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Abstract

This paper presents a method for acquiring dense non-
rigid shape and deformation from a single monocular depth
sensor. We focus on modeling the human hand, and as-
sume that a single rough template model is available. We
combine and extend existing work on model-based track-
ing, subdivision surface fitting, and mesh deformation to
acquire detailed hand models from as few as 15 frames of
depth data. We propose an objective that measures the error
of fit between each sampled data point and a continuous
model surface defined by a rigged control mesh, and uses
as-rigid-as-possible (ARAP) regularizers to cleanly separate
the model and template geometries. A key contribution is our
use of a smooth model based on subdivision surfaces that al-
lows simultaneous optimization over both correspondences
and model parameters. This avoids the use of iterated closest
point (ICP) algorithms which often lead to slow convergence.
Automatic initialization is obtained using a regression forest
trained to infer approximate correspondences. Experiments
show that the resulting meshes model the user’s hand shape
more accurately than just adapting the shape parameters
of the skeleton, and that the retargeted skeleton accurately
models the user’s articulations. We investigate the effect of
various modeling choices, and show the benefits of using
subdivision surfaces and ARAP regularization.

1. Introduction
The acquisition of detailed models of the 3D world has

long been a goal of computer vision, both as a scientific
goal and for the applications that such models enable. For
a rigid scene, techniques are highly advanced, allowing de-
tailed models to be obtained even from impoverished 2D
sensors [20]. However, the capture of nonrigid objects re-
mains challenging. Existing techniques commonly use mul-
tiple near-synchronized cameras, but this is expensive and
impractical, and so the ability to work from a single sensor is
highly desirable. With a single sensor, the ability to capture
the nonrigid world is considerably inferior to the rigid case,

Figure 1: Hand shape fitting. (A) Template model with
skeleton. (B) Three frames from 15-frame input sequence.
(C) Template (left) and refined model (right) fit to this se-
quence. Note both a large scale change and local deforma-
tions (e.g. on the palm).

even when using a 2 1
2 D depth sensor such as the Kinect.

This paper presents a method for nonrigid 3D model
acquisition from monocular depth sequences. We consider
the important special case where a rigged template mesh
of the object class is available. In particular, we focus on
reconstruction of the human hand. Such rigged templates
are relatively easy to construct: the template we use in our
experiments, a 452-vertex mesh with a 21-bone skeleton,
was created by two novice users of the 3D modeling package
Blender in under a day. Importantly, the model and skeleton
geometry can be approximate, the key information being the
vertex and skeleton connectivity information. Such models
are also available online for a variety of object classes. For
example, the website TurboSquid lists nearly 4000 rigged
3D models at the time of writing.

The hand is an interesting object class for a number of
reasons. First, today’s real time sensors are only capable
of sparse sampling of a hand due to their size. Second,
although an important object class, it appears that no high
quality globally-parameterized shape model exists for the
hand; the hands on full-body models [3, 10] used in current
vision systems tend to be clenched fists. Finally, hands are
generally unclothed, particularly in indoor applications, so
the benefits of having a user-specific model are perhaps even
greater for hands than for the full body. Indeed, Ballan et
al. [4] demonstrate that extremely robust tracking is possible
given a user-specialized hand template, but require manual
rigging and a multi-camera capture setup.

The primary contributions of our work are as follows.
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(1) We propose a new objective function for specialization of
a coarse rigged template to sparse noisy depth images. This
objective is parameterized by a global ‘core’ model, a per-
image model pose, and the set of correspondences between
model and data. In contrast to previous work using polygon
meshes, our model exploits subdivision surfaces to define a
smooth continuous model. (2) Because of the smooth surface
model, simultaneous optimization of both the model param-
eters and the correspondences is possible using standard
nonlinear minimization. In contrast to ICP-like alternation
strategies, this can offer rapid quadratic convergence (see
Fig. 2b).

1.1. Related work

We consider only work dealing with temporal sequences,
as the case of multiple simultaneous captures is equivalent
to the rigid case.

