
Exploiting Resolution Proofs to Speed Up LTL
Vacuity Detection for BMC

Jocelyn Simmonds Jessica Davies Marsha Chechik
Department of Computer Science, University of Toronto

Arie Gurfinkel
Software Engineering Institute at Carnegie Mellon University

Nov 12, 2007 - FMCAD ’07

1 / 25

Model Checking

System
Model

Model
Checker

Temporal
Property

false +
counterexample

true

2 / 25

Model Checking

System
Model

Model
Checker

Temporal
Property

false +
counterexample

true

Can we trust
this result?

2 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

GOAL: determine what parts of a property are not relevant

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

GOAL: determine what parts of a property are not relevant

. . . anything that can be substituted without changing the value of
the property

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

GOAL: determine what parts of a property are not relevant

. . . anything that can be substituted without changing the value of
the property

Example: “all requests are eventually serviced”

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

GOAL: determine what parts of a property are not relevant

. . . anything that can be substituted without changing the value of
the property

Example: “all requests are eventually serviced”
LTL: p = G(request ⇒ F serviced)

3 / 25

Sanity Checks

Errors in Model Errors in Environ-
ment

Errors in Property

Debugging Overcon-
strained Declarative
Models

Finding Environmental
Guarantees

Vacuity Detection

[Shlyakhter et al. ’03] [Chechik et al. ’07] [Beer et al. ’99]

[Kupferman, Vardi ’99] . . .

Vacuity Dectection

GOAL: determine what parts of a property are not relevant

. . . anything that can be substituted without changing the value of
the property

Example: “all requests are eventually serviced”
LTL: p = G(request ⇒ F serviced)
holds in a model that does not produce any requests!

3 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

p3 = G (request ⇒ F true)

p4 = G (request ⇒ F false)

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

p3 = G (request ⇒ F true)

p4 = G (request ⇒ F false)
p is vacuous w.r.t. “serviced” iff M |= p3 = M |= p4

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

p3 = G (request ⇒ F true)

p4 = G (request ⇒ F false)
p is vacuous w.r.t. “serviced” iff M |= p3 = M |= p4

Complete

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

p3 = G (request ⇒ F true)

p4 = G (request ⇒ F false)
p is vacuous w.r.t. “serviced” iff M |= p3 = M |= p4

Complete

Can be done without any special purpose tools

4 / 25

Naive Vacuity Detection [Beer et al. ’97, Kupferman and Vardi ’99]

Test by substituting each subformula to check which ones are vacuous

EXAMPLE: “all requests are eventually serviced”
formalized as p = G (request ⇒ F serviced)

SOLUTION: four model checking runs

p1 = G (true ⇒ F serviced)

p2 = G (false ⇒ F serviced)
p is vacuous w.r.t. “request” iff M |= p1 = M |= p2

p3 = G (request ⇒ F true)

p4 = G (request ⇒ F false)
p is vacuous w.r.t. “serviced” iff M |= p3 = M |= p4

Complete

Can be done without any special purpose tools

of extra model checking runs grows with size of property

4 / 25

Brief Overview of Vacuity Detection

Main Idea Logic Tool
[Beer et al. ’97] Replace single occurrence of a

subformula with true, false
w-ACTL RuleBase

[Kupferman and

Vardi ’99]

Generalized Beer’s definition CTL* –

[Armoni et al.

’03]

Introduced trace vacuity LTL Forecast
Thunder

[Gurfinkel and

Chechik ’04]

Extended trace vacuity to CTL* CTL* Any model
checker

5 / 25

Brief Overview of Vacuity Detection

Main Idea Logic Tool
[Beer et al. ’97] Replace single occurrence of a

subformula with true, false
w-ACTL RuleBase

[Kupferman and

Vardi ’99]

Generalized Beer’s definition CTL* –

[Armoni et al.

