
Non-Adaptive Algorithms For The Write-All Problem

by

Yoav Freund

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Yoav Freund

Abstract

Non-Adaptive Algorithms For The Write-All Problem

Yoav Freund

Master of Science

Graduate Department of Computer Science

University of Toronto

2010

In the Write-All problem, processes are required to write 1 to each cell of a shared-

memory bit-array, initially containing 0’s. An array of size n represents the tasks to be

completed in one step of an n-process parallel machine. The value of each cell indicates

whether the corresponding task has been completed.

We focus on a class of asynchronous non-adaptive algorithms that solve Write-All. In the

model we consider, each process examines the array in a fixed order and writes 1 to every

0-valued cell it encounters. In this model, when a number of processes read a 0 from a

cell, they all end up writing to that cell. Our goal is to find orderings that minimize such

redundancy. In this paper, we introduce our model, present and analyze algorithms that

minimize redundancy, and prove lower bounds on the work of algorithms in our model.

ii

Acknowledgements

I would like to thank my supervisor, Faith Ellen, for the excellent guidance, the insightful

discussions, and the invaluable on-going feedback. The past year and a half of joint work

has taught me so much, and I am grateful for it.

I would also like to thank the second reader of my thesis, Eric Mendelsohn, for his time

and effort.

Last but not least, I would like to take this opportunity to thank my family and friends

for supporting me in every step I take.

iii

Contents

1 Introduction 1

1.1 The Write-All Problem . 1

1.2 Related Work . 3

1.3 Statement of Results . 9

2 The Non-Adaptive Model 11

2.1 Notation and Conventions . 11

2.2 Model of Computation . 12

2.3 Non-Adaptive Algorithms . 12

2.4 Properties of Non-Adaptive Algorithms 16

3 Algorithms and Lower Bounds 21

3.1 2-Process Optimal Algorithm . 21

3.2 3-Process Algorithms and Lower Bounds 22

3.2.1 Algorithm A3(n) . 23

3.2.2 n+ Ω(
√
n) work bound, special case π1 = πR2 26

3.2.3 Algorithms A′3(n) and A′′3(n) . 28

3.2.4 n+ Ω(3
√
n) work bound . 33

3.3 4-Process Algorithms . 34

3.4 n+ Ω(3
√
n) Work Bound . 37

4 Conclusions 38

4.1 Contributions . 38

4.2 Future Work . 39

Bibliography 40

iv

Chapter 1

Introduction

In this chapter, we will introduce the Write-All problem, and survey past work related

to it.

1.1 The Write-All Problem

The Write-All problem can be described as follows:

Given a shared-memory bit array, X, of size n, initialized to contain only 0’s, write 1 to

all of X’s cells.

A common variant of the problem is Certified Write-All, where we need to write 1 to a

binary flag, Done, after writing 1 to all of X’s cells. Both variants of the problem appear

in the literature, and are equally hard.

The n array cells represent n tasks to be completed in one step by an n-process syn-

chronous system. The value 1 is written to a cell to indicate that the corresponding task

has been completed. When all cells have been set to 1 we know that the step is completed.

One popular parallel computing model is the PRAM, as defined in [4], a fault-free syn-

chronous shared-memory model. This PRAM model is good for developing and analyzing

parallel algorithms, but it fails to describe the behaviour of realistic systems that are not

necessarily synchronous and are subject to process failures. A solution to Write-All can

be used to simulate this ideal model on more realistic models.

1

Chapter 1. Introduction 2

Shvartsman [13] used a solution to the Write-All problem as a synchronization primitive

to simulate a fault-free synchronous system on a fault-prone synchronous system. Martel

et al. [12] did the same on a faulty asynchronous system. They applied a variant of

Certified Write-All to simulate a synchronous program step by step. In their simulation,

the cells of X and the flag Done contain integer values instead of bits. A processes writes

s to X[i] to indicate that it completed task i of step s, and the value of Done is set to s

to indicate that the s’th simulated step was completed.

Another possible application of Write-All is a parallel search. Consider searching a large

data set, stored in n different remote file servers. In order for a process to search the

data in a file server, the process must first copy the data to its local storage. The process

then searches the data and saves the results in shared-memory. Once all n servers have

been searched, we can combine the results from all n servers. A solution to Write-All can

be used to perform the parallel search. The i’th cell of the array X indicates whether

a search over the i’th server has been completed. When all of X’s cells are set to 1, we

know that all servers have been searched.

In the example above, writing 1 to a cell is associated with searching a remote file server.

Searching a remote file server involves copying the data from the remote file server to a

local storage, which can be extremely expensive. Therefore, when evaluating a Write-All

solution for this scenario, a good complexity measure would be the total number of write

operations performed. In the earlier example, writing 1 to a cell was associated with per-

forming a single low-level instruction. In that case, a more suitable complexity measure

would be the total number of steps performed by the Write-All solution.

Generally, we use multi-process parallel systems to get wait-free solutions that are faster

than the best known sequential solution. A wait-free solution is guaranteed to be correct

as long as at least one process survives. The problem is that as the number of processes

increases, more processes may take redundant steps. For example, consider an arbitrary

algorithm that solves Write-All on an asynchronous system with p processes and an ar-

ray X of length 1. Since each process must be able to complete the work in case all

other processes fail, an adversary can allow each process to run and then pause it just

as it is about to write 1 to X’s cell. The adversary’s next step is to let all p processes

Chapter 1. Introduction 3

write, causing the algorithm to perform Ω(p) steps. This simple example shows us how

increasing the number of processes increases the number of redundant steps.

When solving Write-All on a multi-process system, processes must coordinate their work

in order to reduce redundancy. On the one hand, coordinating between the processes,

while maintaining efficiency, becomes increasingly more challenging as the number of pro-

cesses grows. On the other hand, the whole point of parallel systems is to distribute work

among many processes in order to get faster solutions. Researchers study this trade-off

with the goal of finding fault-tolerant optimal solutions on various parallel models with

as many processes as possible.

1.2 Related Work

The Write-All problem was introduced in 1989 by Shvartsman & Kanellakis and they

were responsible for most of the early results related to it. In their paper [7], they studied

the problem on p-process synchronous CRCW shared-memory models with process fail-

ures (processes may crash at any point of the execution as long as at least one survives).

They presented algorithm W, the best deterministic synchronous algorithm known to

date, which performs O(n log(n) + p log2(n)) work.

Algorithm W is an iterative algorithm that uses two binary trees stored in shared memory

to keep track of the computation as it progresses. The progress tree is used for keeping

track of the work done. The n leaves of the tree are the cells of the input array X, and

each internal node contains a count of the 1-valued leaves in its subtree.

The process enumeration tree is used for keeping track of the available processes. The

p leaves of the process enumeration tree correspond to the p processes in the system.

Each node in the tree contains a count of active processes in its subtree. Each node also

stores a timestamp which allows us to detect “old” counts without re-initializing the tree

between iterations.

Each iteration of the algorithm works as follows: processes are allocated to cells of the

input array, they do the work (i.e., write 1 to a cell) and update the trees.

The algorithm terminates when the root of the progress tree contains the value n, indi-

Chapter 1. Introduction 4

cating that all n cells have been set.

First, we will describe how the processes update the trees, and then describe the way

process allocation works.

The progress tree is updated as follows: After a process does the work at a leaf it walks

up the tree towards the root and updates the values of the visited nodes. (The new

value of each node is the sum of its children’s values.) Internal nodes of the progress tree

contain underestimates of the work done because processes may fail on their way up the

tree.

The process enumeration tree is updated in a similar way. Each process starts from its

corresponding leaf and makes its way up to the root, updating the timestamp and setting

the count of each node to the sum of its children’s counts (treating “old counts” as 0).

The counts in the process enumeration tree are overestimates because a process may fail

on its way up but other processes might “carry its count” up the tree.

In addition to updating the tree, each process computes an estimated rank, that is, a

unique integer in the range [1, c], where c is the count at the root of tree after the update.

The process allocation works as follows: Initially processes are implicitly allocated to

cells based on their identifiers. (Each process knows its unique integer identifier in the

range [1, p].) In later iterations, the algorithm uses the information in the progress tree to

allocate processes to cells in proportion to the estimated remaining work in each subtree.

To understand how the allocation works, consider the following example:

Suppose the values stored at the left and right children of the progress tree’s root are
n
4

and n
8
, respectively, and suppose we start with c processes at the root. Since there

might be incomplete work in both subtrees, we want to determine how many of the c

processes should go left and how many should go right. The root’s children have n
2

leaves

in their subtrees, so we compute the following ratio (n
2
− n

4
)/(n

2
− n

8
) = 2/3, and allocate

2c
5

processes to the left child and 3c
5

to the right child.