Some systems operate in a more general regime than
ours, where there is no requirement for a model template.
A key component of such systems is nonrigid registration
between 3D datasets. Wand et al. [29] demonstrate impres-
sive results on noisy range sequences, matching an evolving
core model to incoming range images. They use alternating
minimization to optimize an energy defined over the core,
a motion field from the core to each frame, regularizers en-
couraging isometry of the motion field, and core-to-frame
correspondences. Li et al. [16] register pairs of range images
by minimizing an energy similar to ours, and like us they
simultaneously optimize correspondences and the shape pa-
rameters. However, these techniques are only demonstrated
on scenes with relatively small deformations [17], or on
the ‘frontal-only’ registration task, while our work allows
full orbits of the shape. Liao et al. [18] recover general
3D models from single depth image sequences. However,
their technique requires a relatively large number of point
correspondences to be obtained from SIFT matching on si-
multaneously acquired RGB data of highly textured surfaces.
The method also requires dense clean depth data, meaning
that dynamic sequences must be captured using ‘stop-motion’
techniques.

Other systems are more specialized than ours and learn a
low dimensional parameterization of a shape class. Exam-
ples include morphable models and their successors [5, 2, 3,
8], which we shall call parameterized class models (PCMs).
Having built a PCM (or having simultaneously discovered
alignment and PCM [10, 6]), a wide variety of impressive
applications are enabled, such as the fitting of accurate 3D
body models to a small number of range scans [30], or accu-
rate hand or body tracking [7, 9]. However, the construction
of PCMs is difficult, and indeed we know of no such model
for the important class of hands. As an aside, the fact that
our model produces aligned meshes may allow it to be used
to construct a PCM, although this is future work.

With slightly more general assumptions than ours, Stoll
et al. [24] require only an approximate template, without
rigging information. They use a sparse set of point corre-
spondences and minimize a Laplacian mesh energy to align
the template into position on a target point cloud, such as
might be obtained from a single range image. An ICP-style
iteration then aligns the mesh to the remainder of the data.
The system requires rather more correspondences than ours,
and does not appear as amenable to automation. Li et al. [15]
adapt the general-purpose system [16] to template adapta-
tion and detail enhancement to produce impressive shape re-
covery given reasonably high-resolution and largely-frontal
input sequences. Cashman et al. [6] also use an unrigged
template, and simultaneously discover and fit a subdivision-
surface PCM, fitting to single silhouettes of different object
instances. However, they do not handle articulated models.
One of our contributions is to augment their method with
skeleton rigging, and to replace the PCM with ARAP-based
regularization.

Some systems do consider a specialization of a rigged
template. The system of Rhee et al. [21], however, requires a
single RGB image to be taken in a highly constrained setting
and cannot infer geometry for the entire hand. In contrast,
Straka et al. [25] demonstrate results using dense 3D data
from a multi-camera system. Although their system varies
the bone lengths of a ‘differential LBS’ model, akin to the
STBS model of [13], no provision for adaptation of the base
mesh is considered.

1.2. Preliminaries

Before detailing our method, it will be useful to briefly
describe the key ingredients used in this work: meshes, mesh
rigging, surfaces and mesh deformation measures.

Meshes. A mesh is defined by a collection of M vertices
{vm}Mm=1 ⊆ R3 and a triangulation consisting of a set of
triples of vertex indices defining the model topology. We
will typically refer to the triangulation only through the set
of neighbors Nm ⊂ {1..M} of vertex m. As all of the
meshes in this paper share the same triangulation, it will be
assumed implicit in the following, so that a mesh is simply
expressed by a 3 ×M matrix V = [v1, ...,vM ] ∈ R3×M .
In this work, we seek to recover a rigged user-specific mesh
model Vcore by personalizing a rigged template hand mesh
model Vtemplate.

