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1 Proof of Claim 2

Claim. Given a fixed setting of the parameters θ there exists some 0 ≤
λ < 1 such that for each M-statistic the difference between the true value
and the value as approximated by the ASOS procedure can be expressed as a
linear function of the approximation error in the DAS whose operator norm
is bounded above by cklim

2λklim−1 for some constant c that doesn’t depend on
klim.

Proof. (sketch) We will use the ∆ symbol to denote the error in a given term.
So for example, ∆(y, x∗)klim+1 will denote error due to in the first DAS.

By repeated application of the first 2nd-order recursion we have that
∆(y, x∗)k = ∆(y, x∗)klim+1(H

′)klim+1−k. Then by repeated application of
the second 2nd-order recursion we have that ∆(x∗, y)k = Hk∆(y, x∗)′0 =
Hk+klim+1∆(y, x∗)klim+1

′. We can already see a pattern starting to emerge
here. The error for statistics of small k-value/time-lag is given by the ap-
proximation error in the DAS, multiplied by some large power of H . If H is
“small” in some sense then the error will decay exponentially as k decreases.
This will be made more rigorous later.

Repeatedly applying the third and fifth 2nd-order recursions we also have:

∆(x∗, x∗)k = ∆(x∗, x∗)klim
(H ′)klim−k +

klim
∑

i=k

∆(x∗, y)iK
′(H ′)i−k

∆(xT , y)k = Jklim−k∆(xT , y)klim
+

klim
∑

i=k

J i−kP∆(x∗, y)i
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If we plug in the previously derived error formulae into these (for the terms
∆(x∗, y)i) we note that at each term being summed is multiplied by H and/or
J a total of klim − k times or more. Repeated application of the sixth 2nd-
order equation gives:

∆(xT , x∗)k = Jklim−k∆(xT , x∗)klim
+

klim
∑

i=k

J i−kP∆(x∗, x∗)i

The right hand side of this equation contains terms of the form ∆(x∗, x∗)i,
multiplied by J i−k. Thus as before, the combined power H and J in each
term of the sum is ≥ klim − i + i− k = klim − k, and there are roughly klim

2

such terms.
The spectrums of J and H are equal (basic LDS result) and their spectral

radius λ (the maximum of the magnitudes of the eigenvalues) is less than 1.
In practice we have found that λ is often significantly less than 1 even when
the spectral radius of A is relatively close to 1. Intuitively J and H capture
the strength of the dependency between the hidden states in consecutive
time-steps. Smaller eigenvalues correspond to eigen-components with weaker
dependencies that decay faster. Letting σ(X) denote the spectral radius of
an arbitrary matrix X and using the basic property that σ(XY ) ≤ σ(X)σ(Y )
and the identity ‖B‖ ≤ dim(B)σ(B) we can estimate the 2-norms of various
error matrices in terms of the 2-norms of the DAS errors. For example, we
have that ‖ vec(∆(y, x∗)k))‖2 ≤ N2

x‖∆(y, x∗)klim+1‖2λ
klim+1−k.

For harder cases such as ∆(xT , y)k that involve the sum over many terms
we can apply triangle inequality for norms and then bound the norm of each
term. This is the reason that the factor klim

2 appears in the claimed operator
norm bound.

The most difficult case is ∆(xT , xT )0. The ASOS procedure estimates
(xT , xT )0 by solving the 2nd ASOS equation as a Lyapanov equation. The
resultant error in (xT , xT )0 is thus also the solution of a similar Lyapanov
equation:

∆(xT , xT )0 = J∆(xT , xT )0J
′ + J∆(xT , x∗)1P

′ + P∆(xT , x∗)0

′

While it is possible, although unlikely, that solving this equation could greatly
amplify the error, this effect would be linear and constant (since the linear
coefficients on (xT , xT )0 do not depend on klim) and thus bounded in norm.
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2 Proof of Claim 3

Claim. For i = 1, 2, 3:

lim
T→∞

Eθ[ ‖
1

T
vec(φi)‖

2

2 ] = 0

Proof. First we will consider the case i = 1.
Define residual prediction error γt by γt = yt − Eθ[ yt |y≤t−1 ] and note

that φ1 ≡ (y, x∗)klim+1 − CA
(

(x∗, x∗)klim
− x∗

T x∗
T−klim

′
)

can be expressed as
∑T−k−1

t=1
γt+k+1xt

∗′.
Using this fact and the linearity of expectation we have that the expec-

tation can be written as:

Eθ[ ‖
1

T
vec(φ1)‖

2

2 ] = Eθ[
1

T 2
tr(φ1 φ′

1) ]

