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GOAL: determine what parts of a property are not relevant

. . . anything that can be substituted without changing the value of
the property

Example: “all requests are eventually serviced”
LTL: p = G(request ⇒ F serviced)
holds in a model that does not produce any requests!
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Complete

Can be done without any special purpose tools

# of extra model checking runs grows with size of property
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Brief Overview of Vacuity Detection

Main Idea Logic Tool
[Beer et al. ’97] Replace single occurrence of a
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w-ACTL RuleBase
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Generalized Beer’s definition CTL* –
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Introduced trace vacuity LTL Forecast
Thunder

[Gurfinkel and
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Extended trace vacuity to CTL* CTL* Any model
checker
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Generalized Beer’s definition CTL* –

[Armoni et al.

’03]

Introduced trace vacuity LTL Forecast
Thunder

[Gurfinkel and

Chechik ’04]

Extended trace vacuity to CTL* CTL* Any model
checker

Definition of vacuity used in this work [Gurfinkel and Chechik ’04]

Property p is vacuous w.r.t. variable v iff M |= p[v ← x ], where x is an
unconstrained model variable

None of these definitions target SAT-based BMC
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Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f )
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f ), (a ∨ ¬c ∨ d)
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6 extra model checking runs

M |= p[a← true]? p is vacuous w.r.t. a iff
M |= p[a← false]? M |= p[a← true] = M |= p[a← false]

Similar for b,c
IRRELEVANCE METHOD: Irrelevance algorithm + completing step

Local Irrelevance and Peripherality are also extended in this manner
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VAQTREE: Vacuity Detection Framework

A: SMV −> CNF
Translator

B: Proof−outputting
SAT solver

C: Proof Analyzer

D: Completing Step

Vacuity
Results

Model property

VaqTree

To our knowledge, VAQTREE is the first
vacuity detection tool for BMC

[A] NUSMV v. 2.3.1, modified to
identify model/property clauses

[B] MINISAT-p v. 1.14, modified to
output XML proof

[C] New component (Java)

proof analysis done in memory
700 MB of RAM ≈ 2.5 million
resolutions

[D] New component (Perl)
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Evaluation

GOALS:
Compare effectiveness of the three algorithms

how many vacuous variables can each algorithm detect?

Evaluate the performance of the three methods, using Naive
Detection as a baseline

are any of our methods faster than Naive Detection?

BENCHMARKS:

Models and properties from the NUSMV distribution

Models and properties from the IBM Formal Verification
Benchmarks Library

13 / 25



Benchmark 1

SETUP

Models and properties: NUSMV distribution
121 properties:

99 present vacuity
2 - 4 temporal operators per property, from {G, F, U, X}
6 variables on average, 26 max., 1 min.

Largest proof: 2.5 million resolutions
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Benchmark 1: Performance
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Interpreting Effectiveness Graphs

# vacuous variables found: (x , y)
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y = found by Y-axis algorithm

X-axis algorithm is more precise,
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≥ 40% reduction in 54% of cases with vacuity
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Benchmark 2

GOAL: evaluate scalability of our tool to industrial models

SETUP

Models and properties: IBM Formal Verification Benchmarks
Library
18 properties:

12 present vacuity
1 temporal operator, from {G, F}
4 variables on average, 17 max., 1 min.

Picked k-depth in line with bounds used in Benchmark 1

Largest proof: 500k resolutions
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Benchmark 2: Scalability

A
Ir

re
le

va
nc

e 
(s

)

Naive detection (s)

Ir
re

le
va

nc
e 

(s
)

Naive detection (s)

B

L
oc

al
 I

rr
el

ev
an

ce
 (

s)
Naive detection (s)

L
oc

al
 I

rr
el

ev
an

ce
 (

s)
Naive detection (s)

C

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Reasonable execution times
No noticeable spike in peripherality execution times

models with low clause/variable ratio present vacuity
proofs for these models are medium-sized

Little vacuity in this suite, yet algorithms detect some vacuity
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Experimental Conclusions

Benchmark 1 Benchmark 2

Models Simple Complex

Properties Complex Simple

Irrelevance Very fast Very fast

Local Irrelevance Fastest Fastest

Peripherality Slow in certain cases Very fast

Our algorithms:

discover vacuous variables

. . . via relatively inexpensive analyses of BMC artifacts

Our methods are complete and generally faster than Naive Detection
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Summary

Vacuity detection for BMC
we analyze BMC artifacts like UNSAT cores and resolution proofs

Proposed and implemented a vacuity detection tool, VAQTREE
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Summary

Vacuity detection for BMC
we analyze BMC artifacts like UNSAT cores and resolution proofs

Proposed and implemented a vacuity detection tool, VAQTREE

Step towards making vacuity detection part of complete process
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Future Work

When do our algorithms apply?
heuristics based on clause/variable ratio and proof size

Increase scalability of our tool
implement on-the-fly proof analysis

Use interpolants for vacuity detection

Use results of previous depths for vacuity detection
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Thanks for your attention
Questions?
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