Mesh rigging. A rigged mesh V ∈ R3×M requires the
definition of a function P which takes a set of pose param-
eters θ and shape parameters κ and transforms the mesh
to generate a “posed” mesh P = P(V ; θ, κ) ∈ R3×M . We
assume that such a function is provided to manipulate the
template Vtemplate, and thus it can also be applied to Vcore. In
our method’s most general form, we only require that the
function be differentiable in all of its parameters, but in this



work we will use a common linear blend skinning (LBS)
approach to define P .

To this end, we use a skeleton of B bones, each of which
is associated with a transformation Gb(θ, κ) mapping the
bone’s local coordinate system into the world coordinate
system. The bones are arranged in a tree structure as seen
in Figure 1. The transform Gb(θ, κ) applies first a rotation,
followed by a translation and finally, if b is not the root, the
recursive application of Gπ(b)(θ, κ) where π(b) is the parent
bone of b. The rotation is a function of θ and parameterizes
the orientation of bone bwhereas the translation is dependent
on κ and specifies the point of attachment for any children
bones.

The mth model vertex is skinned to all bones by a set
of fixed skinning weights αm1, ..., αmB , where typically
only a few weights are nonzero. Then P = [p1, ...,pM ] =
P(V ; θ, κ) ∈ R3×M is a posed mesh whose mth vertex is

pm = Gglob(θ, κ) ∗
B∑
b=1

αmbGb(θ, κ) ∗Gb(θ0, κ)−1 ∗ vm .

Here θ0 represents the ‘base pose’ of the model, Gglob en-
codes a global similarity transform including scale and A∗x
denotes the transformation of vector x by the transforma-
tion A. Again, the precise structure of P is not particularly
important other than to note that its derivatives are smooth
and relatively cheap to compute.

Surface Function. A surface is a subset of R3, which
we shall assume is defined by a mapping S from an es-
sentially 2D space Ω to R3, defining the set of 3D points
S(Ω) = {S(u) : u ∈ Ω}. When the surface is parameter-
ized by a set of control vertices V , for example a polyhedron
or subdivision surface, we write the dependence explicitly,
defining the mapping (or surface function)

S : Ω× R3×M 7→ R3 . (1)

For triangular meshes, a parameter-space point u ∈ Ω (§2.3)
can be concretely expressed with a triplet (u, v, τ) where
(u, v) is a coordinate in the triangle τ . The surface func-
tion S can then use this coordinate to linearly interpolate
between the three vertices of τ , yielding a piecewise planar
surface. We, however, require a smooth surface function
S(u;V ) and an associated smooth surface normal function
S⊥(u;V ) defining the surface normal at u. We employ a
Loop subdivision surface as recently employed in modeling
from silhouettes [6]. The essential property of this surface
is that S is smooth, and is a simple polynomial function
(see supplementary material) of u (and is linear in V ) in
each triangle τ . Note that even the linearity in V is not im-
portant to express here: the nonlinear optimization (§2.3)
will exploit it naturally without the need for explicit special
cases. What is important, however, is to have access to the
derivatives ∂S/∂u and ∂S/∂V , which is ensured by the
parameterization we use in this work.

Mesh Deformation Measure. As will be shown, our
method requires a measure of mesh deformation between
two meshes V = [v1, ...,vM ] and W = [w1, ...,wM ]. A
desirable property of such a measure is that rigid transfor-
mations are not penalized, and locally nonrigid transforma-
tions (e.g., the bending of a finger) are penalized less than
large deformations. The as-rigid-as-possible (ARAP) mea-
sure [22, 11] is defined as

D(V,W ) =

M∑
m=1

min
R

∑
n∈Nm

‖(vm − vn)−R(wm −wn)‖2

where the inner minimizations are over 3D rotations R ∈
SO3. Note that the definition does not specify how the op-
timization is to be performed. In most papers using ARAP,
direct methods are employed to perform the inner minimiza-
tion given V and W , but these methods greatly compli-
cate the computation of derivatives such as ∂D(V,U)/∂V .
Thus for our purposes an alternative will be required (§2.2).
Several related deformations have been defined, including
Laplacian-based measures [23] and ‘embedded deforma-
tion’ [26], and our choice of ARAP is to some extent ar-
bitrary, but exploration of the alternatives is left to future
work.