’03]

Introduced trace vacuity LTL Forecast
Thunder

[Gurfinkel and

Chechik ’04]

Extended trace vacuity to CTL* CTL* Any model
checker

Definition of vacuity used in this work [Gurfinkel and Chechik ’04]

Property p is vacuous w.r.t. variable v iff M |= p[v ← x], where x is an
unconstrained model variable

None of these definitions target SAT-based BMC

5 / 25

Bounded Model Checking (BMC)

Check if property p holds up to k steps on model M: M |=k p
i.e., can we reach a state in k steps that satisfies ¬ p?

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

6 / 25

Bounded Model Checking (BMC)

Check if property p holds up to k steps on model M: M |=k p
i.e., can we reach a state in k steps that satisfies ¬ p?

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

k = 0

6 / 25

Bounded Model Checking (BMC)

Check if property p holds up to k steps on model M: M |=k p
i.e., can we reach a state in k steps that satisfies ¬ p?

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

0(a), (b), (c)00 (b), (c)0 0

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

k = 0

6 / 25

Bounded Model Checking (BMC)

Check if property p holds up to k steps on model M: M |=k p
i.e., can we reach a state in k steps that satisfies ¬ p?

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

0(a), (b), (c)00 (b), (c)0 0

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

(c) (c)0 0

()

{b,c}

{a,b}

{c}

b c

0(a), (b), (c)00 (b), (c)0 0

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

k = 0

6 / 25

Bounded Model Checking (BMC)

Check if property p holds up to k steps on model M: M |=k p
i.e., can we reach a state in k steps that satisfies ¬ p?

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property
{b,c}

{a,b}

{c}

b c

0(a), (b), (c)00 (b), (c)0 0

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

(c) (c)0 0

()

{b,c}

{a,b}

{c}

b c

0(a), (b), (c)00 (b), (c)0 0

SAT solver

Model

M pk M pk

example
Output: counter− Output: resolution

proof

"unroll"
transition relation

p holds
at some step

UNSATSAT

Property

k = 0

GOAL: use resolution proof for vacuity detection

focus on variable vacuity

use naive detection as baseline for comparison

6 / 25

Outline

Model Checking

Sanity Checks

Naive Vacuity Detection

Brief Overview of Vacuity Detection

Bounded Model Checking
New methods:

Irrelevance
Local Irrelevance
Peripherality

Implementation: VAQTREE

Experiments

Conclusions and Future Work

7 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant
VACUITY: d, e, f not in UNSAT core⇒ irrelevant⇒ vacuous

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant
VACUITY: d, e, f not in UNSAT core⇒ irrelevant⇒ vacuous

Linear in size of UNSAT core

8 / 25

Algorithm 1 - Irrelevance

Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Variables in the property but not in the UNSAT core are irrelevant
VACUITY: d, e, f not in UNSAT core⇒ irrelevant⇒ vacuous

Linear in size of UNSAT core
Very incomplete

8 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant
VACUITY: a only in Property part of the UNSAT core

⇒ locally irrelevant⇒ vacuous

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant
VACUITY: a only in Property part of the UNSAT core

⇒ locally irrelevant⇒ vacuous

Linear in size of UNSAT core

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant
VACUITY: a only in Property part of the UNSAT core

⇒ locally irrelevant⇒ vacuous

Linear in size of UNSAT core
More precise than Irrelevance

9 / 25

Algorithm 2 - Local Irrelevance

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that only appear in the property part of the UNSAT core are
locally irrelevant
VACUITY: a only in Property part of the UNSAT core

⇒ locally irrelevant⇒ vacuous

Linear in size of UNSAT core
More precise than Irrelevance

Still very incomplete
9 / 25

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Resolution on b
occurs in Property

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ b) (¬b ∨ c) (¬b ∨ ¬c) (b)

(b)

(c)
(¬b)

()

Property Model

Resolution on b
occurs in Property

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ c) (¬b ∨ ¬c) (b)

(x)

(c)
(¬b)

()