=
1

T 2
tr(

T−k−1
∑

t=1

T−k−1
∑

s=1

Eθ[ vec(γt+k+1xt
∗′) vec(γs+k+1xs

∗′)′ ])

=
1

T 2
tr(

T−k−1
∑

t=1

T−k−1
∑

s=1

Eθ[ x∗
t x

∗
s
′ ⊗ γt+k+1γs+k+1

′ ])

First we consider the terms of the inner sum where t 6= s. By symmetry
we may assume, without loss of generality, that s > t. Then using the law of
iterated expectation and the fact that ∀i Eθ[ γi ] = 0 we have:

Eθ[ x∗
tx

∗
s
′ ⊗ γt+k+1γ

′
s+k+1 ] = Eθ[ Eθ[ x∗

t x
∗
s
′ ⊗ γt+k+1γ

′
s+k+1 | y≤s+k ] ]

= Eθ[ x∗
t x

∗
s
′ ⊗ γt+k+1 ⊗ Eθ[ γ′

s+k+1 | y≤s+k ] ]

= Eθ[ x∗
t x

∗
s
′ ⊗ γt+k+1 ⊗ 0 ] = 0

For terms where t = s we have instead that:

Eθ[ x∗
t x

∗
t
′ ⊗ Eθ[ γtγ

′
t | y≤t+k ] ] = Eθ[ x∗

t x
∗
t
′ ⊗ St+k+1 ]

= Eθ[ x∗
t x

∗
t
′ ] ⊗ St+k+1

where we recall that Si ≡ Covθ[ γt | y≤t+k ] = Eθ[ γtγ
′
t | y≤t+k ]

Our final equation for the expectation is then:

1

T 2
tr(

T−k−1
∑

t=1

Eθ[ x∗
tx

∗
t
′ ] ⊗ St+k+1) =

1

T 2

T−k−1
∑

t=1

Eθ[ ‖x
∗
t‖

2

2 ] · tr(St+k+1)
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Intuitively, the growth of the sum is linear in T , not quadratic, and thus
the factor 1

T 2 will cause the entire right-hand expression to go to zero in the
limit. We can formalize this intuition. This first tool we will need as a basic
result about the asymptotic behavior of the LDS: under the control-theoretic
conditions necessary for steady-state we also have that distributions over x∗

t

and yt approach equilibrium as t → ∞.
A simple consequence of this result is that various expectations over x∗

t

and yt will converge as t → ∞. Thus we have limT→∞
1

T

∑T−k−1

t=1
Eθ[ x∗

t x
∗
t
′ ] =

X0 where X0 = limt→∞ Eθ[ x∗
t x

∗
t
′ ]. We also know that St approaches its

steady-state value S as as t → ∞. These two facts allow us to evaluate the
limit:

lim
T→∞

1

T 2

T−k−1
∑

t=1

Eθ[ ‖x
∗
t‖

2

2 ] · tr(St+k+1) = lim
T→∞

1

T
tr(X0)tr(S) = 0

For the remain cases of i we can show, using a similar argument to the
one given above, that:

Eθ[ ‖
1

T
vec(φ2)‖

2

2 ] =
1

T 2

T−k−1
∑

t=1

Eθ[ ‖x
∗
t‖

2

2 ] · tr(V t+k−1

t+k,t+k)

Eθ[ ‖
1

T
vec(φ3)‖

2

2 ] =
1

T 2

T−k−1
∑

t=1

Eθ[ ‖yt‖
2

2 ] · tr(V t+k−1

t+k,t+k)

and that these expectations also converge to 0 in the limit as T → ∞.

3 Proof of claim 4

Claim. The approximation error in 1

T
-scaled 2nd-order statistics as esti-

mated by the ASOS procedure converges to 0 in expected squared ‖ · ‖2-norm
as T → ∞.

Lemma 1. Let X be a large vector formed by concatenating the vectorizations
of the true values of all the 2nd-order statistics that are estimated at some
point during the ASOS procedure (this includes the DAS, the M-statistics, and
all of the intermediate quantities). Let X̂ be the corresponding approximate
estimate obtained from the ASOS procedure. Then we have:

lim
T→∞

Eθ[ ‖
1

T
(X − X̂)‖2

2 ] = 0
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Proof. The system of equations solved by the ASOS procedure consists of
the ASOS equations, the ASOS approximations, and of a particular subset
of the 2nd-order equations. All of these are linear in the 2nd-order statistics.
Moreover, except for the ASOS approximations they are all satisfied by the
exact values of the second-order statistics. We may thus write the system as:

ΥX = Γ + Φ

where Υ is a matrix of coefficients, Γ a vector that accounts for the con-
stant terms in each equation (i.e. those only involving statistics of the form
(y, y)k for some k) and Φ is a vector that accounts for errors in the ASOS
approximations.