2. Method
The input to our system is a collection of F depth frames.

In frame f we observe Nf data points {xfn}N
f

n=1 ⊆ R3, to
which we associate estimated normals {nfn}N

f

n=1 ⊆ R3.

2.1. Objective function

Our algorithm is expressed as energy minimization over
all the unknown quantities in the system, divided into two
sets: ‘primary’ and ‘latent’. These are illustrated in Figure 2a.
The primary unknowns are:

• The core mesh Vcore, a 3×M matrix.
• The vector of core shape parameters κ.
• The per-frame pose parameters {θf}Ff=1, each a vec-

tor describing the pose of the hand.
• The per-view instance meshes {V finstance}Ff=1, each a

3×M matrix. Explicitly parameterizing these instance
meshes allows shape changes unmodeled by the mesh
skinning to be cleanly handled.

The overall energy, in terms of these unknowns, is the sum
of a data term and two regularizers:

E =

F∑
f=1

Nf∑
n=1

Edata(V
f

instance,x
f
n,n

f
n) +

+ λcoreD(Vtemplate, Vcore) + (2)

+ λinst

F∑
f=1

D(P(Vcore; θ
f , κ), V finstance) .
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Figure 2a: Model overview. This figure depicts all the variables and energy terms in our model-fitting
objective. Variables in red are optimized over, values in green are given. The grey meshes are the core
warped by the per-frame pose parameters θf , and are not explicitly represented, but are computed when
the energy and Jacobian are evaluated. The data-to-model correspondences Uf and the ARAP rotations
R, {Qf}Ff=1 are explicitly represented in our algorithm, allowing simultaneous optimization over all
variables while keeping computational complexity linear in the number of frames.
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Figure 2b: Levenberg-
Marquardt (LM) vs. ICP.
A standard (ICP) like algorithm
that alternates between discrete
updates of U and continuous
optimization of all other param-
eters (ICP) converges extremely
slowly, whereas simultaneous
optimization of all parameters
(LM) converges rapidly.

The data term is a sum over all data points and their associ-
ated normals, and is defined independently for each point as
follows:

Edata(V,x
f
n,n

f
n) = min

u∈Ω
ρdata

[
xfn − S(u;V )

1− (nfn)>S⊥(u;V )

]
where ρdata[δx; δn] = ρ(‖δx‖;σx) + λnormδ

2
n is the sum

of a robust kernel applied to the point position error and
squared normal error. In this work, we use the Cauchy
kernel ρ(t;σ) = σ2 log(1 + t2/σ2). The regularizers in (2)
control the deviation of the personalized model Vcore from
the template, and the deviation of the per-frame meshes
from the per-frame-posed personalized model. In practice,
additional regularizers are added to (2), serving mainly to
anneal the optimization, but we will defer their introduction
until §2.4 as they do not complicate the overall approach
described below.

2.2. Lifting the energy

Ultimately, we will minimize E using a Levenberg-
Marquardt (LM) based optimizer [1], with initial estimates
provided by a discriminative model [27]. However, as writ-
ten, E is not in the sum-of-squares form required by LM due
to a variety of inner minimizations. Our approach will there-
fore be to introduce a “lifted” energy Ê, of the required form,
that is defined over an additional set of latent parameters
and whose minimum coincides with that of E.

To illustrate this technique, let us first look at a simpler
energy

H(V ) =

N∑
n=1

min
u
‖xn − S(u;V )‖2 +D(V, V0) (3)

which corresponds to deforming a mesh V to fit a set
{xn}Nn=1 of data points while penalizing (in the ARAP

sense) deformations from some fixed mesh V0. We ad-
dress the data term by introducing a set of latent variables
U = {un}Nn=1. By replacing u in the nth minimization
with un, the minimization can be passed through the sum
and we have that

N∑
n=1

min
u
‖xn − S(u;V )‖2 = min

U

N∑
n=1

‖xn − S(un;V )‖2 .