The allocation is done in parallel: Each process starts at the root of the progress tree,

assuming there are c active processes (where c is the count at the root of process enumer-

ation tree). It computes the ratio as described above, and determines whether to go left

or right according to its estimated rank (computed when the process enumeration tree

Chapter 1. Introduction 5

was last updated). Each process repeats this procedure until it reaches a leaf. When all

active processes reach a leaf, the allocation is determined.

In addition to algorithm W, Shvartsman and Kanellakis used an adversary argument to

obtain an Ω(n log(n)/ log(log(n))) work bound for any n-process fault-tolerant CRCW

synchronous algorithm (deterministic or randomized) that solves Write-All.

Kedem et al. [8] modified algorithm W slightly to get an n-process algorithm that

performs O(n log2(n)
log(log(n))

) work, when p ≤ n. In their version they associate each leaf of

the progress tree with a block of log2(n) cells of X. This modification does not affect

the asymptotic work performed by the algorithm because each process already performs

Ω(log(n)) work in each iteration when updating the trees. They also improved the work

lower bound, showing that any synchronous solution to Write-All requires Ω(n log(n))

work.

A number of researchers have continued to study algorithm W, presenting different anal-

yses and adapting the algorithm to other synchronous shared-memory models. Georgiou,

Russell and Shvartsman [5] analyzed the performance of algorithm W as a function of

n, p and f , where f is the number of process failures that occur during an execution.

Kedem, Palem and Spirakis [9] performed an average case analysis of algorithm W. Buss

et al. [2] adapted the algorithm to work on systems with faulty restartable processes.

In [2], Buss et al. considered two related models: an asynchronous model and a syn-

chronous fail-restart model. In the fail-restart model, processes that fail (i.e., crash) can

be restarted, in which case, their program counters are reset and the information that

was stored in their local memories is lost. Buss et al. showed an n−p+ Ω(p log(p)) work

bound for any algorithm that solves Write-All on the synchronous fail-restart model.

Their adversarial approach works as follows: First, the adversary allows the processes to

set n − p of the array cells. It then restarts all processes and determines which process

is about to write to which cell. A simple averaging argument shows that the adversary

can stop at most dp
2
e processes and cause at least half of the unset cells to remain unset.

The adversary applies this strategy log2(p) times to get their lower bound.

In the same paper, Buss et al. considered a model where processes can take a snapshot

Chapter 1. Introduction 6

and process the entire shared memory at unit cost. In this model, they presented an

algorithm that matches their lower bound. This result shows that any improvement to

their lower bound must use the fact that a process cannot “learn everything” about the

input array between its write operations.

The work on synchronous models left a small gap between the Ω(n log(n)) and the

O(n log2(n)
log(log(n))

) work bounds, and the Write-All problem is considered to be essentially

solved on synchronous models. A complete and more detailed survey can be found in [6].

When working on an asynchronous model, we think of an execution as an interleaving

of process instructions. Any interleaving is possible as long as each process executes its

instructions in order. In this model, arbitrary delays can occur between the interleaved

instructions.

The asynchronous model is related to the synchronous fail-restart model since every

execution on the synchronous fail-restart model has an equivalent execution on the asyn-

chronous model (process down-time in the fail-restart model is process delay in the asyn-

chronous model).

Buss et al. [2] used this observation to show that their Ω(n log(n)) work bound for the

synchronous fail-restart model applies to the asynchronous model as well.

Martel et al. [12] presented and analyzed a randomized asynchronous algorithm that

performs expected work O(n) when p ≤ n
log(n) log∗(n)

. In their algorithm, they divide the

array X into blocks of size log(n), and associate each block with a different leaf of a

binary tree. The nodes in the tree contain either 0 or 1, indicating whether the work

in a subtree is done. Each process examines the root of the binary tree, if the value at

the root is 1 the process halts, otherwise it continues by randomly selecting a tree node.

If the selected node is a 0-valued leaf the process does the associated work (i.e., write 1

to the log(n) cells of the associated block), and then writes 1 to the leaf. If the process

selected an internal node, it examines the values of the node’s children and if they are

both 1 it writes 1 to the node.

Buss et al. [2] presented a deterministic asynchronous algorithm that performsO(nplog(3
2
))

Chapter 1. Introduction 7

≈ O(np0.59) work when p ≤ n. In this algorithm, the array cells are treated as the leaves

of a binary tree. Each internal node also contains a bit that is initially 0. Each process

is assigned to a leaf and makes its way towards the root of the tree, writing 1 to every

0-valued node it encounters. When visiting an internal node, a process will recurse down

to its 0-valued children before setting the node’s value to 1.

In the same paper, Buss et al. considered the Write-All problem on systems with a small

number of processes. They presented a simple 2-process algorithm that performs at most

n + 2 reads and n + 1 writes. In that algorithm, each process starts from one end of

the array and makes its way towards the other end, writing 1 to every 0-valued cell it

encounters. When a process reads 1 from a cell, it knows that the whole array is set, and

it exits. They present a 3-process algorithm that uses a similar approach, and results in

n + O(log(n)) read/write operations. In this algorithm, process P0 starts from the left

end of the array and makes its way to the right, process P1 starts from the right making

its way left, and process P2 starts from the middle and makes its way towards the ends

(alternating between left and right). If processes P0 and P1 collide, then the array is all

set and the processes exit. When process P0 collides with P2, say on cell x, then the only

cells that may still contain 0 are the rightmost x cells of the array. In this case, process

P0 “jumps” to cell n−x, and process P2 “jumps” to cell n− x
2
. The case where P1 and P2

collide is symmetric. Every time a collision occurs the number of unset cells is at most

half of what it was when the previous collision occurred (or when the execution started).

The only time a cell is written to by more than one process is in the case of a collision.

Therefore, we get the n+O(log(n)) bound on the number of read/write operations. We

will re-visit this algorithm in chapter 3.

Anderson and Woll [1] developed the best deterministic asynchronous algorithm known

to date. They started by introducing a randomized, asynchronous, p-process algorithm

for input array of size n = p2. The algorithm works as follows:

• We randomly select p permutations, π1, . . . , πp, over {1 . . . , p}.

• X is partitioned into p blocks of size p, denoted B1, . . . , Bp. Each block Bi has a

corresponding completion bit, bi, initially set to 0.

• For each k, process Pk examines the blocks in the order specified by πk (i.e.,

Chapter 1. Introduction 8

Bπk(1), . . . , Bπk(p)). When examining Bi, a process reads bi. If the value read is

0, then the process writes 1 to all cells in Bi and then sets bi to 1.

Notice that if process Pi examines block B before it examines B′, and process Pj examines

B′ before B, then it is impossible for both processes to write to both blocks. Anderson

and Woll used this idea and presented a probabilistic argument showing that a “good” set

of permutations is chosen with high probability, resulting in O(p2 log(p)) = O(n log(n))

work.

This algorithm is presented for p =
√
n, but obviously works for all values of p ≤

√
n

(“missing” processes can be considered to be crashed). To get an algorithm that works

for larger values of p, Anderson & Woll extended their approach by using two hierarchies

of blocks.

In this case n = p
3
2 , the array is partitioned into

√
p “big blocks”, and each big block

is partitioned into
√
p “small blocks” of size

√
p. The algorithm randomly selects

π1, . . . , π√p, permutations over {1, . . . ,√p}, and each process uses one permutation for

the ordering of the “big blocks” and one for the ordering of the “small blocks” within

each big block. (Each process uses a different ordered pair of permutations (πi, πj).) This

algorithm performs O(p3/2 log2(p)) = O(n log2(n)) work (with high probability).

Anderson and Woll extended their approach to work for all values of p ≤ n. This exten-

sion resulted in a deterministic, yet non-constructive, algorithm called AW T .

In AW T , they used a tree of nested blocks. They chose a constant q that parameterizes

the algorithm, and used a q-ary tree of blocks. The tree has height logq(n), and the input

array cells are the leaves of the tree. The algorithm uses π1, . . . , πq, q permutations over q,

as follows: Each process, Pi, uses a different q-tuple of permutations (πi1 , . . . , πiq). Each

process traverses the tree skipping sub-trees whose completion bit is set. Pi examines

the children at level l according to the order specified by πil .

They analyzed this algorithm and showed that, for every ε > 0, there exists a constant q

such that the algorithm performs O(n1+ε) work. Finding a “good” set of permutations,

π1, . . . , πq, is done using brute force (its existence is guaranteed) and is considered a part

Chapter 1. Introduction 9

of the pre-processing. The work required to find these permutations is not counted as

part of the work of the algorithm.

The analysis of algorithm AW T and the resulting work bound are based on the existence

of a “good set of permutations”. Anderson and Woll defined what a good set of permu-

tations is, but they did not attempt to construct such a set deterministically.

An alternative approach to the Write-All problem is to look for algorithms that per-

form O(n) work using the largest possible number of processes, p. The Ω(p log(p)) work

bound, mentioned earlier, implies that no such solution exists when p ∈ ω(n/ log(n)).

