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Figure 1: We present a new system for tracking the detailed motion of a user’s hand using only a commodity depth camera.
Our system can accurately reconstruct the complex articulated pose of the hand, whilst being robust to tracking failure, and
supporting flexible setups such as tracking at large distances and over-the-shoulder camera placement.

ABSTRACT
We present a new real-time hand tracking system based on a
single depth camera. The system can accurately reconstruct
complex hand poses across a variety of subjects. It also allows
for robust tracking, rapidly recovering from any temporary
failures. Most uniquely, our tracker is highly flexible, dra-
matically improving upon previous approaches which have
focused on front-facing close-range scenarios. This flexibil-
ity opens up new possibilities for human-computer interaction
with examples including tracking at distances from tens of
centimeters through to several meters (for controlling the TV
at a distance), supporting tracking using a moving depth cam-
era (for mobile scenarios), and arbitrary camera placements
(for VR headsets). These features are achieved through a new
pipeline that combines a multi-layered discriminative reini-
tialization strategy for per-frame pose estimation, followed by
a generative model-fitting stage. We provide extensive techni-
cal details and a detailed qualitative and quantitative analysis.

INTRODUCTION
The human hand is remarkably dextrous, capable of high-
bandwidth communication such as typing and sign language.
Computer interfaces based on the human hand have so far
been limited in their ability to accurately and reliably track the
detailed articulated motion of a user’s hand in real time. We
believe that, if these limitations can be lifted, hand tracking
will become a foundational interaction technology for a wide
range of applications including immersive virtual reality, as-
sistive technologies, robotics, home automation, and gaming.

However, hand tracking is challenging: hands can form a va-
riety of complex poses due to their many degrees of free-
dom (DoFs), and come in different shapes and sizes. Despite
some notable successes (e.g. [7, 32]), solutions that augment
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the user’s hand with gloves or markers can be cumbersome
and inaccurate. Much recent effort, including this work, has
thus focused on camera-based systems. However, cameras,
even modern consumer depth cameras, pose further difficul-
ties: the fingers can be hard to disambiguate visually and are
often occluded by other parts of the hand. Even state of the
art academic and commercial systems are thus sometimes in-
accurate and susceptible to loss of track, e.g. due to fast mo-
tion. Many approaches address these concerns by severely
constraining the tracking setup, for example by supporting
only close-range and front facing scenarios, or by using mul-
tiple cameras to help with occlusions.

In this paper, we present a system that aims to relax these
constraints. We aim for high accuracy, i.e. the correctness
and fidelity of the final reconstruction across a wide range of
human hand poses and motions. Our system is remarkably
robust, i.e. can rapidly recover from momentary failures of
tracking. But perhaps most uniquely, our system is flexible: it
uses only a single commodity depth camera; the user’s hand
does not need to be instrumented; the hand and fingers can
point in arbitrary directions relative to the sensor; it works
well at distances of several meters; and the camera placement
is largely unconstrained and need not be static (see Fig. 1).

Our system combines a per-frame reinitializer that ensures ro-
bust recovery from loss of track, with a model-fitter that uses
temporal information to achieve a smooth and accurate result.
We propose a new reinitializer that uses machine learning to
efficiently predict a hierarchical distribution over hand poses.
For the model-fitter, we describe a ‘golden’ objective function
and stochastic optimization algorithm that minimizes the re-
construction error between a detailed 3D hand model and the
observed depth image. The pipeline runs in real time on con-
sumer hardware. We provide extensive technical details to aid
replication, as well as a detailed qualitative and quantitative
analysis and comparison on several test datasets. We show
how our tracker’s flexibility can enable new interactive possi-
bilities beyond previous work, including: tracking across the
range of tens of centimeters through to a several meters (for
high fidelity control of displays, such as TVs, at a distance);
tracking using a moving depth camera (for mobile scenarios);
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and arbitrary camera placements, including first person (en-
abling tracking for head-worn VR systems).

RELATED WORK
Given our aims described above, we avoid encumbering the
user’s hand with data gloves [7], colored gloves [32], wear-
able cameras [13], or markers [38], all of which can be bar-
riers for natural interaction. We focus below on vision-based
articulated hand tracking. Discriminative approaches work
directly on the image data (e.g. extracting image features and
using classification or regression techniques) to establish a
mapping to a predefined set of hand pose configurations. Th-
ese often do not require temporal information and can thus
be used as robust reinitializers [21]. Generative (or model-
based) methods use an explicit hand model to recover pose.
Hybrid methods (such as [3, 23] and ours) combine discrim-
inative and generative to improve the robustness of frame-to-
frame model fitting with per-frame reinitialization.

RGB input Early work relied on monocular RGB cameras,
making the problem extremely challenging (see [8] for a sur-
vey). Discriminative methods [2, 34] used small databases of
restricted hand poses, limiting accuracy. Generative methods
used models with restricted DoFs, working with simplified
hand representations based on 2D, 2½D or inverse kinematics
(IK) (e.g. [24, 35]), again resulting in limited accuracy. Bray
et al. [4] used a more detailed 3D hand model. de La Gorce et
al. [6] automatically apply a scaling to the bones in the hand
model during tracking. Most of these systems performed of-
fline tracking using recorded sequences. An early example
of online (10Hz) tracking with a simplified deformable hand
model is [10]. This work, as with other RGB-based meth-
ods, struggled with complex poses, changing backgrounds,
and occlusions, thus limiting general applicability.

