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1. Contents
This supplementary material includes some additional

detail on the linear blend skinning model, the subdivision
surface model, and the parameter values used for the experi-
ments.

2. Parameter settings
The following parameter settings, unless otherwise stated,

define the final energy that we optimize in the experiments
described in the paper.

σx 0.3
λnorm 0.1
λcore 3
λinst 2.5

λskeleton 0.5
λL2 0.05
λprior 10
λmotion 300
λscale 1000

3. Linear Blend Skinning
In this section we specify the details of our chosen skin-

ning function P(V ; θ, κ). The skeleton that we use consists
of B bones organized into a tree structure in which the first
bone is the root and π(b) indicates the parent of each node
b ∈ {2, ..., B}. Each bone b has an attached local coordinate
system related to its parent’s (or the world’s in the case of the
root) by a transformation Tb(θ, κ) consisting of a rotation
and a 3D translation. The rotation is specified using three ex-
ponential map coordinates contained in θ. The translation is
simply a scaling βb(κ) of the translation t̂b in our template.

To define the function Gb(θ, κ), we then simply compose
the transformations in a recursive manner up the skeleton as

G1(θ, κ) = T1(θ, κ) (1)

Gb(θ, κ) = Gπ(b)(θ, κ) ∗ Tb(θ, κ) (2)

where the ∗ operator indicates the composition of trans-
formations. For our purposes, the global transformation

Gglob(θ, κ) is composed of an isotropic scaling encoded in
κ and a rigid transform encoded in θ.

4. Subdivision Surfaces

A modified Loop subdivision surface is used to explicitly
model the surface of the hand. The advantages of an explicit
surface representation are that the surface topology is fixed
and that the surface is completely defined by a fixed number
of control vertices {vm}Mm=1. The advantages of subdivision
surfaces are that they are continuous and have smoothly-
varying normals.

A Loop subdivision surface is defined completely by a
set of control vertices configured in a triangular mesh. The
surface is described in sections by patches, where each patch
is defined by a subset of the control vertices and the local
patch topology. For patch p the surface patch is given by the
set of points {Sp(u;vip1 , . . . ,vi

p
Ip

) : u ∈ 4}, where Sp is
the patch position function, 4 = {(u, v) : 0 ≤ u ≤ 1, 0 ≤
v ≤ 1− u} is the unit triangle, and ip is the list of Ip vertex
indices which contribute to patch p.

The local surface map Sp depends on the patch topology.
For a regular patch, Sp(u; ·) = b(u)

>
V , where b(u) are

the basis functions for a regular triangular spline [4] and
V ∈ R12×3 = [vip1 . . .vi

p
12

]>. For the purposes of optimiza-
tion, the essential property of S is that it is linear in V and
polynomial in u.

For irregular or extraordinary patches the basis functions
b(u) cannot be applied directly. Instead, Loop subdivision
[2] is used which defines Sp(u; ·) as a piecewise smooth
function consisting of an infinite number of regular triangu-
lar patches [4]. The process of evaluating Sp(u; ·) can be
understood by considering the extraordinary patch which
contains a single extraordinary vertex with valency N = 5.
By subdividing the control mesh, four child patches are cre-
ated, three of which are regular and one of which has the
same topology as the original patch. With reference to [4],
Sp(u; ·) is given by:

Sp(u; ·) = b(tk,n(u))>PkĀA
n−1V (3)
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where u = (u, v) and n = b− log2(u + v) + 1c is the re-
quired level of subdivision, k ∈ {0, 1, 2} is the regular child
patch index, tk,n transforms u to the child patch domain,
and A, Ā and Pk are subdivision and “picking” matrices
which are defined in [4]. In our implementation, code is
automatically generated for up to 5 levels up subdivision, so
this operation is no more expensive than the evaluation of
ordinary patches.

A problem with (3) is that as u → 0 first derivatives either
vanish (N < 6) or diverge (N > 6) and are numerically un-
stable, which is problematic for continuous optimisation over
u. Similar behaviour has been noted for Catmull-Clark sub-
division surfaces, but reparameterisation is computationally
expensive [1]. Instead, we closely approximate extraordinary
patches with quartic Bezier triangles. Similar approxima-
tions have been performed for Catmull-Clark subdivision
surfaces using bicubic B-splines [3]. While the resulting
surface is no longer C1 continuous between extraordinary
patches, the discontinuities are minor and neglible in prac-
tice.
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