The second term can be approached in the same way by
introducing the latent variablesR = {Rm}Mm=1 ⊆ SO3 and
noting that D(V,W ) = minR D̂(V,W ;R) where

D̂(V,W ;R) =

M∑
m=1

∑
n∈Nm

‖(vm−vn)−Rm(wm−wn)‖2.

(4)
This allows us to rewrite (3) as

H(V ) = min
V,R,U

Ĥ(V,R,U) (5)

with

Ĥ(V,R,U) =

N∑
n=1

‖xn − S(un;V )‖2 + D̂(V, V0;R) .

The lifted energy Ĥ is now of the desired sum-of-squares
form and has a minimum coinciding with that of H . Al-
though we have increased the number of parameters, per-
haps greatly, the relative independence of the terms in R
and U mean that the normal equations (7) have large block-
diagonal subblocks, and thus may be solved in time linear in
the number of variables inR∪ U .

Returning to (2), we follow the same approach of explic-
itly representing the the ARAP rotations R from template



to core and the ARAP rotations Qf for the instance mesh in
frame f . The full set of correspondences over all data points
in all frames is the set U =

⋃F
f=1 Uf for Uf = {ufn}N

f

n=1.
Together, these variables comprise the latent parameters, in
terms of which the lifted energy becomes

Ê =

F∑
f=1

Nf∑
n=1

ρdata

[
xfn − S(ufn;V )

1− (nfn)>S⊥(ufn;V )

]
+

+ λcoreD̂(Vtemplate, Vcore;R)+ (6)

+ λinst

F∑
f=1

D̂(P(Vcore; θ
f , κ), V finstance;Q

f ) .

Listing all arguments, we then seek to minimize this lifted
energy function Ê(R, Vcore, κ, {θf , V finstance,Qf ,Uf}Ff=1).

2.3. Implementation

The lifted function Ê is now representable as a sum
of squared residuals in an LM solver1, and given code to
compute P , S, S⊥, and their derivatives, we need not fur-
ther know the details of the skinning method or subdivi-
son surface model. However, some implementation details
are worth investigating. Taking a high-level view of the
issues, let us vectorize the set of correspondences U into
the vector u and all other parameters into the vector s. The
LM algorithm will proceed by first computing the Jacobian
J = [∂r/∂u|∂r/∂s] where r is the vector of residuals such
that Ê = ‖r([u; s])‖2. A step is then computed by solving
the system

(J>J + µI)

[
δu
δs

]
= −J>r (7)

where µ is standard adaptation parameter varied by the algo-
rithm. The update [u+δu; s+δs] is accepted if the resulting
energy is reduced.

Two apparent difficulties arise with using subdivison sur-
faces in this framework. First is that near so-called extraordi-
nary vertices (EVs), the derivatives may vanish, potentially
introducing saddle points which could stall optimization.
This difficulty is avoided by replacing the surface in a small
region around each EV with approximating quartic Bezier
triangles. Similar approximations have been performed for
Catmull-Clark subdivision surfaces using bicubic B-splines
[19]. While the resulting surface is no longer C1 continuous
between extraordinary patches, the discontinuities are minor
and neglible in practice.

The second difficulty is that the parameterization of a
correspondence u is unusual, in being a tuple (u, v, τ). Per-
haps surprisingly, even with these unusual parameters there
is no problem in computing δu, the 2D sub-vector of u

1Note that the robust kernel can be dealt with by taking the square root
or employing a robust LM-variant [28, 1].

corresponding to u. It will always be defined in the cur-
rent triangle τ , but the difficulty comes in applying the
update u + δu. To effect such updates, we follow the
scheme of [6], which walks across the triangle mesh ap-
plying the update piecewise (see Figure 3). At each triangle
boundary the unused update is re-expressed in the adjacent
triangle, maintaining tangent continuity on the limit sur-
face, and the remainder of the update is recursively applied.