Malewicz [11] presented an asynchronous algorithm that performs O(n) work when p is

O((n/ log(n))1/4). Kowalski and Shvartsman [10] improved on that result, showing such

an algorithm for p ∈ O(n
1

2+ε).

1.3 Statement of Results

We will introduce a class of algorithms that are similar to ones presented by Anderson

and Woll. The performance of our algorithms depends on a chosen sequence of permuta-

tions. These algorithms are non-adaptive in the sense that the permutations are chosen

at the beginning of an execution and do not change during the execution of the algorithm.

In chapter 2, we introduce our non-adaptive algorithms. In these algorithms, each process

examines the cells of X in some fixed order, writing 1 to every 0-valued cell it encoun-

ters. We represent an algorithm as a sequence of permutations, one permutation for each

process, that determines the order in which processes examine the cells of X. We use

the total number of write operations as a work measure, which makes our algorithms

suitable for applications of Write-All where performing a single task is expensive. We

formally define the model, introduce convenient notation, and complete the chapter by

stating and proving a number of properties of our algorithms.

In chapter 3, we begin by presenting the 2-process algorithm, mentioned in [2], in our

model. We formally prove that this algorithm is optimal in our model. We continue by

Chapter 1. Introduction 10

incrementally developing 3-process algorithms and analyzing their performance. Later in

the chapter, we extend these algorithms to systems with 4 processes. We show a lower

bound on the work of any 3-process algorithm (conforming to our model), and extend

this bound to systems with an arbitrary number of processes.

In chapter 4, we summarize our results, relate them to past work and discuss the open

questions that arise from our work.

Chapter 2

The Non-Adaptive Model

In this chapter, we formally define our non-adaptive model.

2.1 Notation and Conventions

Before we introduce our model, we would like to specify some of the notation and con-

ventions we will use.

For any positive integer n, we use [n] to denote the set {1, . . . , n}.

We represent permutations using sequences. A permutation π : [|S|]→ S is represented

using the following sequence:

σ = 〈π(1), · · · , π(|S|)〉

Since there is a one to one correspondence between permutations and their sequence

representations, we use the two interchangeably and we talk about sequence operations

being applied to permutations. For example:

• Reversal. Let π be a permutation and let σ be its sequence representation. The

reversal of π, denoted as πR, is the permutation represented by σR.

• Concatenation. Let π1 and π2 be permutations over disjoint sets, S1 and S2, and let

σ1 and σ2 be their respective sequence representations. The concatenation of π1 and

π2, denoted as π1, π2, is the permutation represented by σ1, σ2 (the concatenation

11

Chapter 2. The Non-Adaptive Model 12

of σ1 and σ2).

The following notation makes it convenient to discuss the ordering of elements in a

permutation (or its sequence representation).

Definition 2.1. Let π be a permutation over a set S. For any two elements x, y ∈ S, we

use the notation x <π y to mean x appears to the left of y in the sequence representation

of π.

Similarly, we use the notation x ≤π y to say that either x = y or x <π y.

2.2 Model of Computation

We consider an asynchronous shared-memory model of computation:

• We have p processes, denoted P1, . . . , Pp.

• The processes communicate using read and write operations on the shared-memory

array, X[1, . . . , n].

• An execution in this model is a sequence of read and write operations performed

by the processes. In our analysis, we assume that the execution is determined by

an adversary.

• Any number of processes may crash at any point of the execution, as long as at

least one process survives.

2.3 Non-Adaptive Algorithms

In general, a non-adaptive algorithm is an algorithm that performs that same computa-

tion regardless of what happens in an execution. In our context, a non-adaptive algorithm

is an algorithm where each process traverses the array X in a (fixed) pre-specified order,

and writes 1 to every 0-valued cell it encounters.

Our non-adaptive algorithms are non-uniform. That is, we define different algorithms

for different values of n (where n is the length of the array X). For a non-adaptive al-

gorithm A, we use the notation |A| to denote the length of the array X. We represent a

Chapter 2. The Non-Adaptive Model 13

p-process non-adaptive algorithm, A, as a sequence of p permutations, 〈π1, . . . , πp〉, over

[|A|]. The permutation πk specifies the order in which Pk traverses the array. The fol-

lowing pseudo code, for Pk, should make our definition of a non-adaptive algorithm clear:

FOR i = πk(1), . . . , πk(n):

IF X[i] == 0 THEN X[i] = 1

Since each process examines all cells, we know that, as long as at least one process sur-

vives, a non-adaptive algorithm solves the Write-All problem.

Example 1: Consider the following execution of an algorithm with n = 1 and p = 2:

P1 reads 0 from X[1]

P2 reads 0 from X[1]

P1 writes 1 to X[1]

P2 writes 1 to X[1]

In this example, P2 writes to X[1] after it has already been set to 1, performing redun-

dant work. This is the simplest example of how our algorithm may perform redundant

work. In general, a number of processes may write to the same cell if they all read it

before it is set to 1. Our goal is to find algorithms that minimize the total number of

write operations performed.

Given π1, . . . , πp, we let an adversary choose an execution of the algorithm. An execution

is an interleaving of the read/write operations that satisfies the following two conditions:

(1) For all 1 ≤ k ≤ p: Pk reads the cells in the order πk. (2) A process writes to a cell if

and only if it read 0 from that cell in its preceding operation.

Definition 2.2. For a given execution E, we define its associated permutation, denoted

αE, to be the permutation over [n] that describes the order in which the array cells get

set (i.e., change their value from 0 to 1).

In other words, during the execution E, X[αE(1)] is the first cell to get set, X[αE(2)] is

the second, . . . , and X[αE(n)] is the last cell to get set. The next lemma follows directly

Chapter 2. The Non-Adaptive Model 14

from the definition of αE.

Lemma 2.1. If Pk writes to X[x] during execution E, then

y <πk x ⇒ y <αE x.

Proof. If Pk writes to X[x], then Pk must have read X[x] when its value was 0. If y <πk x,

then Pk examined X[y] before reading X[x]. Therefore, when Pk reads X[x] the cell X[y]

is already set, and, by definition, we have y <αE x.

Each execution has exactly one associated permutation, but multiple executions can have

the same associated permutation. To see that, consider the following two executions, with

n = 1 and p = 2:

Execution E1 Execution E2

P1 reads 0 from X[1] P1 reads 0 from X[1]

P2 reads 0 from X[1] P1 writes 1 to X[1]

P1 writes 1 to X[1] P2 reads 1 from X[1]

P2 writes 1 to X[1]

E1 and E2 are two different executions with the same associated permutation (αE1 =

αE2 = 〈1〉). Notice that E1 results in two writes and E2 results in one.

Definition 2.3. We define the associated permutation set of a non-adaptive algorithm

A = 〈π1, . . . , πp〉, denoted PSA, as:

PSA = {αE | E is an execution of A}

Our next step is to associate a unique execution with each associated permutation.

Given an algorithm A and an arbitrary permutation α ∈ PSA we would like to find an

execution of A, whose associated permutation is α, that maximizes the total number of

writes. We construct such an execution greedily as follows:

Chapter 2. The Non-Adaptive Model 15

Each process, Pk, reads a 0 from the cell X[πk(1)].

FOR i = 1, . . . , n:

For each Pk, if the last cell read by Pk is X[α(i)], then

Pk writes 1 to X[α(i)] and continues reading the cells of X

until it reads a 0.

We denote this execution as E(A,α). The next lemma is used to show that E(A,α) maxi-

mizes the number of write operations among all executions whose associated permutation

is α.

Lemma 2.2. Consider any non-adaptive algorithm A and any α ∈ PSA. Suppose that

y <πk x ⇒ y <α x, for all y ∈ [n].

Then Pk writes to X[x] in execution E(A,α).

Proof. By construction, write operations to X[α(i)] in E(A,α) must occur during the

i’th iteration, for all i ∈ [n].

Let Pk be an arbitrary process, and let i ∈ [n] be arbitrary. Suppose that, for all y ∈ [n],

y <πk α(i) ⇒ y <α α(i). Consider the beginning of iteration i of E(A,α), and let x be

the index of the last cell read by Pk. Pk read a 0 from X[x], otherwise it would have kept

on reading. By the definition of a non-adaptive algorithm, we know that after Pk reads

a 0 from X[x], Pk writes 1 to X[x].

If x <πk α(i), then, by our assumption, x <α α(i). In other words, x = α(j), for some

j < i. Since all write operations to X[α(j)] occur during iteration j, we get that, during

iteration j, Pk writes 1 to X[x] and then continues reading the array. This implies that,

at the beginning of iteration i, X[x] is not the last cell read by Pk, which is a contradiction.