Multi-camera input There has also been recent work on
high-quality, offline (non-interactive) performance capture of
hands using multi-camera rigs. Ballan et al. [3] demonstrate
high-quality results closely fitting a detailed scanned mesh
model to complex two-handed and hand-object interactions.
The pipeline takes about 30 seconds per frame. Zhao et al. [38]
use a depth camera, motion capture rig, and markers worn on
the user’s hand, to capture complex single-hand poses, again
offline. Wang et al. [33] show complex hand-object interac-
tions by minimizing a silhouette, color, and edge-based ob-
jective using a physics engine, though take minutes per frame.
Sridhar et al. [23] use a rig comprising five RGB cameras and
a time-of-flight (ToF) sensor to track a user’s hand using a
person-calibrated model at ∼10Hz. We provide a direct com-
parison later in this paper. The above systems can produce
highly accurate results, but are impractical for interactive con-
sumer scenarios.

Depth input The advent of consumer depth cameras such as
Kinect has made computer vision more tractable, for example
through robustness to lighting changes and invariance to fore-
ground and background appearance. This, together with the
use of GPUs for highly-parallel processing, has made real-
time hand tracking more feasible. However interactive, de-
tailed hand tracking that is simultaneously accurate, robust,
and flexible remains an unsolved and challenging problem.

Oikonomidis et al. [17] present a generative method based on
particle swarm optimization (PSO) for full DoF hand tracking
(at 15Hz) using a depth sensor. The hand is tracked from a

known initial pose, and the method cannot recover from loss
of track. Qian et al. [20] extend [17] by adding a ‘guided’
PSO step and a reinitializer that requires fingertips to be cle-
arly visible. Melax et al. [16] use a generative approach driven
by a physics solver to generate 3D pose estimates. These
systems work only at close ranges, and are based on simple
polyhedral models; our approach instead works across a wide
range of distances, and exploits a full 3D hand mesh model
that is better able to fit to the observed data.

Keskin et al. [12] propose a discriminative method using a
multi-layered random-forest to predict hand parts and thereby
to fit a simple skeleton. The system runs at 30Hz on con-
sumer CPU hardware, but can fail under occlusion. Tang et
al. [27, 26] extend this work demonstrating more complex
poses at 25Hz. Whilst more robust to occlusions than [12],
neither approach employs an explicit model fitting step mean-
ing that results may not be kinematically valid (e.g. implausi-
ble articulations or finger lengths). Xu et al. [36] estimate the
global orientation and location of the hand, regress candidate
21-DoF hand poses, and select the correct pose by minimiz-
ing reconstruction error. The system runs at 12Hz, and the
lack of tracking can lead to jittery pose estimates. Tompson
et al. [30] demonstrate impressive hand tracking results us-
ing deep neural networks to predict feature locations and IK
to infer a skeleton. While real-time, the approach only tack-
les close-range scenarios. Wang et al. [32, 31] demonstrate a
discriminative nearest-neighbor lookup scheme using a large
hand pose database, and IK for pose refinement. Nearest-
neighbor methods are highly dependent on the database of
poses, and can struggle to generalize to unseen poses.

Commercial systems Beyond this research, there have also
been commercial hand tracking systems. The 3Gear Sys-
tems [1] (based on prior work of [32, 31]) and the second-
generation software for the Leap Motion [15] have shown
tracking of a range of complex poses, including two-handed
interaction. We compare to both in our results section.

SYSTEM OVERVIEW AND CONTRIBUTIONS
We follow recent approaches to hand and body tracking [3,
17, 28] and adopt an approach based on ‘analysis by synthe-
sis’ [37]. We use machine learning and temporal propagation
to generate a large set of candidate hand pose hypotheses for
a new input frame. Each pose hypothesis contains a param-
eter vector describing the global position and orientation of
the hand, as well as the angles between joints in the hand
skeleton. Each hypothesis is then rendered as an image us-
ing standard graphics techniques, and scored against the raw
input image. Finally, the best-scoring hypothesis is output.

One of the main contributions of this paper is to make this
approach practical, by which we mean accurate, robust, and
flexible as described in the introduction. To this end, we
make three technical contributions. First, we show how to use
a simple ‘golden’ energy function to accurately distinguish
good and bad hypotheses.* Second, we present a discrimina-
tive approach (the ‘reinitializer’) that predicts a distribution
over hand poses. We can then quickly sample diverse pose
hypotheses from this distribution, some of which are likely to
be close to the correct answer. Third, we demonstrate that the
rendering of a detailed articulated hand mesh model and the

*‘Energy’, ‘objective’, and ‘scoring’ functions are notionally equivalent,
though ‘good’ will be used to imply low energy but high objective/score.
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Figure 2: Algorithm pipeline.

golden energy computation can be done in real-time on the
GPU. This goes beyond existing approaches that have relied
on approximate hand models such as spheres and cylinders.

Pipeline
Each input depth image is processed by a pipeline comprising
three steps (see Fig. 2):
1. Hand RoI extraction: Identify a square region of interest
(RoI) around the hand and segment hand from background.
2. Reinitialization: Infer a hierarchical distribution over hand
poses with a layered discriminative model applied to the RoI.
3. Model fitting: Optimize a ‘population’ of hand pose hy-
potheses (‘particles’) using a stochastic optimizer based on
particle swarm optimization (PSO).
We describe each of these components in detail below, but
first introduce some preliminaries.