Property Model

Resolution on b
occurs in Property
Can replace b by x

in Property

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ c) (¬b ∨ ¬c) (b)

(x)

(c)
(¬b)

()

Property Model

Variables that are not central to the proof are peripheral

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ y) (¬b ∨ ¬c) (b)

(x)

(y)
(¬b)

()

Property Model

Cannot replace c
by y in this proof

Variables that are not central to the proof are peripheral

10 / 25

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ y) (¬b ∨ ¬c) (b)

(x)

(y)
(¬b)

()

Property Model

Cannot replace c
by y in this proof

Variables that are not central to the proof are peripheral

10 / 25

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ y) (¬b ∨ ¬c) (b)

(x)

(y)
(¬b)

()

Property Model

Cannot replace c
by y in this proof

Variables that are not central to the proof are peripheral
VACUITY: replaced b by x in Property without changing proof

⇒ peripheral⇒ vacuous

10 / 25

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ y) (¬b ∨ ¬c) (b)

(x)

(y)
(¬b)

()

Property Model

Cannot replace c
by y in this proof

Variables that are not central to the proof are peripheral
VACUITY: replaced b by x in Property without changing proof

⇒ peripheral⇒ vacuous

Linear in size of resolution proof

10 / 25

Algorithm 3 - Peripherality

(¬a) (a ∨ x) (¬x ∨ y) (¬b ∨ ¬c) (b)

(x)

(y)
(¬b)

()

Property Model

Cannot replace c
by y in this proof

Variables that are not central to the proof are peripheral
VACUITY: replaced b by x in Property without changing proof

⇒ peripheral⇒ vacuous

Linear in size of resolution proof

If p is vacuous, there exists a resolution proof s.t. p is peripheral

10 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

COMPLETING STEP: Naive Detection
6 extra model checking runs

M |= p[a← true]?
M |= p[a← false]?

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

COMPLETING STEP: Naive Detection
6 extra model checking runs

M |= p[a← true]? p is vacuous w.r.t. a iff
M |= p[a← false]? M |= p[a← true] = M |= p[a← false]

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

COMPLETING STEP: Naive Detection
6 extra model checking runs

M |= p[a← true]? p is vacuous w.r.t. a iff
M |= p[a← false]? M |= p[a← true] = M |= p[a← false]

Similar for b,c

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

COMPLETING STEP: Naive Detection
6 extra model checking runs

M |= p[a← true]? p is vacuous w.r.t. a iff
M |= p[a← false]? M |= p[a← true] = M |= p[a← false]

Similar for b,c
IRRELEVANCE METHOD: Irrelevance algorithm + completing step

11 / 25

Complete Analysis

GOAL: complete analysis using Naive Detection for leftover variables

EXAMPLE:
Model (¬b ∨ ¬c), (b), (¬e), (d ∨ f)
Property (¬a), (a ∨ b), (¬b ∨ c), (d ∨ e ∨ f), (a ∨ ¬c ∨ d)

PREPROCESSING: Irrelevance algorithm
d,e,f are vacuous

COMPLETING STEP: Naive Detection
6 extra model checking runs

M |= p[a← true]? p is vacuous w.r.t. a iff
M |= p[a← false]? M |= p[a← true] = M |= p[a← false]

Similar for b,c
IRRELEVANCE METHOD: Irrelevance algorithm + completing step

Local Irrelevance and Peripherality are also extended in this manner

11 / 25

VAQTREE: Vacuity Detection Framework

A: SMV −> CNF
Translator

B: Proof−outputting
SAT solver

C: Proof Analyzer

D: Completing Step

Vacuity
Results

Model property

VaqTree

To our knowledge, VAQTREE is the first
vacuity detection tool for BMC

[A] NUSMV v. 2.3.1, modified to
identify model/property clauses

[B] MINISAT-p v. 1.14, modified to
output XML proof

[C] New component (Java)

proof analysis done in memory
700 MB of RAM ≈ 2.5 million
resolutions

[D] New component (Perl)

12 / 25

Evaluation

GOALS:
Compare effectiveness of the three algorithms

how many vacuous variables can each algorithm detect?

