply upgrade the performance of
a compatible tracker with a personalized model. The recent
result from Taylor et al. [34], using the same personalized
models as our result, shows the the accuracy of a gradient-
based hand tracker when combined with our personalization.

Personalized Template Sridhar et al. [29]

Tagliasacchi et al. [32] Taylor et al. [34]

Taylor et al. [34] with unpersonalized template model
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Figure 9: Marker localization error on Dexter dataset. The
results for this dataset have been normalized so that each of
the 7 sequences has equal weight.

Frame 2430 of Tompson. Frame 50 of Dexter abdadd

NYU Dataset Dexter Dataset

FingerPaint Subject 2FingerPaint Subject 1

Figure 10: Qualitative example of fit difference between
template (left and top-middle of each set) and personalized
model (bottom-middle and right of each set) for one subject
of the NYU (top left), the only subject of the Dexter (top
right) and two subjects of the FingerPaint (bottom) datasets.

Dexter Dataset. We use the Dexter dataset [29] to further
evaluate our personalized tracking against state-of-the-art
results. We follow the recommendation of the authors and
use T = 5 fingertip markers, excluding a small number of
frames from the beginning of each sequence for the purpose
of calculating error. The result is a total of N = 2,931
frames, of which we use an equally-spaced subset of F = 20
frames to personalize the model. Fig. 9 compares our tracker
with Sridhar et al. [29] (see supplementary material for more
detail on this comparison), as well as Tagliasacchi et al. [32]
and Taylor et al. [34]. This time, personalization gives a
lesser improvement in tracking accuracy as the template fits
the single subject’s hand quite well (see Fig. 10).

FingerPaint Dataset. To test our ability to perform de-
tailed surface registration, we turn to the hand part segmen-
tation task required for the FingerPaint dataset [28]. The
dataset includes sequences from five different subjects, with
pixels labelled as one of 7 parts (5 fingers, the palm, and the
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Figure 11: Classification error on FingerPaint dataset.

forearm). To personalize to each subject, we first run the
template-based hand tracker across each sequence. Then, for
each subject, we sample F = 30 frames, evenly distributed
throughout the dataset, and use the poses to run our shape
optimization. For this dataset, we try personalizing using
K = {1, . . . , 5} for the 5 different shape models from [17].
We then run the tracker on the dataset using the appropriate
personalized models, and compare the pixel classification
accuracies (see supplementary material and Fig. 10 for ex-
amples of these personalized models). Fig. 11 shows, as
expected, the average classification accuracy increases as we
increase K as the deformation model can more accurately
register itself to the data. Interestingly, the K = 1 curve
which roughly corresponds to a scaled mean hand does not
always perform better than the template. We hypothesize
that in these areas of the curve, any benefits to personaliza-
tion are not able to compensate for the bias caused by fitting
to a different dataset; in contrast the template is implicitly
not biased to any dataset as it was created by hand. Note that
the pose prior explains the improvement in accuracy seen
between template tracking and Sharp et al. [28] in Fig. 11.

Qualitative System. Finally, we show that our shape cali-
bration procedure can be used in an online tracker to provide
rapid and reliable detailed personalized tracking for any user
(see Fig. 12). We augmented the live tracker of [28] to in-
clude the capability to perform an online personalization of
the model (see Fig. 13). The system starts by using the tem-
plate model to track the user’s hand. The user moves their
hand into F different poses, and when the user is comfort-
able that the tracker has a reasonable pose estimate, a button
is pressed to capture both the depth frame and the pose es-
timate. When satisfied with these poses, the user presses a
button to initiate shape calibration. Typically, this procedure
takes less than a second, at which point the new personalized
model is used for further tracking. This immediately allows
applications to benefit from both improved surface-to-data
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Figure 12: Calibration frames at initialization and after con-
vergence of our personalization procedure. The template is
the wrong shape for the female subject, too small for the
male and wildly too large for the two children. After per-
sonalization, each model fits each user ‘like a glove’. The
truncated golden energy makes the system robust to errors
in segmenting the background.
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Figure 13: Our online calibration tool showing (top) that the
alignment of the mean shape to calibration frames shows
gross errors and (bottom) that the personalized model tightly
aligns with the data after optimization.

registration (see ‘FingerPaint Dataset’) and tracking accu-
racy (see ‘NYU Dataset’). See the supplementary material
for videos of this system in live use.

9. Conclusion
We have presented the first online method for creating a

detailed ‘personalized’ hand model for hand tracking. An
easy-to-use calibration step allows a new user to rapidly tran-
sition from template to personalized tracking, yielding more
robust tracking and better surface alignment that can be ex-
ploited by higher-level applications. We have experimentally
verified both of these benefits on several standard datasets,
showing the increase in both marker localization and dense
pixel classification accuracy one obtains when a personalized
model is used in place of a poorly-fit template model. Users
found our calibration system easy to use and compelling to
see a detailed hand avatar. We leave it as future work to
address the question of how to remove the calibration step
entirely and make personalization fully automatic.
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