PRELIMINARIES
3D Hand Model
We represent the human hand as a 3D model, represented by
a detailed mesh of triangles and vertices. The 3D positions of
the M mesh vertices are represented as columns in a 3 ×M
matrix V that defines the hand shape in a ‘base’ (rest) pose.

To be useful for pose estimation, we must be able to articu-
late the wrist, finger, and thumb joints in the model. We use
a standard ‘kinematic’ skeleton for this which specifies a hi-
erarchy of joints and the transformations between them. We
use vector θ to denote the pose of the hand, including: global
scale (3 parameters); global translation (3); global orientation
(3); and the relative scale (1) and rotations (3) at each joint
(three joints per finger and thumb, plus the wrist). The global
rotation is represented as a normalized quaternion which al-
lows us to deal with arbitrary global rotations without risk of
‘gimbal lock’. The joint rotations are represented as ‘Euler
angles’ about local coordinate axes which are defined to cor-
respond to ‘flexion’, ‘abduction’ and ‘twist’.

Given the pose vector θ, the vertices of the posed mesh can
be computed by a function Φ(θ;V), which returns a 3 ×M
matrix. The columns of this matrix correspond to those in the
base pose model V, but are in the pose specified by θ. For
function Φ we use a standard technique called linear blend
skinning (LBS). The precise details of LBS are unimportant
for this paper, though see e.g. [29] for more details.

Input depth image
Our algorithm operates on images captured by a single depth
camera. The image is represented as a two-dimensional array
of depth values

Z = {zij | 0 ≤ i < H, 0 ≤ j < W}

where zij is the depth in meters stored at pixel location (i, j)
and W and H are respectively the width and height of the
depth map. We assume the depth map has been pre-processed
such that invalid pixels (e.g. low reflectance or shadowed from
the illuminator) are set to a large background depth value zbg.

SCORING FUNCTION: THE ‘GOLDEN ENERGY’
An underlying assumption of all analysis-by-synthesis algo-
rithms is that, given unlimited computation, the best solution
can be found by rendering all possible poses of the hand,
and selecting the pose whose corresponding rendering best
matches the input image (while appropriately accounting for
the prior probabilities of poses). For this assumption to hold,
a number of details are important.

First, the model should be able to accurately represent the ob-
served data. Overly approximate models such as those based
on spheres and cylinders will struggle to accurately describe
the observed data. While still an approximation, we employ a
detailed skinned hand mesh that we believe can describe the
observed data much more accurately. Furthermore, given our
focus on flexible camera setups, the camera may see not just
the hand, but also a large portion of the user’s body, as well as
the background. To avoid having to simultaneously fit an en-
tire model of the hand, body, and background to the depth im-
age, we thus detect and extract (resample) a reasonably tight
region of interest (RoI) Zroi = {z̄ij | 0 ≤ i < S, 0 ≤ j < S},
comprising of S×S pixels around the hand, and segment the
hand from the background (see next section). Working with a
tight RoI also increases the efficiency of the scoring function
by ensuring that a large proportion of pixels in the rendered
images belong to the hands.

Second, several ‘short cut’ solutions to rendering can invali-
date the approach. For example, simply projecting each ver-
tex of the model into the image and measuring distance (either
in depth, or in 3D using a distance transform) fails to account
for occlusion. We thus define a GPU-based rendering module
which takes as input a base mesh V, a vector of pose parame-
ters θ, and a bounding box B within the original depth image
Z, and renders a synthetic depth image

Rroi(θ;V, B) = {rij | 0 ≤ i < S, 0 ≤ j < S} (1)

of the same size as Zroi, where background pixels receive the
value rij = zbg. The bounding box B is used to render Rroi

perspective-correctly regardless of its position in the original
depth image.

Given compatible rendered and acquired images, the ‘golden
energy’ scoring function we use is simple:

EAu(Zroi, Rroi) =
∑
ij

ρ(z̄ij − rij) . (2)

Instead of a squared (‘L2’) error, we employ a truncated ‘L1’
distance ρ(e) = min(|e|, τ) which is much less sensitive to
outliers due to camera noise and other factors. Despite its
simplicity, this energy is able to capture important subtleties.
In particular, where a model hand pixel is rendered over data
background, or model background over data from the hand,
the contribution to the energy is zbg, which is large enough
to always translate to the truncation value τ . Where rendered
and data are both zbg, the score is zero.
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Figure 3: Hand Region of Interest (RoI) extraction.

We dub the above function the ‘golden energy’ to distinguish
it from energies that do not directly aim to explain the image
data such as [16, 23, 28]. EAu very effectively captures the
notion of analysis by synthesis, and experiments suggest that
casting tracking as an optimization problem whose sole ob-
jective is minimization of EAu yields high-quality results. We
found the energy to be reasonably robust to different values
of τ ; all our experiments used a value τ = 100mm.