If α(i) <πk x, then , by definition of a non-adaptive algorithm, before Pk reads x, Pk

reads X[α(i)] and if it is 0, writes 1 there. This means that, at the beginning of iteration

i, the cell α(i) has already been set. This is a contradiction, since write operations to

X[α(i)] can only occur during iteration i.

Chapter 2. The Non-Adaptive Model 16

We conclude that x = α(i), which implies that Pk writes to α(i) during iteration i.

Corollary 1. E(A,α) maximizes the total number of writes out of all executions of A

whose associated permutation is α.

Proof. Let E ′ be an arbitrary execution of A with αE′ = α. By lemma 2.1, if Pk writes to

x during E ′, then every y <πk x satisfies y <α x. Therefore, by lemma 2.2, Pk writes to

x during E(A,α). This implies that E(A,α) results in at least as many writes as E ′.

Given a non-adaptive algorithm A and an associated permutation α, we let W (A,α)

denote the total number of writes performed during the execution E(A,α).

Definition 2.4. We define the work of a non-adaptive algorithm A, denoted W (A), to

be max
α∈PSA

{W (A,α)}.

A is an optimal non-adaptive algorithm, if W (A) ≤ W (A′), for every non-adaptive

algorithm A′ with |A| = |A′|.

2.4 Properties of Non-Adaptive Algorithms

In chapter 3, we prove upper and lower bounds on the work of a number of non-adaptive

algorithms. The next two lemmas will be used in those proofs. Lemma 2.3 tells us that

if two processes examine two cells in a different order, then it is impossible for both

processes to write to both cells. Lemma 2.4 tells us that an adversary can make all

processes write to the last remaining unset cell.

Lemma 2.3. For any non-adaptive algorithm, if both Pi and Pj write to cells x and y

in some execution, then:

x <πi y ⇔ x <πj y

Proof. Suppose Pi and Pj both write to cells x and y in some execution. To obtain a

contradiction, assume, without loss of generality, that x <πi y and y <πj x. Then the

following operations must happen in the following order during the execution:

(1) Pi reads 0 from x and sets it to 1

(2) Pi reads 0 from y (the value must be 0)

(3) Pj writes 1 to y

(4) Pj examines x

When Pj examines cell x, the cell is already set, and Pj will not write to it. This is a

contradiction.

Chapter 2. The Non-Adaptive Model 17

Lemma 2.4. For any non-adaptive algorithm, A, and any α ∈ PSA, all processes write

to α(n) during the execution E(A,α).

Proof. This is a direct consequence of lemma 2.2, since, for every y ∈ [n], if y 6= α[n]

then y <α α(n).

Re-ordering the sequence π1, . . . , πp does not change the amount of work performed by

an algorithm.

Let A be an arbitrary non-adaptive algorithm with |A| = n, and let φ : [n] → [n] be an

arbitrary bijection.

Lemma 2.5. If A′ = 〈πφ(1), . . . , πφ(p)〉, then W (A) = W (A′).

Proof. For every execution of A there is an equivalent execution of A′. When Pk performs

an operation in an execution of A, Pφ(k) performs the same operation in the equivalent

execution of A′.

Similarly, applying the same permutation to each of the permutations π1, . . . , πp does not

change the work performed by an algorithm.

Lemma 2.6. If φ(A) = 〈φ(π1), . . . , φ(πp)〉, then W (A) = W (φ(A))

Proof. For every execution of A there is an equivalent execution of φ(A). When a process

reads/writes from/to cell x in an execution of A, the same process performs the same

operation on cell φ(x) in the equivalent execution of φ(A).

Lemma 2.6 allows us to consider an arbitrary non-adaptive algorithm and assume, with-

out loss of generality, that π1 is the identity permutation. We will use it, and lemma 2.5,

in our lower bound proofs in chapter 3.

For any (non-empty) set S ⊆ [n], we can talk about A|S, the partial algorithm of A

restricted to S. A|S is represented as 〈π′1, . . . , π′p〉, where each π′k is a permutation over

S satisfying x <π′k
y iff x <πk y.

Chapter 2. The Non-Adaptive Model 18

Given a partial algorithm A|S and a bijection φ′ : S → R ⊆ [n], we represent the partial

algorithm φ′(A|S) as 〈φ′(π′1), . . . , φ′(π′p)〉, where each π′k is a permutation over S satisfy-

ing x <π′k
y iff x <πk y.

For any subset S ⊆ [n] and any bijection φ : S → [|S|], we can transform a partial

algorithm A|S into an algorithm φ(A|S). We define the work of a partial algorithm, A|S,

denoted W (A|S), to be W (φ(A|S)), where φ is some bijection from S to [|S|]. For every

execution, E, of φ(A|S), there is an execution, E ′, of A that results in at least as much

work. Given E, it is easy to construct an execution E ′ such that, if a process reads/writes

from/to cell x in E, the same process performs the same operation on cell φ−1(x) in E ′

(where φ−1 denotes the inverse of φ). The work performed during E ′ may exceed the

work performed during E, because cells in [n]− S need to be set as well. Therefore, by

definition, W (A|S) ≤ W (A).

In the chapter 3 we present some of our analyses in terms of redundant writes. The

number of redundant writes performed by an algorithm is the total number of writes

performed minus n. An alternative way of computing the number of redundant writes is

n∑
x=1

(# of processes writing to cell x− 1).

We can also compute an upper bound on the number of redundant writes as follows:

∑
i,j∈[n],i 6=j

of cells written to by both Pi and Pj

We will use these counting methods in chapter 3, when proving upper bounds on the

work of non-adaptive algorithms.

For every execution, E, of a partial algorithm A|S, there is an equivalent execution, E ′,

of A, that results in at least as many redundant writes. The next lemma formalizes this

idea.

Lemma 2.7. For any non-adaptive algorithm, A, and any partial algorithm A|S:

W (A|S)− |S| ≤ W (A)− |A|

Chapter 2. The Non-Adaptive Model 19

Proof. Given an execution, E, of A|S, we construct an execution, E ′, of A that performs

at least as many redundant writes. For every x ∈ S, if Pk writes to x during E, we

make Pk write to x in E ′. For every x /∈ S, we make the processes examine x as soon

as possible after all y ∈ S such that y <πk x have been examined. Since the number of

redundant writes performed during E ′ equals
n∑
x=1

(# of processes writing to cell x− 1),

it is clear that E ′ results in at least as many redundant writes as E.

Example: Let A be the following 2-process algorithm:

π1: 〈2, 3, 4, 5, 1〉

π2: 〈5, 3, 2, 1, 4〉

Let S = {2, 4}, the partial algorithm A|S is:

π1: 〈2, 4〉
π2: 〈2, 4〉

Let E be the the following execution of A|S, that results in 2 redundant writes:

P1 and P2 read 0 from X[2] (in some order)

P1 and P2 write 1 to X[2] (in some order)

P1 and P2 read 0 from X[4] (in some order)

P1 and P2 write 1 to X[4] (in some order)

We will construct an execution of A that results in the same number of redundant writes

as E.

We start by examining cells not in S (as many cells as we can):

P2 reads 0 from X[5] and writes 1 to it

P2 reads 0 from X[3] and writes 1 to it

We continue as in E:

P1 and P2 read 0 from X[2] (in some order)

P1 and P2 write 1 to X[2] (in some order)

We continue by examining cells not in S:

P1 reads 1 from X[3]

P2 reads 0 from X[1] and writes 1 to it

Chapter 2. The Non-Adaptive Model 20

We continue as in E, and then examine remaining cells that are not in S:

P1 and P2 read 0 from X[4] (in some order)

P1 and P2 write 1 to X[4] (in some order)

P1 reads 1 from X[5]

P1 reads 1 from X[1]

Chapter 3

Algorithms and Lower Bounds

In this chapter, we present and formally analyze non-adaptive algorithms for systems

with 2, 3 or 4 processes. We also present a number of lower bounds on the work of

non-adaptive algorithms.

3.1 2-Process Optimal Algorithm

We start by presenting the trivial 2-process algorithm (described in [2]) in our model.

For any positive integer n, let A2(n) be the following algorithm:

π1: 〈1, . . . , n〉

π2: 〈n, . . . , 1〉

Lemma 3.1. W (A2(n)) ≤ n+ 1

Proof. Let E be an arbitrary execution of A2. Let x, y ∈ [n] be two distinct values, and

assume that, during E, both P1 and P2 write to both cells, x and y. By Lemma 2.3,

x <π1 y ⇔ x <π2 y, which is a contradiction. Therefore, at most one cell gets written to

by both P1 and P2, and the total number of writes is at most n+ 1.

Lemma 3.2. W (A) ≥ n+ 1, for any 2-process non-adaptive algorithm, A, with |A| = n.

Proof. Let A be an arbitrary 2-process non-adaptive algorithm, and let E be an arbitrary

execution of A. Each of the n cells gets written to by at least one process, and, by Lemma

2.4, both processes write to αE(n) (the last cell to get set). Therefore, E results in at

least n+ 1 writes.