Figure 3: Illustration of mesh
walking to apply Levenberg-
Marquardt update δu.

Again, although the book-
keeping is messy, the pro-
cedure is well encapsulated
once implemented. In terms
of computational complex-
ity, we find that we rarely
have to traverse more than
three triangles per point, and
this procedure is not a com-
putational bottleneck.

One more detail is that the scales of the parameters should
be chosen to be roughly commensurate, and the solver op-
tions should be set to disable attempts to automatically scale
parameters by inspecting the columns of J . In our experi-
ence, these heuristics significantly hurt performance.

2.4. Additional Regularizers

The regularizers mentioned above are now described. We
emphasize that despite the apparently large number of tun-
ing parameters this introduces, most have effect only on
convergence properties, rather than on the final shape. The
temporal prior on pose is

Emotion = λmotion

F−1∑
f=1

‖γ(θ(f+1))− γ(θf )‖2

where γ(θ) extracts all the joint-local rotations as 3D ex-
ponential map parameters and the 3D root bone translation
from the pose parameters θ into a single 3(B + 1)-element
vector. Similarly the base-pose prior is

Erigid = λrigid

F∑
f=1

‖γ−(θf )− γ−(θ0)‖2 (8)

where γ−(θ) contains the 3B rotational elements of γ(θ).
In order to keep the posed core and instance meshes
in the same position, a very low-weighted term EL2 =
λL2
∑F
f=1 ‖P(Vcore; θ

f , κ) − V finstance‖2F penalizes squared
differences between the vertices in these meshes. Instead
of explicitly penalizing intersections with the background,
we also find it helpful to simply discourage large scalings of
the core geometry using Escale = λscaleζ(Gglob(κ))2. where
ζ(Gglob) extracts the global scale parameter from transfor-
mation Gglob.

To motivate a final regularizer, consider the function
lb(κ) = G(θ0, κ) ∗ [0, 0, 0]T that extracts the position of



Figure 4: Vitruvian Manifold correspondences. (A) A (depth,
correspondence) pair from the training set. (B) Test depth
image. (C) Predicted correspondence labels.

bone b in the base pose θ0 under shape κ. We would like to
encourage these positions in the core to remain consistent
relative to a set of nearby vertices (typically a vertex ring)
in the template. We do this by denoting the indices of these
vertices with the set Cb ⊆ {1, ...,M} and employ an ARAP
deformation penalty

D†b(κ, Vcore) =
∑
m∈Cb

min
R
‖(lb(κ0)−vm)−R((lb(κ)−wm)‖2

where vm and wm denote the mth vertex in the template
and core mesh respectively and κ0 is the template shape
parameters. We then add the term

Eskeleton = λskeleton

B∑
b=1

D†b(κ, Vcore) (9)

to the energy and again lift the rotations out of the inner
minimization using latent variables for optimization.

2.5. Initialization

As with any nonlinear optimization (ICP or LM), a sen-
sible initialization is important to ensure convergence to a
good optimum. In our energy, the important quantities to
initialize well are the correspondences U . If a reasonable
proportion of these are roughly on the correct hand part, con-
vergence of the remaining parameters is typically reliable.
Note that this is despite the apparent nonlinearity of the en-
ergy: lifting the parameters to Ê appears to greatly simplify
the optimization surface.

To achieve this, we adapt the ‘Vitruvian Manifold’
method of [27] to directly predict correspondences from
the input image. We train a decision forest classifier on a
training set of synthetically rendered (depth image, corre-
spondence map) pairs, and then at runtime the decision forest
is applied independently at every pixel xnf to generate an
initial estimate for unf . To cope with front-back ambigui-
ties we train a two-stage model [14], where the first stage
performs binary classification on the entire image to detect
whether the hand is front or back facing, and then the stan-
dard method is applied, using trees trained with front or back
data as appropriate. Figure 4 illustrates the process.