REGION OF INTEREST (RoI) EXTRACTION
The RoI extraction process is illustrated in Fig. 3 left. We start
from a rough estimate x̂ of the 3D hand location. This can be
obtained in several ways, for example using motion extrapo-
lation from previous frames, the output of a hand detector, or
the hand position provided by the Kinect skeletal tracker. The
estimate x̂ is often fairly approximate, and so a second step is
used to more accurately segment and localize the hand using
a learned pixel-wise classifier based on [21]. The classifier,
trained on 100k synthetic images of the hand and arm (Fig. 3
right), is applied to pixels within a 3D search radius r1 around
location x̂ to classify pixels as hand or arm. To precisely
localize the hand, we then search for position x for which
the accumulated hand probability within a 20cm×20cm win-
dow is maximal. Finally, we extract the RoI, using nearest-
neighbor downsampling to a S × S pixel image Zd for use
in the golden energy. We typically set S between 64 or 128:
larger will preserve more detail but will be slower to render in
the golden energy computation. Note that we do not remove
the arm pixels (see below), though we do set pixels outside ra-
dius r2 (< r1) of x to background value zbg. We also record
the bounding box B of the RoI in the original depth map.

While in practice we found the classifier [21] to work reliably
at improving the localization of the RoI around the hand, we
decided against attempting to directly segment the hand from
the forearm, for two reasons. First, the inferred boundary be-
tween hand and arm proved rather imprecise, and from frame
to frame would typically move up and down the arm by sev-
eral centimeters. Second, we observed that there is consider-
able value in observing a small amount of forearm that abuts
the edge of the RoI. Unlike existing approaches, we include a
forearm in our hand mesh model, allowing our golden energy
to explain the observed forearm pixels within the RoI and thus
help prevent the optimized hand pose from flipping or sliding
up and down the arm.

This part of the pipeline is similar to the hand segmentation
approach in [30], but does not require training data for all
possible backgrounds, can exploit large quantities of synthetic
data, is potentially faster since the classifier is only applied to
relatively few pixels, and is able to exploit the forearm signal.

ROBUST REINITIALIZATION
Of all parts in our pipeline, we found the reinitializer the most
critical in achieving the accuracy, robustness, and flexibility
demonstrated in our results. Its primary goal is to output a
pool of hypotheses of the full hand pose by observing just the
current input depth image, i.e. without temporal information.
The hypotheses will in due course be evaluated and refined
refined in later stages of the pipeline.

Existing approaches include multi-layer random forests [12],
nearest-neighbor look-up [31], fingertip detection [20], or con-
volutional neural networks [30]. However, our focus on flexi-
ble camera setups pushes the requirements for reinitialization
far beyond what has yet been demonstrated. In particular, we
place no restrictions on the global rotation of the hand. This
means that we cannot rely on seeing fingertips, and further,
the range of hand appearance that we expect to see is dra-
matically increased compared to the near-frontal close-range
hands evaluated in existing work.

Our reinitialization component makes two significant advan-
ces beyond existing work. First, we believe the problem is so
hard that we cannot hope to predict a single good pose solu-
tion. Instead, our approach predicts a distribution over poses,
from which our model fitter is free to quickly sample as many
poses as desired and use the golden energy to disambiguate
the good from the bad candidates. Second, while following
existing practice [25, 12] in breaking the regression into two
‘layers’ (or stages), we focus the first layer exclusively in pre-
dicting quantized global hand rotation. By predicting coarse
rotation at the first layer, we dramatically reduce the appear-
ance variation that each second-layer predictor will have to
deal with.

Synthetic Training Data
Our reinitializers are trained on a corpus of synthetic training
data. Given the dexterity of hands and fingers, the potential
pose space is large, and to achieve our goal of flexibility, the
training data must ensure good coverage of this space while
avoiding unlikely poses. We achieve this by sampling from
a predefined prior distribution that is specifically designed to
give a broad coverage of pose space. We believe it is substan-
tially more general-purpose than existing work which tends
to concentrate on close-range frontal poses.

Global hand orientation samples are drawn from a uniform
distribution, global translation samples are drawn from a uni-
form distribution within the view frustum, and wrist pose is
randomized within sensible flexion/abduction limits. For the
finger and thumb rotations, we employ six manually defined
prototype poses (or proto-poses): Open, Flat, Closed, Point-
ing, HalfOpen, Pinching. Each proto-pose is able to gener-
ate realistic poses for a subset of pose space, with a ‘mean’
shape designed to look like the proto-pose name, and a set of
randomization rules to allow one to draw samples from the
proto-pose (see supplementary material for example pseudo-
code and samples). In future we hope these might instead be
learned from a large corpus of hand motion capture data.

As training data, we sample 100k poses θ from the above dis-
tribution, and for each pose, we generate a synthetic depth
image using the same mesh model and renderer as is used
for computing the golden energy. The reinitializer acts on a
depth RoI rather than the full depth map, and so a tight bound-
ing box is computed around the pixels belonging to hand (not



forearm), and then expanded randomly by up to 10 pixels on
each side to simulate an imprecise RoI at test time.

Two-Layer Reinitialization Architecture
Given the above data, we train a two-layer [12, 25] reinitial-
izer. Of all elements of the pose vector, global rotation prob-
ably causes the largest changes in the hand’s appearance. We
thus train a first layer to predict global rotation, quantized into
128 discrete bins. For each rotation bin, second layer pre-
dictors are trained to infer other elements of the pose vector
such as finger rotations. Each second layer predictor is trained
only on those images within the respective global rotation bin.
This reduces the appearance variation each second layer pre-
dictor needs to handle, and thus simplifies the learning prob-
lem [12, 25]. The number of bins was chosen to balance the
difficulties of the learning problems at the two layers and the
memory requirements.