21

Chapter 3. Algorithms and Lower Bounds 22

Corollary 2. Algorithm A2(n) is a work-optimal 2-process non-adaptive algorithm.

Proof. This is a direct consequence of the two previous lemmas.

3.2 3-Process Algorithms and Lower Bounds

In this section, we construct non-adaptive algorithms and present lower bounds for sys-

tems with 3 processes. We develop our algorithms incrementally, and analyze their

performance by bounding the number of redundant writes.

The first idea that comes to mind is to represent the 3-process algorithm presented by

Buss et al. [2] in our non-adaptive model. In that algorithm, two processes start from

opposite ends of the array, and a third process starts in the middle and alternately goes

left and right. This approach leads us to consider the following algorithm:

π1: 〈1, . . . , n〉

π2: 〈n, . . . , 1〉

π3: 〈bn2 c+ 1, bn
2
c, bn

2
c+ 2, bn

2
c − 1, . . .〉

The problem is that the original algorithm is adaptive - when processes “collide” they

compute the block of possibly unset cells, “jump” to that block, and work on it recursively.

It turns out that, in our non-adaptive model, the algorithm above does not perform so

well. To see why that is the case, consider the following example for n = 8:

π1: 〈1, 2, 3, 4, 5, 6, 7, 8〉

π2: 〈8, 7, 6, 5, 4, 3, 2, 1〉

π3: 〈5, 4, 6, 3, 7, 2, 8, 1〉

The execution Eα, where α = 〈1, . . . , 8〉, looks as follows:

P1 reads 0 from X[1].

P2 reads 0 from X[8].

P3 reads 0 from X[5].

P1 writes to X[1].

P1 reads 0 and writes to the cells X[2] ,X[3] and X[4].

P1 reads 0 from X[5].

Chapter 3. Algorithms and Lower Bounds 23

P1 and P3 write to X[5].

P3 reads 1 from X[4]

P1 and P3 read 0 from X[6].

P1 and P3 write to X[6].

P3 reads 1 from X[3]

P1 and P3 read 0 from X[7].

P1 and P3 write to X[7].

P3 reads 1 from X[2]

P1 and P3 read 0 from X[8].

P1, P2 and P3 write to X[8].

P2 reads 1 from X[7], X[6], . . . , X[1].

P3 reads 1 from X[8].

Notice that, in the execution above, the processes perform redundant writes to X[5],

X[6], X[7] and X[8]. In general, when applying this approach to get an algorithm of size

n, an adversary can cause n/2 redundant writes. Later in this chapter, we will present

a 3-process non-adaptive algorithm that performs O(3
√
n) redundant. We will also show

that any 3-process non-adaptive algorithm performs Ω(3
√
n) redundant writes.

3.2.1 Algorithm A3(n)

We start by defining an algorithm for values of n such that n = 1 + · · · + k, for some

positive integer k. We partition the set [n] into k sub-sequences B1, . . . , Bk, with |Bi| = i,

for all i. We refer to these sub-sequences as blocks, and define the algorithm A3(n) using

these blocks:

π1: 〈B1, . . . , Bk〉

π2: 〈BR
k , . . . , B

R
1 〉

π3: 〈Bk, . . . , B1〉

We can partition [n] into B1, . . . , Bk in many different ways. Lemma 2.6 tells us that

the chosen partition does not affect the work of the resulting algorithm. We make the

convention, in all of our algorithms, to use the partition that makes π1 = 〈1, . . . , n〉. Here

is an example of A3(10):

Chapter 3. Algorithms and Lower Bounds 24

π1: 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

π2: 〈10, 9, 8, 7, 6, 5, 4, 3, 2, 1〉

π3: 〈7, 8, 9, 10, 4, 5, 6, 2, 3, 1〉

Lemma 3.3. For any positive integer k, if n = 1 + · · ·+ k, then W (A3(n)) ≤ n+ k+ 1.

Proof. Let α be an arbitrary permutation in PSA3(n). In order to show that W (A3(n)) ≤
n + k + 1, it suffices to show that the execution Eα results in at most k + 1 redundant

writes. To see why that is true, we make the following observations about E(A3(n), α):

1. At most one cell gets written to by both P1 and P2.

Notice that π1 = πR2 . Therefore, for any distinct x, y ∈ [n], x <π1 y ⇔ y <π2 x.

Then, by Lemma 2.3, we cannot have both P1 and P2 writing to both cells x and

y.

2. Cells that are written to by both P1 and P3 belong to the same block.

For any x, y ∈ [n] from two different blocks, x <π1 y ⇔ y <π3 x. Therefore, by

Lemma 2.3, we cannot have both P1 and P3 writing to both cells x and y.

3. At most one value in each block gets written to by both P2 and P3.

For any distinct x, y ∈ [n] from the same block, x <π2 y ⇔ y <π3 x. Therefore, by

Lemma 2.3, we cannot have both P2 and P3 writing to both cells x and y.

By observation 1, P1 and P2 cause at most one redundant write. Lemma 2.4 implies that

P1 and P2 make their redundant write to the cell α(n), which gets written to by all three

processes.

Let Bt be the block containing α(n). By Lemma 2.4, both P1 and P3 write to α(n).

Therefore, by observation 2, P1 and P3 cause at most t− 1 additional redundant writes.

For all j < t, P3 cannot write to Bj, because P1 completes examining Bj before P3 starts

examining it. Therefore, P2 and P3 cannot cause redundant writes in blocks B1, . . . , Bt−1.

By observation 3, P2 and P3 cause at most 1 redundant write in each block Bj, for j ≥ t.

Chapter 3. Algorithms and Lower Bounds 25

Therefore, the total number of redundant writes is at most 1+(t−1)+(k−t+1) = k+1.

So far, A3(n) is only defined for values of n such that n = 1 + · · · + k, for some k. To

define A3(n) for all values of n, let k be the maximum integer such that 1 + · · ·+ k ≤ n,

and write n as (1 + · · · + k) + r, where 0 ≤ r ≤ k. Once again, we partition [n] into k

blocks, only this time we satisfy:

|Bi| =

i+ 1 , 1 ≤ i ≤ r

i , r < i ≤ k

We define π1, π2 and π3 using the blocks B1, . . . , Bk exactly as we did before. For example,

if n = 12, we have k = 4 and r = 2. We can use the following partition:

B1 = 〈1, 2〉 , B2 = 〈3, 4, 5〉 , B3 = 〈6, 7, 8〉 , B4 = 〈9, 10, 11, 12〉

From this partition we get the following algorithm:

π1: 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉

π2: 〈12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1〉

π3: 〈9, 10, 11, 12, 6, 7, 8, 3, 4, 5, 1, 2〉

The next lemma extends Lemma 3.3, and shows an upper bound on the work of A3(n),

for all values of n.

Lemma 3.4. For any positive integer n, if k is the largest integer such that 1+· · ·+k ≤ n

then:

W (A3(n)) =

n+ k + 1 , if n = 1 + · · ·+ k

n+ k + 2 , otherwise

Proof. If n = 1 + · · · + k, Lemma 3.3 gives us the desired work bound. Otherwise,

1 + · · ·+ k < n, and there is (at least one) block satisfying |Bi| = i+ 1. The observations

made in the proof of Lemma 3.3 hold in this case as well. Observation 2 implies that P1

and P3 might cause one more redundant write. The rest of the proof remains the same,

and we get that the total number of redundant writes is at most (k − t+ 1) + (t+ 1) =

k + 2.

The next lemma shows us that A3(n) is the best algorithm possible when π1 = πR2 .

Chapter 3. Algorithms and Lower Bounds 26

3.2.2 n+ Ω(
√
n) work bound, special case π1 = πR

2

Lemma 3.5. Let A be an arbitrary 3-process non-adaptive algorithm with |A| = n, and

let k be the largest integer such that 1 + · · ·+ k ≤ n. If two of A’s permutations are the

reversal of one another, then:

W (A) ≥

n+ k + 1 , if 1 + · · ·+ k = n

n+ k + 2 , otherwise

Proof. We start by assuming that π1 = 〈1, . . . , n〉 and π2 = 〈n, . . . , 1〉. Lemmas 2.5 and

2.6 tell us that we can make this assumption without loss of generality. The rest of the

proof is based on the proof of the Erdös-Szekeres theorem [3].

Intuition: For any x ∈ [n], let S be a monotonically increasing sub-sequence of π3 ending

at x and let S ′ be a monotonically decreasing sub-sequence of π3 ending at x. Since

π1 = 〈1, . . . , n〉 and π2 = 〈n, . . . , 1〉, there is an execution of A where both P1 and P3

write to all elements of S and both P2 and P3 write to all elements of S ′. This execution

results in (at least) |S| + |S ′| redundant writes. Notice that all three processes write to

cell x.