Evaluate the performance of the three methods, using Naive
Detection as a baseline

are any of our methods faster than Naive Detection?

BENCHMARKS:

Models and properties from the NUSMV distribution

Models and properties from the IBM Formal Verification
Benchmarks Library

13 / 25

Benchmark 1

SETUP

Models and properties: NUSMV distribution
121 properties:

99 present vacuity
2 - 4 temporal operators per property, from {G, F, U, X}
6 variables on average, 26 max., 1 min.

Largest proof: 2.5 million resolutions

14 / 25

Interpreting Performance Graphs

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

15 / 25

Interpreting Performance Graphs

Plotting
execution
times

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

15 / 25

Interpreting Performance Graphs

Naive
Detection
is faster
here

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

15 / 25

Interpreting Performance Graphs

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

“Method” is
faster here

15 / 25

Interpreting Performance Graphs

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

��

��

��
��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

��

����

��

��

��

����

��

��
��

��

��
��

��

��

��

��

Naive detection (s)

"A
lg

or
ith

m
"

(s
)

“Method” is
faster by an
order of
magnitude
here

15 / 25

Benchmark 1: Performance

A
Ir

re
le

va
nc

e
(s

)

Naive detection (s)

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

Execution times measured
for complete methods

B

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

C

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

16 / 25

Benchmark 1: Performance

A
Ir

re
le

va
nc

e
(s

)

Naive detection (s)

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

Execution times measured
for complete methods

Peripherality is much slower
in some cases

B

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

C

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

16 / 25

Interpreting Effectiveness Graphs

����

��

��

��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

More precise algorithm
L

es
s

pr
ec

is
e

al
go

ri
th

m

17 / 25

Interpreting Effectiveness Graphs

vacuous variables found: (x , y)
x = found by X-axis algorithm
y = found by Y-axis algorithm

����

��

��

��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

More precise algorithm
L

es
s

pr
ec

is
e

al
go

ri
th

m

17 / 25

Interpreting Effectiveness Graphs

vacuous variables found: (x , y)
x = found by X-axis algorithm
y = found by Y-axis algorithm

X-axis algorithm is more precise,
so x ≥ y always

����

��

��

��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

More precise algorithm
L

es
s

pr
ec

is
e

al
go

ri
th

m

17 / 25

Interpreting Effectiveness Graphs

vacuous variables found: (x , y)
x = found by X-axis algorithm
y = found by Y-axis algorithm

X-axis algorithm is more precise,
so x ≥ y always

Larger point = more test cases

����

��

��

��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

More precise algorithm
L

es
s

pr
ec

is
e

al
go

ri
th

m

17 / 25

Benchmark 1: Effectiveness

A
Ir

re
le

va
nc

e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

B

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

C

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

18 / 25

Benchmark 1: Effectiveness

A
Ir

re
le

va
nc

e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

B

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

C

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Reduced # of extra model checking runs:

≥ 40% reduction in 54% of cases with vacuity

18 / 25

Benchmark 1: Effectiveness

A
Ir

re
le

va
nc

e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

Ir
re

le
va

nc
e

Local Irrelevance

B

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

L
oc

al
 I

rr
el

ev
an

ce

Peripherality

C

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Pe
ri

ph
er

al
ity

Naive detection

≥ 40%

Reduced # of extra model checking runs:

≥ 40% reduction in 54% of cases with vacuity

Local Irrelevance is faster than Naive Detection in 70
cases (59%):

Twice as fast in 40% of these cases

Order of magnitud faster in 30% of these cases

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

L
oc

al
 I

rr
el

ev
an

ce
 (

s)

Naive detection (s)

18 / 25

Benchmark 2

GOAL: evaluate scalability of our tool to industrial models

SETUP

Models and properties: IBM Formal Verification Benchmarks
Library
18 properties:

12 present vacuity
1 temporal operator, from {G, F}
4 variables on average, 17 max., 1 min.