The first layer is trained to predict a distribution P grb(q|Zroi)
over the global rotation bins. The training data for layer
one is thus a set of (Zroi, q) pairs, where q ∈ {0, . . . , 127}
represents the nearest rotation bin to the image’s global ro-
tation. Several classifiers were investigated: decision forests
[5], decision jungles [22], and discriminative ferns ensembles
(DFE) [14]. These are compared in our experiments later. The
DFE is trained as a ‘holistic’ predictor, applied once to the
whole RoI. The forest and jungle classifiers are instead trained
to predict global rotation distributions at any pixel within the
RoI, and at test time multiple randomly-chosen pixel predic-
tions are averaged to produce P grb(q|Zroi).

At the second layer, we train three predictors for each of the
128 rotation bins q: a global rotation refinement regressor,
an offset translation regressor, and a finger proto-pose classi-
fier. Each predictor is trained using the subset of data belong-
ing to the relevant ground truth rotation bin q. We employ
per-pixel decision jungles [22] for all layer-two predictors
given their small memory requirements and the large num-
ber of predictors. The global rotation refinement regressor
is trained to minimize the variance over quaternion global
rotation predictions. It predicts a distribution P grr

q (q|Zroi)
over the global rotation quaternion q. The offset translation
regressor [9] is trained to predict the 3D offset from any RoI
pixel’s 3D camera space location to the wrist joint position
(i.e. the global translation). It is trained similarly to minimize
the variance of the 3D offsets at the leaf nodes. By aggregat-
ing the predictions from multiple pixels at test time, a distribu-
tion P otr

q (t|Zroi) over the absolute global translation t is ob-
tained. Finally, the proto-pose classifier is a trained as a con-
ventional per-pixel classifier over the 6 proto-pose classes. At
test time, multiple randomly-chosen foreground pixels’ pre-
dictions are aggregated to predict a distribution P ppc

q (f |Zroi).

Making Predictions
At test time, the first layer is evaluated to predictP grb(q|Zroi).
We assume that the top 5 most likely global rotation bins con-
centrate the majority of the probability mass, and so for speed
evaluate the relevant second layer predictors only for these
bins, in order to predict the refined global rotation, the global
translation, and the proto-pose. At this point we have effec-
tively inferred a hierarchical distribution over hand poses, and
can now efficiently sample as many draws from this distribu-
tion as possible: first sample a q, then conditioned on q sample
a global rotation q from P grr

q (q|Zroi), a global translation t

input

depth

ground

truth samples from reinitializer

Figure 4: Sample poses inferred by our reinitializer. For
each row, we see a false-color image of the input depth
map, a rendering of the model in the ground truth pose,
and renderings of poses sampled from the reinitializer. Our
system is trained to work for arbitrary global rotations to allow
for flexible camera setups.

from P otr
q (t|Zroi), and a proto-pose f from P ppc

q (f |Zroi). Fi-
nally, to create a full pose vector θ, we concatenate the global
rotation and translation with a random finger pose sampled
from proto-pose f .

We show some examples of the reinitializer applied to syn-
thetic test images in Fig. 4. Observe that at least some sam-
ples from the reinitializer are usually close to the correct hand
pose, especially so for global rotation and translation. Com-
paring rows 3 and 4 one can see the effect of the second layer
pose classifier: row 3 has more ‘open hand’ samples, whereas
row 4 has more ‘closed hand’ samples. Even the incorrect
samples often exhibit sensible confusions, for example being
flipped along a reasonable axis.

MODEL FITTING
In order to optimize the golden energy and achieve an accu-
rate hand pose estimate, we employ a model fitting algorithm
that combines features of particle swarm optimization (PSO)
and genetic algorithms (GA) in the spirit of [11, 17, 20]. The
model fitter is the component that integrates information from
previous frames along with proposals from the reinitializer. It
is also the main computational workhorse of our system, and
we describe in the supplementary material how our model fit-
ter can be implemented efficiently on the GPU to achieve real-
time frame rates.

The algorithm maintains a population ofP ‘particles’ {φp}Pp=1
(each particle contains a pose vector θ and additional state
such as velocity in pose space), and the scoring function is
evaluated across the population in parallel on the GPU to
yield scores {EAu

p }Pp=1. Each such evaluation comprises one
‘generation’. The standard PSO algorithm (see e.g. [17]) then
specifies an update rule for populating the next generation.
This rule incorporates ‘momentum’ in pose space and attrac-
tion towards current local minima of the energy function. We
found that the standard update rules did not work well on their
own, and describe below our extensions which we found crit-
ical for success.



Figure 5: Particle perturbation. The leftmost column shows
initial poses, the others show seven draws from the every-
third-generation perturbation distribution.

Particle Randomization
Following [17], we found it crucial to ‘re-randomize’ particles
regularly. In our approach, use two variants: per-generation
and every-third-generation. Per-generation, we adjust only
fingers: for 50% of particles, a digit (finger/thumb) is cho-
sen uniformly at random, and either (25%) its abduction is
adjusted by up to ±2.5◦ or (75%) the flexion of one of its
segments is adjusted by ±10◦. Every-third-generation, the
50% of particles with highest (worst) golden energy are re-
randomized as follows. For a first sub-group (50%), their pose
replaced by a new sample from the reinitializer. A second
sub-group (30%) are subjected to local random perturbation
as illustrated in Fig. 5 and detailed in the supplementary ma-
terial. For a final sub-group (20%), a ‘splicing’ or ‘crossover’
operation is applied: a random particle is chosen from the
lowest (best) energy 50% and used to overwrite either the
global rotation, translation, and wrist pose, or the remainder
(the finger poses) of the pose vector.