2.6. Optimization

We optimize the energy by interleaving LM optimiza-
tion on all parameters and global closest-point like updates
for U . Note that this is not the same as alternating between
global optimization on all non-correspondence parameters
and closest-point like updates. Indeed, we initially tried
that strategy (see Figure 2b) but it is was prohibitively slow
compared to performing simultaneous optimization. With
simultaneous optimization the optimizer, for example, has
the opporunity to take much larger steps in pose space to
achieve lower energies as the correspondences are free to
slide along the model surface. This approach is made pos-
sible by the smoothness of the subdivision surface model,
emphasizing the benefit of incorporating such a model.

The global optimization follows a simple annealing sched-
ule, where the various regularizations are initially set high
(especially temporal smoothness of pose and global rotation
and translation), and 20 LM iterations are performed, with
global U updates every 5 iterations. Then the regularizations
are set to their desired values, and up to 50 more LM itera-
tions are performed with global updates every 10 iterations.
Finally, up to 50 more LM iterations are performed. For
a 200K-variable problem, each LM iteration takes a few
tens of seconds and the entire procedure takes roughly 10
minutes.

3. Evaluation
We performed quantitative and qualitative evaluation of

our approach on several sequences. We use synthetic renders
and 3D printed models to quantify the method. Results on
Kinect depth images further validate the approach on real,
noisy input data. We also explore various parameters of our
model.

Synthetic input sequences. We created three synthetic
hand sequences using Poser.2 The hand shape was manually
edited to be different in each sequence, resulting in ‘small’,
‘medium’ and ‘large’ hand sequences. Poser interpolated
smoothly between a set of manually created key poses, again
different for each sequence, though a roughly similar global
rotation is applied across the sequences so that the hand
rotates around the vertical axis. Note that the Poser hand
model has a quite different mesh topology and rigging to
the template we use for fitting. Fig. 5 shows qualitative
and quantitative results of our technique, showing an overall
accuracy of about 3mm RMS distance from the ground truth.
The peaks in error around frame 10 are due to occlusion
in side views as the hands pass through 90◦ in their global
rotation.

3D printed model. To further validate our method quanti-
tatively, we 3D printed a hand model. For speed of printing

2http://poser.smithmicro.com/.

http://poser.smithmicro.com/


Figure 5: (Left) Ground truth comparison to one synthetic sequence. While occasional frames may misplace a joint, the
simultaneous global optimization keeps such failures local. (Right) Ground truth comparisons: RMS vs. orientation. RMS
error is plotted against frame number for both the synthetic and 3D printed sequences.

this was a small hand, roughly 70% of an average adult hand.
We then captured a depth sequence using Kinect, and re-
constructed the (rigid) hand from the sequence using both
the rigid KinectFusion algorithm [12] and our nonrigid ap-
proach. Fig. 5 compares the result of the two methods across
the sequence. Overall, KinectFusion achieved an RMS error
of 2.0mm, while we were able to achieve a very comparable
2.5mm, despite our method allowing nonrigid deformations.
We also note that the accuracy on the nonrigid small hand
synthetic sequence is comparable to that on the rigid 3D
printed sequence that contains a similar sized hand. Fig. 6
gives a qualitative comparisons between the systems. Note
the low quality of the input data, given the small size of the
hand and the low resolution of the sensor. Both methods
thus struggle: KinectFusion tends to merge fingers together,
while our approach appears to be stuck in a local minimum
where certain correspondences from the middle finger have
been assigned to the ring finger. We believe this to be a
problem of the optimization rather than the energy.

Real data. As a final experiment, we captured real se-
quences of three very different hand shapes including adult
male, child, and bulky winter glove. The hands articulate
while rotating roughly 180◦ about the vertical axis from the
palm to the backside. These varied hand shapes challenge
our method to properly adapt the core mesh given the weak
constraints provided by the noisy Kinect data. Despite, this
we are able to recover models representative of this shape
variation, although two of the fingers of the instance ge-
ometry become stuck in a few side-on frames of the child
sequence due to missing data.

