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1 Proof of Claim 2

Claim. Given a fized setting of the parameters 0 there exists some 0 <
A < 1 such that for each M-statistic the difference between the true value
and the value as approzimated by the ASOS procedure can be expressed as a
linear function of the approximation error in the DAS whose operator norm
is bounded above by ckyym? Nim=1 for some constant ¢ that doesn’t depend on
Kim -

Proof. (sketch) We will use the A symbol to denote the error in a given term.
So for example, A(y, z*)g,, +1 will denote error due to in the first DAS.

By repeated application of the first 2nd-order recursion we have that
Ay, 2", = Ay, 2%k, +1(H')km1=k Then by repeated application of
the second 2nd-order recursion we have that A(z*,y), = HFA(y,z*)) =
Hk+k“m+1A(y,x*)klim+1/. We can already see a pattern starting to emerge
here. The error for statistics of small k-value/time-lag is given by the ap-
proximation error in the DAS, multiplied by some large power of H. If H is
“small” in some sense then the error will decay exponentially as k£ decreases.
This will be made more rigorous later.

Repeatedly applying the third and fifth 2nd-order recursions we also have:

klzm

Ax*, 2%, = A(z™, %)y, (H')Fim™ +ZA z*,y) K (H')=F

kllm
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i=k



If we plug in the previously derived error formulae into these (for the terms
A(x*,y);) we note that at each term being summed is multiplied by H and/or
J a total of kj;,,, — k times or more. Repeated application of the sixth 2nd-
order equation gives:

Etim
A(I’T, ZL'*)k = Jkli'm—k?A(xT’ x*)k”m + Z Ji_kPA(:L'*, 1'*)1
i=k

The right hand side of this equation contains terms of the form A(z*, x*);,
multiplied by J**. Thus as before, the combined power H and J in each
term of the sum is > ky,, — @ + 1 — k = ky;,, — k, and there are roughly Kpim?2
such terms.

The spectrums of J and H are equal (basic LDS result) and their spectral
radius A (the maximum of the magnitudes of the eigenvalues) is less than 1.
In practice we have found that A is often significantly less than 1 even when
the spectral radius of A is relatively close to 1. Intuitively J and H capture
the strength of the dependency between the hidden states in consecutive
time-steps. Smaller eigenvalues correspond to eigen-components with weaker
dependencies that decay faster. Letting o(X) denote the spectral radius of
an arbitrary matrix X and using the basic property that o(XY) < o(X)o(Y)
and the identity ||B]|| < dim(B)o(B) we can estimate the 2-norms of various
error matrices in terms of the 2-norms of the DAS errors. For example, we
have that || vec(A(y, 7)) 2 < N2 A(Y, 27, 2N 0,

For harder cases such as A(z?, y); that involve the sum over many terms
we can apply triangle inequality for norms and then bound the norm of each
term. This is the reason that the factor ky;,,> appears in the claimed operator
norm bound.

The most difficult case is A(x”,27),. The ASOS procedure estimates

(27, 2T)y by solving the 2nd ASOS equation as a Lyapanov equation. The
resultant error in (z7,27), is thus also the solution of a similar Lyapanov

equation:
AT, 2T = JA(@T, 2T + JAGT, 2*)1 P+ PA(T, 2*)y

While it is possible, although unlikely, that solving this equation could greatly

amplify the error, this effect would be linear and constant (since the linear

coefficients on (27, 27) do not depend on ky;,,) and thus bounded in norm.
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2 Proof of Claim 3
Claim. Fori=1,2,3:
. 1 )
Jim By | vee(90) 3] = 0

Proof. First we will consider the case i = 1.
Define residual prediction error v; by v = y: — Eo[ ¢ |y<i—1 ] and note

that ¢1 = (y,2")k,+1 — CA (2%, %)k, — ¥525_,, ') can be expressed as

T—k—1 %/
=1 Nt+k+1Tt -

Using this fact and the linearity of expectation we have that the expec-
tation can be written as:

1
Eo| IITVGC(%)II%] Eo| —tr(cbl ) ]
T—k—1T—k—1
= igtr< Eq| Vec(%+k+136’t*/) Vec(7s+k+1$s*/)/ 1)
T
=1 s=1
| TokATok
= ﬁtr( Eoq| 37:1':/ ® Virh41Vs+kt1 )
t=1 s=1