Particle Initialization
The set of particles is initialized using the same strategy as
every-third-generation, except that all particles are affected,
and those particles that are randomly perturbed are perturbed
from the result from the previous frame when tracking.

Particle ‘Aging’
A per-generation clustering step was recently proposed in [20]
to reduce an effect called ‘particle collapse’ whereby all par-
ticles are pulled too close together to a bad solution. We
employ a similar but cheaper technique whereby we assign
each particle an ‘age’ ap. All particles within a given age
are treated as an independent swarm. Before particles are
re-randomized every third-generation, all particles have their
ages incremented, to a maximum value Amax. The random-
ized particles have their ages set to zero.

EVALUATION: QUALITATIVE
We next evaluate our approach and demonstrate state of the
art hand tracking, especially regarding robustness and flexi-
bility. The reader is strongly encouraged to also view the ad-
dition results in the accompanying video and supplementary
document. The results in this section were generated using
a standard Kinect V2 time of flight sensor with no modifica-
tions. We start by demonstrating the new capabilities of our
hand tracker. Fig. 6 and the accompanying video show the
results for a wide range of complex poses reconstructed in
real-time by our system. We show results across a wide range
of adult male and female subjects, both close to and far away
(several meters) from the sensor, and during user and camera

(a)

(b)

(c)

(d)

Figure 6: Our system (a,b) can track a wide variety of users
and hand shapes, (c) can track at both close and far ranges,
and (d) is robust to both scene and user motion.

motion. Our approach is limited by the sensor operating range
of 0.5 – 4.5m and the available resolution. In the more dis-
tant cases, sometimes fewer than 100 hand pixels remain, but
our approach degrades gracefully and is still able to estimate
a reasonably accurate pose.

In Figs. 1 and 7, we further show novel camera placements,
such as ‘over the shoulder’ or ‘bottom-up’, that do not re-
quire the user to be sat directly in front of the sensor at close
range. Again our system is able to smoothly track despite
being placed in a non-frontal view and even whilst the sen-
sor is moving. We feel these are very compelling configu-
rations allowing integration with VR headsets and other new
physical setups such as interacting with displays at larger dis-
tances. The accompanying video further demonstrates how
our system can deal with fast motions, recover from tracking
loss, and cope with changes in lighting (since we only use the
depth signal from the camera).

In Fig. 7 and the accompanying video, we qualitatively com-
pare our system to the recent Leap Motion sensor [15] and the
3Gears system [1]. While Leap is not a general depth cam-
era and has different computational constraints, public videos
have shown high precision tracking. Our results suggest that
indeed the Leap robustly tracks a variety of forward facing
poses. However, Leap struggles with more complex poses,
seems not to support graceful reinitialization in certain con-
ditions, and can track only at small distances. These are not
limitations of our system. Our comparison with 3Gears sug-
gests our system can more faithfully reconstruct a wider range
of continuous and complex poses than 3Gears.

EVALUATION: QUANTITATIVE
The few datasets that exist for hand tracking evaluation do not
stress-test the flexibility and robustness that we value highly.
Therefore, while we first compare with the state of the art sys-
tem by Sridhar et al. [23] on their published dataset DEXTER1,
our main results will be presented on two new and extremely
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Table 1: Comparison of our system and [23] on the DEXTER1
dataset. We achieve broadly comparable tracking accuracy
but only with a single depth camera (as opposed to 5 RGB
+ 1 depth), and at higher frame rates.

challenging benchmarks: SYNTHETIC, and FINGERPAINT. We
believe a complement of synthetic and real testing to be im-
portant: synthetic data allows one to more easily test a full
range of hand poses, while real data allows one to ensure the
system actually works on real data with real camera noise.
More details on these datasets are given below and in the sup-
plementary material.

Comparison with [23]
We directly compare with [23] on their DEXTER1 dataset. Ta-
ble 1 compares mean joint position errors obtained by our
tracker and that of [23] (numbers are estimated from a graph
in their paper). We achieve broadly comparable accuracy, de-
spite our system running 3 times faster (at 30 fps vs. 10 fps)
and only using the depth sensor input ([23] use a combination
of the depth sensor and 5 RGB cameras as input).

Experiments on synthetic data
We designed a new dataset, SYNTHETIC, to evaluate our reini-
tialization strategy and model fitting algorithms in the absence
of temporal information. It was designed to stress-test robust-
ness and we believe it is considerably more challenging than
existing datasets. The dataset comprises 1000 individual ren-
dered depth image frames (not sequences) with correspond-
ing ground truth hand poses. To generate each frame, the
full hand pose is heavily randomized: global rotation is uni-
formly randomized; global translation is randomized within
the view frustum; finger/thumb/wrist flexions/abductions are

Model Size Depth Accuracy Memory
Ferns 20 12 70.5% 20MB
Ferns 50 13 73.3% 100MB
Forest 1 22 66.9% 150MB

Jungle-512 3 20 30.9% 100KB
Jungle-2048 3 45 47.5% 500KB

Table 2: Comparison of the first layer classifiers in terms of
accuracy and memory for various settings.

either fully randomized within sensible limits or sampled from
a proto-pose. The dataset thus contains hands in pretty much
arbitrary poses, including both close to and far from the cam-
era. The left column in Fig. 4 shows some examples. For
each frame we additionally specify a ‘starting pose’. In 50%
of frames this is perturbed from the ground truth according to
the every-third-generation method described above. In the re-
maining 50% of frames, the starting pose is fully randomized
to simulate attempting to recover from complete loss of track.