Picked k-depth in line with bounds used in Benchmark 1

Largest proof: 500k resolutions

19 / 25

Benchmark 2

GOAL: evaluate scalability of our tool to industrial models

SETUP

Models and properties: IBM Formal Verification Benchmarks
Library
18 properties:

12 present vacuity
1 temporal operator, from {G, F}
4 variables on average, 17 max., 1 min.

Picked k-depth in line with bounds used in Benchmark 1

Largest proof: 500k resolutions

Proof sizes are in same range as those for Benchmark 1

new models are more complex

but properties are simpler

19 / 25

Benchmark 2: Scalability

A
Ir

re
le

va
nc

e
(s

)

Naive detection (s)

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

B

L
oc

al
 I

rr
el

ev
an

ce
 (

s)
Naive detection (s)

L
oc

al
 I

rr
el

ev
an

ce
 (

s)
Naive detection (s)

C

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Reasonable execution times
No noticeable spike in peripherality execution times

models with low clause/variable ratio present vacuity
proofs for these models are medium-sized

Little vacuity in this suite, yet algorithms detect some vacuity

20 / 25

Experimental Conclusions

Benchmark 1 Benchmark 2

Models Simple Complex

Properties Complex Simple

Irrelevance Very fast Very fast

Local Irrelevance Fastest Fastest

Peripherality Slow in certain cases Very fast

Our algorithms:

discover vacuous variables

. . . via relatively inexpensive analyses of BMC artifacts

Our methods are complete and generally faster than Naive Detection

21 / 25

Summary

Vacuity detection for BMC
we analyze BMC artifacts like UNSAT cores and resolution proofs

Proposed and implemented a vacuity detection tool, VAQTREE

22 / 25

Summary

Vacuity detection for BMC
we analyze BMC artifacts like UNSAT cores and resolution proofs

Proposed and implemented a vacuity detection tool, VAQTREE

Step towards making vacuity detection part of complete process

22 / 25

Future Work

When do our algorithms apply?
heuristics based on clause/variable ratio and proof size

Increase scalability of our tool
implement on-the-fly proof analysis

Use interpolants for vacuity detection

Use results of previous depths for vacuity detection

23 / 25

Thanks for your attention
Questions?

Why is Peripherality much slower in some cases?

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p
Φ2= M |= p2

...
Φn= M |= pn

Why is Peripherality much slower in some cases?

Low clause/variable ratio

No vacuous variables

Large resolution proofs

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p
Φ2= M |= p2

...
Φn= M |= pn

Why is Peripherality much slower in some cases?

Low clause/variable ratio

No vacuous variables

Large resolution proofs

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p UNSAT
SAT Φ2= M |= p2

...
Φn= M |= pn

25 / 25

Why is Peripherality much slower in some cases?

Low clause/variable ratio

No vacuous variables

Large resolution proofs

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p UNSAT
SAT Φ2= M |= p2

...
Φn= M |= pn

time: τ1, τ2, . . . τn T
to find sat. assignment periph. analysis

25 / 25

Why is Peripherality much slower in some cases?

Low clause/variable ratio

No vacuous variables

Large resolution proofs

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p UNSAT
SAT Φ2= M |= p2

...
Φn= M |= pn

time: τ1, τ2, . . . τn T
to find sat. assignment periph. analysis

τi <<< T

25 / 25

Why is Peripherality much slower in some cases?

Low clause/variable ratio

No vacuous variables

Large resolution proofs

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Pe
ri

ph
er

al
ity

 (
s)

Naive detection (s)

Naive Detection Peripherality

Φ1= M |= p1 Φ = M |= p UNSAT
SAT Φ2= M |= p2

...
Φn= M |= pn

time: τ1, τ2, . . . τn T
to find sat. assignment periph. analysis

τi <<< T∑
τi <<< T

25 / 25