For each x ∈ [n], we define the following quantities:

• a(x) - The length of a longest monotonically increasing sub-sequence of π3 ending

at x (including x itself).

• b(x) - The length of a longest monotonically decreasing sub-sequence of π3 ending

at x (including x itself).

• c(x) ≡ a(x) + b(x)

Formalizing our intuition, we observe that, for each x ∈ [n], there exists α ∈ PSA such

that α(n) = x, and in E(A,α), P1 and P3 cause at least a(x) redundant writes, and P2

and P3 cause at least b(x) redundant writes, for a total of at least c(x) redundant writes.

Next, we will prove a lower bound on max{c(x) | x ∈ [n]}.

Observation: For all x, y ∈ [n], if a(x) = a(y) and b(x) = b(y), then x = y.

We prove the contrapositive. Let x and y be two distinct number in [n], and assume,

Chapter 3. Algorithms and Lower Bounds 27

without loss of generality, that x <π3 y. If x < y, then a(x) < a(y). This is because we

can append y to any increasing sub-sequence of π3 ending at x and get a longer increasing

sub-sequence of π3. Otherwise, x > y, in which case b(x) < b(y). This is because we can

append y to any decreasing sub-sequence of π3 ending at x and get a longer decreasing

sub-sequence.

Let Ci = {x ∈ [n] : c(x) = i}, and let M be the largest integer such that CM 6= ∅. Since

a(x), b(x) ≥ 1, it follows that c(x) ≥ 2 for all x ∈ [n]. Thus n = |C2|+ · · ·+ |CM |. Next,

we will bound the size of each Ci.

Let x, y ∈ Ci be arbitrary. By definition, c(x) = c(y) = i. If a(x) = a(y) then

b(x) = c(x) − a(x) = c(y) − a(y) = b(y), which implies that x = y. Since b(x) ≥ 1,

it follows that a(x) = c(x)−b(x) ≤ c(x)−1 = i−1 for all x ∈ Ci. Therefore, |Ci| ≤ i−1,

for all i ≥ 2.

Since n = |C2|+ · · ·+ |CM |, we get a relation between M and k:

1 + · · ·+ k ≤ n = |C2|+ · · ·+ |CM | ≤ 1 + · · ·+ (M − 1)

This relation implies that:

M ≥

k + 1 , if 1 + · · ·+ k = n

k + 2 , otherwise

By definition, there exists x ∈ [n] such that c(x) = M . Therefore, there is an execution of

A that results in at least M redundant writes. The inequality above gives us the desired

lower bound on the work of A.

Lemmas 3.4 and 3.5 imply that A3(n) is optimal if one permutation is the reversal of the

other, causing approximately
√

2n redundant writes. The question is whether A3(n) is

always optimal. To answer this question, consider the following algorithm:

Chapter 3. Algorithms and Lower Bounds 28

π1: 〈1, 4, 2, 3〉

π2: 〈2, 4, 3, 1〉

π3: 〈3, 4, 1, 2〉

It is not hard to verify that the algorithm above results in at most 3 redundant writes,

while A3(4) results in 4 redundant writes. This implies that A3(n) is not always optimal.

We will improve A3(n) to get a construction that results in Θ(3
√
n) redundant writes. We

will also prove that every 3-process non-adaptive algorithm performs Ω(3
√
n) redundant

writes.

3.2.3 Algorithms A′3(n) and A′′3(n)

To improve A3, we partition [n] into 2 sets of k blocks, B1, . . . , Bk and C1, . . . , Ck. We

restrict the block sizes to be |Bi| = i+ 1 and |Ci| = i, for all i, and define the algorithm

A′3(n) as follows:

π1: 〈B1, C1, . . . , Bk, Ck〉

π2: 〈BR
k , C

R
k , . . . , B

R
1 , C

R
1 〉

π3: 〈Ck, Bk, . . . , C1, B1〉

Lemma 3.6. For any positive integer k, if n = k2 + 2k, then W (A′3(n)) = n+ k + 2.

Proof. Similarly to the proof of Lemma 3.3, we let α ∈ PSA′3(n) be arbitrary, and consider

the execution E(A′3(n), α). We make the following observations:

1. At most two cells get written to by both P1 and P2: at most one from Bi and at

most one from Ci, for some i.

2. Cells that are written to by both P1 and P3 belong to the same block.

3. For each i, at most one cell from Bi ∪ Ci gets written to by both P2 and P3.

Chapter 3. Algorithms and Lower Bounds 29

Let t be the block-index where P1 and P3 cause redundant writes. Let t′ be the block-

index where P1 and P2 cause redundant writes.

P3 cannot write to any block whose index is less than t, because such a block is examined

by P1 before P3 starts examining it. Therefore, by observation 3, P2 and P3 can cause at

most k − t+ 1 redundant writes.

Next, we show that t = t′. P1 cannot write to any block whose index is greater than t,

because such a block is examined by P3 before P1 starts examining it. Since P1 writes

to a block whose index is t′, we conclude that t′ ≤ t. P1 cannot write to any block

whose index is greater than t′, because such a block is examined by P2 before P1 starts

examining it. Since P1 writes to a block whose index is t, we conclude that t ≤ t′.

Case 1: P1 and P3 cause a redundant write in Bt. By observation 2, P1 and P3 cause

at most |Bt| = t + 1 redundant writes. Also, P1 cannot write to Ct, because this block

is examined by P3 before P1 starts examining it. Since t = t′, P1 and P2 cannot cause

a redundant write in Ct′ . By observation 1, we get that P1 and P2 cause at most 1

redundant write.

Case 2: P1 and P3 cause a redundant write in Ct. By observation 2, P1 and P3 cause at

most |Ct| = t redundant writes. By observation 1, P1 and P2 cause at most 2 redundant

writes.

In both cases the total number of redundant writes performed by A′3(n) is at most k+ 2.

Recall that, α(n) is written to by all three process, but only two of these writes are

redundant.

By modifying A3(n) to A′3(n), we slightly more than doubled the value of n at the cost

of a single redundant write. To improve the algorithm even further, instead of using two

sets, we will use l > 2 sets of k blocks. This way, we will increase n by a factor of l at a

cost of l additional redundant writes.

We let Bj
i denote the i’th block of the j’th block-set. i is the block-index and j is the

Chapter 3. Algorithms and Lower Bounds 30

block-set. We choose a partition such that |Bj
i | = i + (j − 1), for all 1 ≤ i ≤ k and

1 ≤ j ≤ l, and define A′′3(n) as follows:

π1: 〈Bl
1, . . . , B

1
1 , . . . , Bl

k, . . . , B
1
k〉

π2: 〈(Bl
k)
R, . . . , (B1

k)
R , . . . , (Bl

1)
R, . . . , (B1

1)R〉

π3: 〈B1
k, . . . , B

l
k , . . . , B1

1 , . . . , B
l
1〉

The construction above looks slightly complicated because of the multiple indices, but it

is a natural extension of A′3(n) (where we used letters Bi for B2
i and Ci for B1

i instead

of introducing the additional index for the block-set). We can express n as function of k

and l as follows:

n =
k∑
i=1

l∑
j=1

|Bj
i |

=
k∑
i=1

l∑
j=1

(i+ j − 1)

= l
k∑
i=1

i+ k
l∑

j=1

j − kl

=
l(k2 + k)

2
+
k(l2 + l)

2
− kl

=
lk2 + kl2

2

Next, we adapt the proof of Lemma 3.6, to get an upper bound on the work of A′′3(n).

Lemma 3.7. For any positive integers k and l, if n = lk2+kl2

2
, then W (A′′3(n)) = n+k+l.

Proof. As in the previous proofs, we let α ∈ PSA′′3 (n) be an arbitrary permutation, and

consider the execution E(A′′3(n), α). We modify the observations from the previous proof:

1. At most one cell from each block-set gets written to by both P1 and P2. All cells

written to by both P1 and P2 belong to blocks with the same block-index.

2. Cells that are written to by both P1 and P3 belong to the same block.

3. For each i, at most one cell from blocks whose index is i gets written to by both

P2 and P3.

Chapter 3. Algorithms and Lower Bounds 31

Let Bs
t be the block where P1 and P3 cause a redundant write. Let t′ be the block-index

where P1 and P2 cause a redundant write.

As in the proof of Lemma 3.6, we get that P2 and P3 cause at most k − t+ 1 redundant

writes, and that t = t′.

By observation 3, P1 and P3 cause at most |Bs
t | = t+ (s− 1) redundant writes.

For each j < s, P1 cannot write to Bj
t , because this block is examined by P3 before

P1 starts examining it. Therefore, P1 and P2 cannot cause a redundant write to blocks

whose block-set is smaller than s. By observation 1, we get that P1 and P2 cause at most

l − (s− 1) redundant writes.