We do not have ground truth for these sequences, but
present qualitative results. Fig. 7 shows the resulting core
and instance geometries for the three sequences. Despite
large variations in shape, our model is able to infer an accu-
rate per-user template (core) for each sequence, and fit this
reliably to noisy depth data.

In Fig. 8, we investigate varying the weights in the model
to extreme settings to simulate the removal of aspects of the
model. Setting λcore to a large value has a strong effect on

Figure 6: Ground truth comparison to 3D-printed se-
quence, compared with KinectFusion.

the resulting core user mesh: it can no longer deform away
from the template, and as a result is no longer able to explain
the data well. The effect of setting λinst to a large value is
less pronounced.

4. Conclusions

We have presented a new technique for the acquisition of
nonrigid scenes given only a rough model template. Our new
optimization framework can reliably infer a user-specific
hand mesh from a coarse rigged template using as few as
15 noisy frames from a commodity depth sensor as input.
The use of subdivision surfaces to provide a smooth continu-
ous surface model allows the simultaneous optimization of
both the model parameters and the correspondences using
standard nonlinear minimization. Results demonstrate both
robust fitting to the observed noisy depth data, as well as
support for pose variation across frames.
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[14] C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun. Hand pose estimation
and hand shape classification using multi-layered randomized decision
forests. In Proc. ECCV, 2012.

[15] H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust single-view
geometry and motion reconstruction. ACM Trans. Graphics, 2009.

[16] H. Li, R. W. Sumner, and M. Pauly. Global correspondence optimiza-
tion for non-rigid registration of depth scans. Proc. SGP, 2008.

[17] H. Li, E. Vouga, A. Gudym, L.Luo, J. Barron, and G. Gusev. 3D
self-portraits. ACM Trans. Graphics, 32(6), 2013.

[18] M. Liao, Q. Zhang, H. Wang, R. Yang, and M. Gong. Modeling
deformable objects from a single depth camera. In Proc. ICCV, 2009.

[19] C. Loop and S. Schaefer. Approximating catmull-clark subdivision
surfaces with bicubic patches. ACM Trans. Graph., 27(1), 2008.

[20] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense
tracking and mapping in real-time. In Proc. CVPR, 2011.

[21] T. Rhee, U. Neumann, and J. P. Lewis. Human hand modeling from
surface anatomy. In Proc. I3D, 2006.

[22] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In
Proc. SGP, 2007.

[23] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
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Figure 7: Results on three real image sequences with dif-
ferent hand geometries. (Top) A hand in a bulky winter
glove. (Middle) An adult male hand. (Bottom) A child’s
hand. From left to right we show an RGB image (only for
visual reference – not used by our method), the core geome-
try adapted to the subject’s hand (with correct relative scale),
and four side-on views of the instance surface (red) fitting
the noisy data (green). Note an accurate shape estimate in
the core geometry, and the ability to closely fit the observa-
tions in the instance geometries, despite noisy input data and
nonrigid pose deformations.
HHH

HHλcore

λinst Normal High

Normal

High

Figure 8: Effect of terms in our energy. We vary two
parameters to simulate the removal of parts of the model.
In each, the left shows the inferred core user mesh, and
the right overlays the input data (green) on the inferred in-
stance mesh in red. (Top left) Normal system. The bent-
back index finger is part of the input – this sequence is of
a gloved hand (see supplementary material). (Bottom left)
the core is forced to match the template, so effectively fit-
ting a scaled LBS skeleton with an ARAP data term. (Top
right) the ARAP data term is highly weighted, so data points
must effectively match directly to the posed mesh. For low-
articulation frames this makes little difference, but at extreme
articulations it may improve convergence. (Bottom right)
simulating mesh adaptation [25].