First we consider the terms of the inner sum where ¢ # s. By symmetry
we may assume, without loss of generality, that s > t. Then using the law of
iterated expectation and the fact that Vi Ey[ v; | = 0 we have:

Eg| :cj:c:' ® %+k+17§+k+1 ] = Eq[ Eo x:le ® %+k+17§+k+1 | Y<s+k 1]
= Ey| IIZE:/ ® Yerkt+1 @ Eg[ '7;+k+1 | Y<sir | ]
= Eol 272} @ Y441 ®0] =0

For terms where t = s we have instead that:
Eq [xtxt ® Byl ”Yt% | Y<ttk ] = Eq| x;kx;f' ® Spykt1 ]
= Eg| fixi' | ® Stk

where we recall that S; = Covg| V¢ | y<ir | = Eol 770 | y<tak |
Our final equation for the expectation is then:

T—k—1 | Toho
—tl" Z B[ 272} | ® Stipra) = T2 Z Egl 27115 ] - tr(Sesnsa)
=1 =1



Intuitively, the growth of the sum is linear in 7', not quadratic, and thus
the factor % will cause the entire right-hand expression to go to zero in the
limit. We can formalize this intuition. This first tool we will need as a basic
result about the asymptotic behavior of the LDS: under the control-theoretic
conditions necessary for steady-state we also have that distributions over z}
and y; approach equilibrium as t — oo.

A simple consequence of this result is that various expectations over
and g, will converge as t — oo. Thus we have lim7_o 7 ST Byt ] =
Xo where Xy = lim;_, Eg[ 272}’ ]. We also know that S; approaches its
steady-state value S as as t — o0o. These two facts allow us to evaluate the
limit:

) . .1
tim 37 Bl 73] tr(Sies) = Jim —r(Xo)tr(S) = 0

For the remain cases of ¢ we can show, using a similar argument to the
one given above, that:

1 1 . _
Byl || vee(do)ll3] = 75 Eol [|l713 ] - tr(VERE)
t=1
1 2 1 'E! 2 tk—1
Byl | vecl0s)lB )= 5 3 Eal Il ] (Vi)
t=1
and that these expectations also converge to 0 in the limit as T'— oco. O

3 Proof of claim 4

Claim. The approximation error in %—scaled 2nd-order statistics as esti-
mated by the ASOS procedure converges to 0 in expected squared || - ||2-norm

as'T — o0.

Lemma 1. Let X be a large vector formed by concatenating the vectorizations
of the true values of all the 2nd-order statistics that are estimated at some
point during the ASOS procedure (this includes the DAS, the M-statistics, and
all of the intermediate quantities). Let X be the corresponding approximate
estimate obtained from the ASOS procedure. Then we have:

. 1 > 2
lim Byl [ =(X = X)[3] =0



Proof. The system of equations solved by the ASOS procedure consists of
the ASOS equations, the ASOS approximations, and of a particular subset
of the 2nd-order equations. All of these are linear in the 2nd-order statistics.
Moreover, except for the ASOS approximations they are all satisfied by the
exact values of the second-order statistics. We may thus write the system as:

TX =0+

where T is a matrix of coefficients, I' a vector that accounts for the con-
stant terms in each equation (i.e. those only involving statistics of the form
(y,y)x for some k) and ® is a vector that accounts for errors in the ASOS
approximations.

The ASOS procedure is simply a computationally efficient method for
solving this system where the unknown ¢ is replaced by the zero vector.
So, X = Y'T while the true value is given by X = Y YT + ®). Thus
(X — X) = T'(L®) and hence the expectation in the claim can be re-

T
written and then bounded:

1 _ 1
Eo[ [T (@2 ] < 1T [PEo[ (|2 1l5 ]

But by the previous claim limp_.o Eg[ || #®[]3 ] = 0 and then noting that T
doesn’t depend on T', the result follows. O

4 Solving The “Primary Equation”

Lemma 1. Let V be a vector space, f : V. — V be a continuous linear
function such that p(f) < 1. Then a solution to the equation x = f(x)+y is
given by:

w0=3fi(y) (1)
i=0
where the exponents denote function composition.