Therefore, the total number of redundant writes performed by A′′3(n) is at most k+l. Once

again, one of the writes to α(n) does not count as redundant. Therefore, W (A′′3(n)) ≤
n+ k + l.

Following our argument, it is easy to see how an adversary can force k + l redundant

writes. For example, let B = Bl
1. An adversary can make both P1 and P3 write to all

the cells of B, causing l redundant writes. The adversary can also make both P2 and P3

write the right-most cell of Bl
i, for all 1 ≤ i ≤ k, causing additional k redundant writes.

Therefore, we conclude that W (A′′3(n)) ≥ n+ k + l.

Our next goal is to find a good value for l. We observe that, by choosing l ∈ Θ(k), we can

increase n to be Θ(k3). Lemma 3.7 tells us that, for such a choice of l, A′′3(n) performs

at most k + l ∈ Θ(k) = Θ(3
√
n) redundant writes. We can also see that, if we choose

l ∈ ω(k), then the maximum number of redundant writes performed by A′′3 is ω(3
√
n).

We write l = ck, where c > 0 is some constant, and we would like to find the best value

for c. To do that, we write n as a function of k and c:

n =
lk2 + kl2

2
==

c+ c2

2
k3

Chapter 3. Algorithms and Lower Bounds 32

We rearrange the equality in order to express k as a function of n and c:

k = 3

√
2

c2 + c
n =

3
√

2nc−1/3(c+ 1)−1/3

We can now express the maximum number of redundant writes performed by A′′3(n) as

function of n and c:

k + l = k + kc = k(1 + c) =
3
√

2nc−1/3(c+ 1)2/3

Finally, to find the best value for l we consider the function

f(c) =
3
√

2nc−1/3(c+ 1)2/3.

We compute the derivative

f ′(c) =
3
√

2n(
−1

3
c−4/3(c+ 1)2/3 +

2

3
c−1/3(c+ 1)−1/3).

We solve f ′(c) = 0 and get that f(c) has a local minimum at c = 1.

Corollary 3. For any positive integer k, if n = k3, then W (A′′3(n)) = n+ 2k.

Proof. This is a direct consequence of Lemma 3.7 with l = k.

So far we have defined A′′3(n) for values of n such that n = k3, for some k. For other

values of n we construct A′′3(n) as follows:

• Let n′ > n be the the smallest integer such that n′ = k3, for some k.

• Define A′′3(n) to be A′′3(n′)|[n], that is, A′′3(n′) restricted to the values {1, . . . , n}.

By Lemma 3.7, A′′3(n′) performs at most 2k redundant writes. Therefore, by Lemma 2.7,

A′′3(n) performs at most 2k redundant writes. Since n > (k−1)3, we get that k ∈ O(3
√
n).

This tells us that W (A′′3(n)) = n+O(3
√
n).

Corollary 4. For any positive integer n, W (A′′3(n)) = n+O(3
√
n).

Chapter 3. Algorithms and Lower Bounds 33

3.2.4 n+ Ω(3
√
n) work bound

We will show that every 3-process non-adaptive algorithm performs Ω(3
√
n) redundant

work, implying that A′′3(n) is asymptotically optimal. We will use the Erdös-Szekeres

Theorem [3]:

Theorem 3.1. For any positive integers r and s, a sequence of length n > (r − 1)(s −
1) contains either a monotonically increasing sequence of length r, or a monotonically

decreasing sequence of length s.

We are now ready to prove our lower bound.

Lemma 3.8. For any 3-process non-adaptive algorithm A, with |A| = n:

W (A) = n+ Ω(3
√
n).

Proof. Let A = 〈π1, π2, π3〉 be an arbitrary non-adaptive algorithm with |A| = n, and as-

sume, without loss of generality, that π1 = 〈1, . . . , n〉. Let d2 and d3 be the lengths

of a longest monotonically decreasing sub-sequence of π2 and π3, respectively. Let

d = max{d2, d3}, and assume, without loss of generality, that d = d2.

Case 1: d ≥ b2−1/3n2/3c. Let S ⊆ [n] be a set of size d whose elements form a monotoni-

cally decreasing sub-sequence of π2. The partial algorithm A|S has π1 = πR2 , and Lemma

3.5 gives us a lower bound on the work of A|S. The maximum number of redundant

writes performed by A is greater or equal to the maximum number of redundant writes

performed by A|S. Therefore, we get that A performs Ω(
√
d) ⊆ Ω(3

√
n) redundant writes,

and W (A) = n+ Ω(3
√
n).

Case 2: d < b2−1/3n2/3c. We apply Theorem 3.1 with s = d+ 1, and r = b 3
√

2nc. Notice

that:

(r − 1)(s− 1) < r · d < 3
√

2n · 2−1/3n2/3 = n.

By definition of d, π2 does not contain a decreasing sequence of length s = d + 1.

Therefore, π2 must contain an increasing sequence of length r. An adversary can causes

both P1 and P2 to write to each of these r cells. Since r ∈ Ω(3
√
n), we get that W (A) =

n+ Ω(3
√
n).

Chapter 3. Algorithms and Lower Bounds 34

3.3 4-Process Algorithms

In this section, we extend the 3-process algorithms from the previous section, and con-

struct 4-process algorithms. As in the previous section, we divide the set [n] into blocks,

and concatenate the blocks in various ways to define our algorithms. The techniques

used in this section are very similar to the ones used in the previous section.

We start by defining algorithm A4(n), which is a natural extension of A3(n). We partition

[n] into k blocks, B1, . . . , Bk, such that |Bi| = i, for all i. We define A4(n) as follows:

π1: 〈B1, . . . , Bk〉

π2: 〈BR
k , . . . , B

R
1 〉

π3: 〈Bk, . . . , B1〉

π4: 〈BR
1 , . . . , B

R
k 〉

Lemma 3.9. For any positive integer k, if n = 1+ · · ·+k, then W (A4(n)) = n+O(
√
n).

Proof. π1, π2 and π3 are the same as in A3(n), and Lemma 3.3 tells us that P1,P2 and

P3 cause at most k + 1 redundant writes. In order to get an upper bound on the work

of A4(n), we need to bound the number of redundant writes involving P4. The following

observations, similar to the ones made in the proof of Lemma 3.3, tell us that, in any

execution of A4(n), P4 can be involved in at most O(
√
n) additional redundant writes:

1. At most one cell gets written to by both P4 and P3.

2. Cells that are written to by both P4 and P2 belong to the same block.

3. At most one cell from each block gets written to by both P4 and P1.

We modify A′3(n) to get a 4-process algorithm in a similar way. We partition [n] into two

sets of blocks, B1, . . . , Bk and C1, . . . , Ck, such that |Bi| = |Ci| = i, for all i.

Chapter 3. Algorithms and Lower Bounds 35

Notice that the B-blocks were bigger in A′3(n), which improved that algorithm a little:

It increased the value of n by k without causing additional redundant writes. This

improvement does not work for 4 processes. We define A′4(n) as follows:

π1: 〈B1, C1, . . . , Bk, Ck〉

π2: 〈BR
k , C

R
k , . . . , B

R
1 , C

R
1 〉

π3: 〈Ck, Bk, . . . , C1, B1〉

π4: 〈CR
1 , B

R
1 , . . . , C

R
k , B

R
k 〉

Lemma 3.10. For any positive integer k, if n = k2 + k, then W (A′4(n)) ≤ n+ 3k + 4.

Proof. Lemma 3.6 tells us that P1, P2 and P3 cause at most k + 2 redundant writes

(decrementing the size of the B-blocks does not affect this result). To get a bound the

redundant writes involving P4, we make the following observations:

1. At most two cells get written to by both P4 and P3 - At most one from Bi and at

most one from Ci, for some i.

2. Cells that are written to by both P4 and P2 belong to the same block.

3. For each i, at most one cell from blocks whose index is i gets written to by both

P4 and P1.

We consider an arbitrary execution, and let t be the block-index where P4 and P2 cause

a redundant write.

P4 cannot write to any block whose index is greater than t, because such a block is ex-

amined by P2 before P4 starts examining it. Therefore, by observation 3, P4 and P1 can

cause at most t redundant writes.

By observation 1, P3 and P4 cause at most 2 redundant writes. By observation 2, P2 and

P4 cause at most t redundant writes. By summing the counts, we get that P4 is involved

in at most 2t + 2 ≤ 2k + 2 redundant writes. Therefore, the total number of redundant

writes performed by A′4(n) cannot exceed 3k + 4.