We believe that the average joint metric used by [23] hides
interesting information, and so for SYNTHETIC we advocate
the ‘proportion of frames correct’ metrics proposed in [28].
This gives a graph that plots the proportion of joints that have
Euclidean error less than ε, where the value of ε is plotted on
the x-axis (see e.g. Fig. 9). Under this metric, correctness un-
der approximately ε = 0.03m corresponds to a visually good
result. The supplementary material includes results using a
‘worst case’ variant of this metric.

First layer reinitializer. The first layer of our two-layer
reinitializer classifies the depth RoI into one of 128 global
rotation bins. We compare ferns, forests, and jungles. We use
100k images to train each model, and applied a grid search
using 10k validation images to select the best parameters for
each method: the model size (i.e. number of trees, jungles,
and ferns), model depth, and model width (for jungles only).
Within the range of parameter values tested, the highest ac-
curacies are achieved with the following parameter settings:
(i) 50 ferns of size 13, (ii) 1 randomized tree of depth 22, and
(iii) 3 jungles of width 2048 and depth 45. The bin classifica-
tion accuracies achieved by each model and their correspond-
ing memory requirements are given in Table 2. Ferns achieve
the highest absolute accuracy, though jungles provide the best
accuracy-memory ratio. Training forests beyond depth 22
would add significantly to their accuracy, but the memory re-
quirements quickly become prohibitive (trees grow as 2depth).

Second layer reinitializer. The models in the second layer
are selected based on the predictions of the first layer model.
The large differences in accuracy between ferns, forests, and
jungles seen in the first layer disappear in the second layer,
possibly because the amount of variation is highly reduced
inside each global rotation bin. Specifically, trees of depth
18 performed only marginally better than jungles of depth 30
and width 256, even though they are 20 times larger in size.
Because 128 predictors need to be kept in memory, we opted
for the jungles in the second layer. We also experimented with
three training sets of sizes 10k, 100k and 200k. It was possible
to get a substantial improvement in accuracy by using 100k
images rather than 10k images, but there was no noticeable
difference between 100k and 200k images.

One layer vs. two layers. To empirically justify our two-
layer model, we compared our final results with a more tradi-
tional one-layer model. To do this, we trained a forest to depth
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Figure 8: Example results on the per-frame SYNTHETIC test
set. Despite simulated input noise and many frames having
wildly incorrect starting poses (simulating loss of track), our
reinitialization + model fitting algorithm is often able to infer
the full-DOF pose (global rotation, translation, and finger
poses). The final row shows two failure cases, which would
likely be easily corrected if part of a tracked sequence.

25 for each of the three layer-two reinitialization tasks (global
rotation, translation, and pose cluster estimation) using the
full dataset, i.e. not conditioned on a layer-one global rotation
bin. This one-layer model achieved the same accuracy as our
two-layer model, but used 6x more memory. Moreover, if we
let the the two-layer model use more memory, it considerably
exceeded the accuracy of the one-layer model. We we unable
to improve the accuracy of the one-layer model by training
deeper as we ran out of memory, even on our high-end PC.

Full optimization. We use SYNTHETIC to validate specific
algorithmic choices made and (on held-out validation data) to
optimize the parameters of our algorithm. We first show some
example image results in Fig. 8. These results were computed
on each input image independently. The model fitting is ini-
tialized for each image at the starting pose shown to simulate
tracking (when perturbed from the ground truth) or loss of
track (when completely randomized). We can observe robust
and accurate convergence of the model fitting for both global
and finger poses, even from extremely incorrect starting po-
sitions. This is due largely to our reinitialization algorithm
which provides a reliable set of candidate hand poses that are
then refined by the model fitting and golden energy pipeline.

We next present quantitative results on SYNTHETIC. Fig. 9(a)
compares the model fitting result for variants of reinitializer
with different components turned off. When a reinitialization
component is turned off, it is replaced by random sampling.
Note how reinitialization makes an enormous difference to
accurate convergence of the optimization, and that each com-
ponent contributes to the full reinitializer’s power. Fig. 9(b)
shows the effect of different numbers of particles in the model
fitter on the final accuracy. Clearly, more is better, but the
improvement from reinitialization far outweighs the number
of particles. We show the effect of different components of
our optimization algorithm in Fig. 9(c). Starting with the full
optimization, we cumulatively remove the components in the
order in the figure. We see that splicing, PSO particle aging,
and re-randomization all play a substantial role in getting high
accuracy. Fig. 9(d) plots the convergence of the optimization

for various error threshold levels. In most cases the optimiza-
tion converges around 30-40 generations.

Experiments on real data
The labor-intensive and error-prone nature of manually tag-
ging hand images makes it expensive to annotate extended
sequences. Our new FINGERPAINT dataset instead provides a
semi-automatic means of obtaining ground truth. We simul-
taneously captured video of painted hands using both a pro-
totype time of flight depth sensor and a standard RGB cam-
era. Having calibrated the cameras, an automatic color seg-
mentation algorithm can be used to give pixel-wise ground
truth hand part labels across extended sequences. The la-
bels are manually corrected where color segmentation is in-
correct. This provides a ‘proxy’ ground truth: we do not have
joint angles/positions, but achieving high accuracy on a pixel-
segmentation metric (see below) is only achievable with ac-
curate pose estimation. Further, these labels cover the whole
hand, unlike some datasets e.g. only labeling fingertips.