Proof. The condition p(f) < 1 ensures that the series converges (and deter-

mines the rate of convergence).
Then,

o = Zfi(y) = Zfi(y) +fy) = Zf ofi(y)+y= f(Z i) +y=flx) +y

b}



Algorithm 1 Algorithm solving the primary equation
: Input: A, C, K, H, G
. Initialize X :=0, Y :=G.
while Y has not converged to 0 do
Y := Solution for Z of (7 = AZH' +Y)
X =X+Y
Y .= H2k”7”+1Y/A/C/K/
end while

NG Wy

where we have used the fact that f is both continuous and linear so that it
respect the infinite sum. O

Now let f1(X) = X — AXH', fo(X) = H*)uinPIX'A/C'K" and y = G
where A, H, C', K and G. These functions are clearly linear in X and
continuous. Then the solution of fi(X) = f2(X) + G is the solution of the
primary equation. Taking f; ' of both sides yields X = f; ' o fo(X)+ f; H(G)
which is the form of the equation solved in the previous lemma with f =

fito foand y = f'(G).

Conjecture 1. For all ki, > 0, fi 1o fa is a continuous linear function with
p(fitofa) <1

In practice, p(f; o f2) will be a significantly less than 1 when &y, is large
enough (even when p(H) is close to 1) which implies rapid convergence of
the series defined in (1).

Algorithm 1 computes this series term-by-term and so by the previous
lemmas and rapid converge property it is an efficient method for solving the
primary equation. Note that Y can be computed easily on line 4 because
Z = AZH' +Y is a Sylvester equation, for which there are know efficient
algorithms.



5

Psuedo-code for ASOS

Algorithm 2 The ASOS algorithm for computing the E-step. Note that

.I.

for the purposes of implementation, symbols such as (y,x), can simply be
interpreted as k-indexed matrix-valued variable names.

1: perform steady-state computations (Algorithm 3)

e e e
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c(xtat)
: for ke {0, 1, 2, ..., kym} do

compute approximate first and last kj,, 1st-order statistics (Algorithm 4)
(y’x*)Lli'nL"‘l = _CA;E}:E;_klim/
for k = kj;,, down to 0 do
(v, )} = (e B + (0, 9k — yrat) K+ yaga’
end for .
(2", 9)5 = (y,2°)}
for k=1 to ky, do
(@, 0)}, = H((@* 0)f_y — 25 _p) + K (9
end for
D G = (~Aapary, (@9~ DK iy, o

:= SolvePrimaryEquation( A, C, K, H, G )

klim

(g, 2%k = (y, &)} + CA(2*, a*)g,,, HPim 1=
(2", y) := (2%, )}, + HRun P E (@ a7)f, 4O
: end for
: for k = kj;, down to 0 do

(z*, ") = (2, 2" ) H' + ((2%,y) — w’{%y{) K + w’{+kx’{’

: end for
: (xT,x*)
: for k = kjj,—1 down to 0 do

kjim += (x*7 x*)klim

(2T, 2*)y = J(2T, 2% 1 + P (2%, 2% — apa_))) + adas )/

(2%, 2o = (2T, 2%)),
: L= —JaTaT' T + J(aT, )1 P + P((z*,27) — x{*rm%/) + x%m%/
. (27,27 := SolveLyapunov( J, J', L)

( T

2T 2Ty = ((:L'T,l’T)(] — a:r{:Er{) J + (2T 2*) P

D@ Wk = @ Yk,
: for k = kj;,,,—1 down to 0 do

@, ) = J(@ Yk + P (@, 9k — 25p_p) + 20y,

: end for
: (y7xT)0 = ($T7y)/0




Algorithm 3 Steady-state Computations

1: A} :== SolveDARE( 4, C, @, R)

2. S:=CAC'"+R

3. K = ALC'S™

4 A9 = Al — KCA}

5. J = AJA/(A})!

6: Ao := SolveSylvester( J, J', A — JA}J")
7. Vil =Veg

8 H:=A—-KCA

9: P:=1—-JA

Algorithm 4 Compute Approximate First and Last k44 1st-order Statistics
x] =1 + K(y1 — Cmp)
for k=2to ki, do

xy = Hzj | + Ky,

end for
T . *

wklag T klag
for k = kjqy—1 down to 1 do

al = Jal | + Pa}
end for

m}_k”m =0
k=T—kjag+1toT do
xy = Hz} |+ Ky

: end for
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