Chapter 3. Algorithms and Lower Bounds 36

Naturally, our next step is to modify A′′3(n) to get a 4-process algorithm of size Θ(k3)

that performs O(k) redundant writes, for some k. We partition [n] into l sets of k blocks

each. As in the previous section, Bj
i denotes the i’th block of the j’th set. This time,

our partition satisfies |Bj
i | = i, for all 1 ≤ i ≤ k, 1 ≤ j ≤ l. We define A′′4(n) as follows:

π1: 〈Bl
1, . . . , B

1
1 , . . . , Bl

k, . . . , B
1
k〉

π2: 〈(Bl
k)
R, . . . , (B1

k)
R , . . . , (Bl

1)
R, . . . , (B1

1)R〉

π3: 〈B1
k, . . . , B

l
k , . . . , B1

1 , . . . , B
l
1〉

π4: 〈(B1
1)R, . . . , (Bl

1)
R , . . . , (B1

k)
R, . . . , (Bl

k)
R〉

Lemma 3.11. For any positive integers k and l, if n = l(1 + · · ·+ k), then W (A′′4(n)) =

n+O(3
√
n).

Proof. Lemma 3.7 tells us that P1, P2 and P3 cause at most k+ l redundant writes. The

following observations imply that P4 is involved in at most 2k + l additional redundant

writes:

1. At most one cell from each block set gets written to by both P4 and P3.

2. Cells that are written to by both P4 and P2 belong to the same block.

3. For each i, at most one cell from blocks whose index is i gets written to by both

P4 and P1.

Observation 1 implies that P4 and P3 cause at most l redundant writes. Observation 2

implies that P4 and P2 cause at most k redundant writes. Observation 3 implies that P4

and P1 cause at most k redundant writes. Therefore, P4 is involved in at most 2k + l

redundant writes, and the total number of redundant writes performed by A′′4(n) cannot

exceed 3k + 2l.

Any choice of l ∈ Θ(k) will give us the desired upper bound. Let l = k, and notice that

n = l(1 + · · ·+ k) = k3+k2

2
∈ Θ(k3). Since A′′4(n) cannot perform more than 3k+ 2l = 5k

redundant writes, we get that W (A′′4(n)) ≤ n+ 5k = n+O(3
√
n).

Chapter 3. Algorithms and Lower Bounds 37

By choosing l = k, we have defined A′′4(n) for values of n such that n = k3+k2

2
, for some k.

For other values of n, we start with A′′4(n′), where n′ is the smallest integer greater than

n, such that n′ = k3+k2

2
, for some k. We define A′′4(n) to be A′′4(n′)|[n], that is, A′′4(n′)

restricted to the values {1, . . . , n}. Lemma 3.12 tells us that A′′4(n′) performs O(3
√
n′)

redundant writes. By Lemma 2.7, the restricted algorithm, A′′4(n), performs O(3
√
n′)

redundant writes as well. Since O(3
√
n′) = O(3

√
n), we get that W (A′′4(n)) = n+O(3

√
n).

Corollary 5. For any positive integer n, W (A′′4(n)) = n+O(3
√
n).

3.4 n + Ω(3
√
n) Work Bound

By Lemma 3.8, in any execution of a 4-process algorithm, three of the four processes

cause Ω(3
√
n) redundant writes. In fact, we can apply the same bound to any p-process

non-adaptive algorithm, where p ≥ 3. We state this result formally in the next lemma.

Lemma 3.12. Let A be an arbitrary p-process non-adaptive algorithm with |A| = n. If

p ≥ 3, then:

W (A) = n+ Ω(3
√
n)

Proof. The case p = 3 was proven in Lemma 3.8. If p > 3, an adversary can pause all

processes except for P1, P2 and P3. Lemma 3.8 implies that P1, P2 and P3 cause Ω(3
√
n)

redundant writes. Therefore, by definition, W (A) = n+ Ω(3
√
n).

Chapter 4

Conclusions

In this chapter, we list our contributions and relate them to previous work on the Write-

All problem. We will also discuss a number of open questions directly related to our

work.

4.1 Contributions

Our non-adaptive model relates to past work on the Write-All problem. As mentioned

in section 1.2, Anderson and Woll [1] studied the same model, where processes use a

fixed sequence of permutations to determine the order in which they examine the shared-

memory. The main difference between our work and theirs is the complexity measure,

which makes our algorithms more suitable for applications of Write-All where perform-

ing a task is an expensive operation. In our work, we consider only a small number of

processes, similar to the approach presented in [2]. The main difference between our

work and the work presented in that paper is that our algorithms are non-adaptive. We

believe that our model helps understanding the combinatorial nature of the Write-All

problem, and offers another view of the problem that was not fully explored.

Our constructions, described in detail in chapter 3, are non-trivial. We find it fairly sur-

prising that non-adaptive algorithms on systems with 3 and 4 processes perform O(3
√
n)

redundant work, and that this bound is asymptotically optimal.

The n + Ω(3
√
n) work bound for non-adaptive algorithms with at least 3 processes gives

us a good idea of the limitation of this model.

38

Chapter 4. Conclusions 39

Our work relates to another result from [2]. The authors of that paper considered a

model where processes take a snapshot and process all of the shared-memory at unit

cost. We can view this model as “the most adaptive” model possible, where processes

learn everything there is to know about the state of the shared memory, and adapt

accordingly between write operations. Their model is a little too strong, and ours is a

little too restrictive. A realistic model should take into account that processes can learn a

limited amount of information between write operations, and allow processes to use this

information to adapt. We believe that our constructions may be useful in developing a

solution to Write-All on such models, where processes cannot learn enough information

to “perfectly adapt” to the current state of the shared-memory.

4.2 Future Work

We constructed non-adaptive algorithms for systems with three and four processes. It is

not obvious how to extend our approach to work for systems with 5 or more processes.

Our n+Ω(3
√
n) work bound applies to non-adaptive algorithms with an arbitrary number

of processes (greater than 2). The question is, can we construct p-process non-adaptive

algorithms that perform n + O(3
√
n) work, for p > 4? If not, can we show a stronger

lower bound for systems with more than 4 processes?

Our lower and upper bounds for systems with 3 or 4 processes match asymptotically, but

not exactly. For example, as mentioned in chapter 3, the lower bound is n+ 3
√

2n+O(1),

and the upper bound is n+ 2 3
√
n+O(1). It would be interesting to see either a 3-process

algorithm that improves on A′′3(n), or a proof of a stronger lower bound. We believe

that such an improvement could be extended to improve our results for systems with 4

processes as well.

In general, improving current solutions to the Write-All on asynchronous models is still

considered an open problem. We hope that researchers working on such improvements

will benefit from our work, and use our results as a building block in their solutions.

Bibliography

[1] Richard J. Anderson and Heather Woll. Algorithms for the certified write-all prob-

lem. SIAM J. Comput., 26(5):1277–1283, 1997.

[2] Jonathan F. Buss, Paris C. Kanellakis, Prabhakar L. Radge, and Alex A. Shvarts-

man. Parallel algorithms with processor failures and delays. Technical Report CS-

91-54, 1991.

[3] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio Math.

2, pages 463–470, 1935.

[4] Steven Fortune and James Wyllie. Parallelism in random access machines. In STOC

’78: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing,

pages 114–118, New York, NY, USA, 1978. ACM.

[5] Chryssis Georgiou, Alexander Russell, and Alex A. Shvartsman. The complexity of

synchronous iterative do-all with crashes. Distrib. Comput., 17(1):47–63, 2004.

[6] Chryssis Georgiou and Alex A. Shvartsman. Do-All Computing in Distributed Sys-

tems. Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2007.

[7] Paris C. Kanellakis and Alex A. Shvartsman. Efficient parallel algorithms can be

made robust. Distrib. Comput., 5(4):201–217, 1992.

[8] Z. M. Kedem, K. V. Palem, A. Raghunathan, and P. G. Spirakis. Combining tenta-

tive and definite executions for very fast dependable parallel computing. In STOC

’91: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Com-

puting, pages 381–390, New York, NY, USA, 1991. ACM.

[9] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust parallel computa-

tions. In STOC ’90: Proceedings of the Twenty-Second Annual ACM Symposium on

Theory of Computing, pages 138–148, New York, NY, USA, 1990. ACM.

40

Bibliography 41

[10] D.R. Kowalski and A.A. Shvartsman. Writing-all deterministically and optimally

using a nontrivial number of asynchronous processors. ACM Transactions on Algo-

rithms (TALG), 4(3):33, 2008.

[11] Grzegorz Malewicz. A work-optimal deterministic algorithm for the asynchronous

certified write-all problem. In PODC ’03: Proceedings of the Twenty-Second Annual

Symposium on Principles of Distributed Computing, pages 255–264, New York, NY,

USA, 2003. ACM.

[12] C. Martel, R. Subramonian, and A. Part. Asynchronous prams are (almost) as good

as synchronous prams. In SFCS ’90: Proceedings of the 31st Annual Symposium

on Foundations of Computer Science, pages 590–599 vol.2, Washington, DC, USA,

1990. IEEE Computer Society.

[13] Alex A. Shvartsman. Achieving optimal crcw pram fault-tolerance. Technical report,

Providence, RI, USA, 1989.