The dataset consists of five subjects (three are pictured in
Fig. 11 and all in the supplementary material). For each sub-
ject, three sequences were captured: ‘global’ (large global
movements, relatively static fingers); ‘poses’ (relatively static
global position, moving fingers); and ‘combined’. The com-
bined sequences exhibit movement that appears to be consid-
erably more challenging than that present in existing datasets.

To evaluate tracking accuracy on FINGERPAINT, we measure
our ability to reproduce the ground truth segmentation la-
bels. We texture-map our model to define parts that mimic
the ground truth label, and can then render a synthetic label
image from the inferred pose to compare to the ground truth
label image. For part label l, the accuracy is defined as the
proportion of ground truth pixels with label l that are inferred
as label l. Consistent with the SYNTHETIC metric, we then
plot the proportion of frames where we achieve an average
classification accuracy (across labels) of a certain threshold.

Results on FINGERPAINT are shown in Fig. 10. As expected,
that the tracker achieves its highest accuracies on the easier
‘global’ sequences and its lowest accuracies on the harder
‘pose’ and ‘combined’ sequences which contain complex fin-
ger articulations and inter-finger occlusions that are particu-
larly hard to disambiguate from a single noisy depth sensor.
Also of note is the reduced accuracy in tracking the second
subject. This subject is a child, and thus her hand occupies
fewer depth pixels and has significantly different proportions
and features than the others.

SYSTEM PARAMETERS AND TIMINGS
Our timings are measured on a dual-processor workstation
with an Nvidia GTX Titan graphics card. Using our default
PSO settings of 100 particles and 30 generations with a tile
size of 64x64, we spend on average 6ms per frame in reini-
tialization and 26ms per frame in model fitting. This achieves
the 30Hz (our camera rate) tracking shown in the accompa-
nying video. (Some of the synthetic experiments above vary
these parameters and may run faster or slower.) The main
bottlenecks in model fitting are in rendering for golden energy
computation, and (in our current implementation) transferring
candidate hand poses between main and GPU memory. The
algorithm is heavy on GPU compute, but does not need much
CPU power except for training the reinitializers which can
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Figure 9: Experiments on our per-frame SYNTHETIC test set using ‘average’ error metric (see text) (a) Effect of reinitialization on
model fitting accuracy. (L1 = layer one quantized rotation classification, R = layer two rotation regression, T = layer two offset
translation regression, P = layer two pose classification). (b) Accuracies achieved using different numbers of particles for both
full and no reinitialization. (c) Effect of removing components of the model fitting optimization. (d) Convergence plots for varying
levels of error threshold.
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Figure 10: Experiments on the FINGERPAINT dataset for the five subjects.
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Figure 11: Examples from our FINGERPAINT dataset. For
each row, we see the input depth image, the calibrated RGB
image in which the painted fingers can be seen, the result-
ing ground truth labeling of the depth image, and the inferred
labels that our tracker produces. (Numbers shown are clas-
sification accuracies).

Figure 12: Example failure cases for our method.

take several hours. The trained two-layer fern/jungle reini-
tializer occupies about 30MBs of memory.

LIMITATIONS AND FUTURE WORK
We believe our system has dramatically pushed the bound-
aries of articulated hand tracking, particularly in terms of flex-
ibility and robustness. But there is still further work to be
done. The accompanying video and Fig. 12 highlight some
of our current limitations. We only attempt to track a single
hand, and two or more interacting hands and objects can cause

confusion. Proofs of concept [19, 18] suggest that extending
our approach to deal with these cases should not be too chal-
lenging, at least for the model fitter. Our pipeline is heavy on
GPU compute, introducing latency and limiting deployment
on mobile devices. We hope that by improving the relatively
cheap discriminative reinitialization stage, and model fitting
using a more efficient continuous optimization, we can re-
duce the compute requirements to a level suitable for mobile
devices while maintaining high robustness and accuracy. We
are keen to build more applications on top of our tracking sys-
tem, and perform user studies to investigate their usefulness,
as well as to explore the correlation between our various quan-
titative metrics and the perceived accuracy or task completion
speed. Finally, we plan to explore the effect of the user’s hand
shape on tracking accuracy. We believe that building an ac-
curate personalized model of each user’s hand [29] can only
improve the quality of tracking.

CONCLUSIONS
We presented a new real-time articulated hand tracker that
combines fast learned reinitialization with model fitting based
on stochastic optimization of a ‘golden’ objective function.
Our evaluation demonstrated not only highly accurate hand
pose estimates, but also dramatic improvements over the state
of the art in robustness, recovering quickly from failure and
tracking reliably over extended sequences, and flexibility, wo-
rking for arbitrary global hand poses, at extreme distances
from the camera, and for both static and moving cameras.
We compared to three state-of-the-art approaches, showing
accuracy comparable to a multi-camera system, and results
exceeding both the Leap Motion and 3Gears commercial sys-
tems. We also extensively evaluated on challenging new real
and synthetic datasets. We feel our system can help open up a
variety of new interactions, with for example large displays at
a distance, mobile devices equipped with depth sensors, and
virtual or augmented reality systems.
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