
Locally-Rigid Motion v0.2
Release Notes

Jonathan Taylor

This updated release is a signficantly improved implementation of the
Local Rigidity algorithm described in [?]. It is roughly two orders of magni-
tude faster than version 0.1 while generally considering a much larger set of
triangles (see below). In general, the added triangles adds to the robustness
of the method, and allows for simplification of some of the parameters as
detailed below. Please consult the included README.txt for instructions
on running the code. The set of changes and deviances from [?] include:

• The 3-SFM fitting of triangles and the reconstruction of different frames
is now mapped across a set of worker processes allowing for the use of
multi-core processors (see python lrigid.py --help).

• Nearly all of the code underlying the 3-SFM bundle adjustment is now
written in C (via Cython) or in vectorized python (via NumPy).

• The costly per-frame least squares initialization of rotation is replaced
with a closed form rotation that first optimizes the 2D xy-planar rota-
tion followed by a slight out of plane tilting.

• Many sequences contain feature triplets that are not well constrained
leaving a long flat valley in the bundle-adjustment objective function
where “long” triangles extended deeply into depth can still use small
rotations to model image projections. When this occurs, it is difficult
for gradient based optimizers to find a well defined minimum. Thus a
weak prior is added to discourage these large triangles and to create a
well defined minimum. The objective is then

1

f(θ;λ) =
N∑

n=1

3∑
i=1

||
[
1 0 0
0 1 0

]
Rf (θ)p̂i(θ) + t(θ)− qin||2 + λ

3∑
i=1

L2
i (θ)

where the first term corresponds to the sum of squared reprojection
errors and the second term, the sum of squared triangle edge lengths.
As the valleys described are so flat, the choice of λ is not crucial and
thus we simply set it to 0.01 throughout.

• The threshold for interpreting a triangle to be rigid based on it’s RMS
reprojection error

√
f(θ; 0.0)/3N is now by default 1.5 times the me-

dian of the set of these values for all triangles considered. This is a
reasonable setting, but one should consider changing it depending on
how many rigid triangles are expected in the sequence (see python

lrigid.py --help).

• L-BFGS is now used instead of conjugate gradient since it is better at
learning the shape of this objective function and converging quickly.

• Using triangle proposals from a delaunay triangulation in a single frame
is not robust for two reasons. First, if a track slips, then there will be a
hole in the reconstruction. Thus, the implementation now starts by tak-
ing the union of all delaunay triangulations of the tracks in all frames.
Second, for datasets in which the locations of the tracks are structured
(e.g. a grid), it is very likely to find long runs of fronto-parallel edges,
making flip resolution difficult or ambiguous. Therefore, the code now
subsamples 25% of the tracks (corresponding to keeping roughly every
fourth point in a grid) and adds the union of all triangulations of this
set in all frames to the set of proposal triangles.

• With the addition of so many triangles, it now appears that a much
simpler binary flip MRF can be used. In particular, we define the
energy of two spatial neighbours having their common edge at an angle
of θ in degrees as

Es(θ) =
θ2

θ2 + σ2
s

where the above Geman-McClure [?] robust function asymptotes to 1
as θ increases forcing the difference between two “bad” alignments (e.g.

2

greater than 20 degrees) to be small. The energy of an angle θ between
a triangle’s normal and that of it’s temporal neighbour is simply scaled
linearly.

Et(θ) = csθ

It is not necessary to force Et to be robust like Es as one can expect
one of the two flip configurations to provide an angle near 0. Here σs
is set to 10 and cs is set to 50 to move the energies to a similar scale.

The greedy algorithm then finds a minimum spanning tree on the graph
with spatial edges weighted by |Es(θEQ) − Es(θOPP)| and temporal
edges weighted by |Et(θEQ)−Et(θOPP)|. The lack of any infinite edges
means that each “body” is completely reconstructed.

• The greedy flip resolution algorithm is now much faster as it is written
in C (via Cython) despite being a naive minimum spanning tree im-
plementation. A future version will include a more efficient union-find
implementation.

• The use of QPBO-I [?] to improve the greedy solution to the binary
MRF is disabled by default since it makes compiling this code substan-
tially more involved and it doubles the running time with very little
increase (and occasional decrease) in reconstruction accuracy. See the
README.txt for compiling the pyqpbo wrapper and then enable it on
the command line (see python lrigid.py --help).

• In the linear system Az = b used for resolving the absolute triangle
depths z, the matrix A can be extremely tall making ATA compari-
tively small. The sparsity of A makes forming ATA particulary easy
to form and thus the normal equations ATAz = Ab are used to solve
for z. A standard sparse solver is not used, since the ones available
in numpy/scipy do not allow for many solutions (one for each frame)
to be computed simultaneously. If there is concern over the numerical
stability a standard dense solver can be used (see python lrigid.py

--help).

• As in [?], for each component (or body), the reconstructed 3D point
precin of track i in frame n are taken to be the average of all triangle
vertices that match that track.

3

• When ground truth is available, the reconstruction error for each com-
ponent can be examined independently. If the component includes the
track indices I, then the RMS reconstruction error can be considered.√√√√ 1

N |I|

N∑
n=1

∑
i∈I

||precin − p
gt
in||2

Due to the inherent orthographic ambiguities, a per-frame depth flip
and translation is applied to the reconstructed point set to minimize
this number. This is the number reported via show.py for each com-
ponent.

4