The ASOS procedure is simply a computationally efficient method for
solving this system where the unknown Φ is replaced by the zero vector.
So, X̂ = Υ−1Γ while the true value is given by X = Υ−1(Γ + Φ). Thus
1

T
(X − X̂) = Υ−1( 1

T
Φ) and hence the expectation in the claim can be re-

written and then bounded:

Eθ[ ‖Υ
−1(

1

T
Φ)‖2

2 ] ≤ ‖Υ−1‖2Eθ[ ‖
1

T
Φ‖2

2 ]

But by the previous claim limT→∞ Eθ[ ‖
1

T
Φ‖2

2 ] = 0 and then noting that Υ
doesn’t depend on T , the result follows.

4 Solving The “Primary Equation”

Lemma 1. Let V be a vector space, f : V −→ V be a continuous linear
function such that ρ(f) < 1. Then a solution to the equation x = f(x) + y is
given by:

x0 =

∞
∑

i=0

f i(y) (1)

where the exponents denote function composition.

Proof. The condition ρ(f) < 1 ensures that the series converges (and deter-
mines the rate of convergence).

Then,

x0 =

∞
∑

i=0

f i(y) =

∞
∑

i=1

f i(y) + f 0(y) =

∞
∑

i=0

f ◦ f i(y) + y = f(

∞
∑

i=0

f i(y)) + y = f(x0) + y
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Algorithm 1 Algorithm solving the primary equation
1: Input: A, C, K, H , G

2: Initialize X := 0, Y := G.
3: while Y has not converged to 0 do

4: Y := Solution for Z of (Z = AZH ′ + Y )
5: X := X + Y

6: Y := H2klim+1Y ′A′C ′K ′

7: end while

where we have used the fact that f is both continuous and linear so that it
respect the infinite sum.

Now let f1(X) = X − AXH ′, f2(X) = H2klim+1X ′A′C ′K ′ and y = G

where A, H , C, K and G. These functions are clearly linear in X and
continuous. Then the solution of f1(X) = f2(X) + G is the solution of the
primary equation. Taking f−1

1 of both sides yields X = f−1

1 ◦f2(X)+f−1

1 (G)
which is the form of the equation solved in the previous lemma with f =
f−1

1 ◦ f2 and y = f−1

1 (G).

Conjecture 1. For all klim ≥ 0, f−1

1 ◦f2 is a continuous linear function with
ρ(f−1

1 ◦ f2) < 1

In practice, ρ(f−1

1 ◦f2) will be a significantly less than 1 when klim is large
enough (even when ρ(H) is close to 1) which implies rapid convergence of
the series defined in (1).

Algorithm 1 computes this series term-by-term and so by the previous
lemmas and rapid converge property it is an efficient method for solving the
primary equation. Note that Y can be computed easily on line 4 because
Z = AZH ′ + Y is a Sylvester equation, for which there are know efficient
algorithms.
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5 Psuedo-code for ASOS

Algorithm 2 The ASOS algorithm for computing the E-step. Note that
for the purposes of implementation, symbols such as (y, x)†k can simply be
interpreted as k-indexed matrix-valued variable names.
1: perform steady-state computations (Algorithm 3)
2: compute approximate first and last klag 1st-order statistics (Algorithm 4)

3: (y, x∗)†klim+1
:= −CAx∗

Tx∗
T−klim

′

4: for k = klim down to 0 do

5: (y, x∗)†k := (y, x∗)†k+1
H ′ + ((y, y)k − y1+ky

′
1)K ′ + y1+kx

∗
1
′

6: end for

7: (x∗, y)†
0

:= (y, x∗)†
0

′

8: for k = 1 to klim do

9: (x∗, y)†k := H((x∗, y)†k−1
− x∗

T y′T−k+1
) + K(y, y)k

10: end for

11: G := (−Ax∗
T x∗

T−klim

′ + ((x∗, y)†klim
− x∗

1+klim
y′1)K

′ + x∗
1+klim

x∗
1
′

12: (x∗, x∗)klim
:= SolvePrimaryEquation( A, C, K, H, G )

13: for k ∈ {0, 1, 2, ..., klim} do

14: (y, x∗)k := (y, x∗)†k + CA(x∗, x∗)klim
Hklim+1−k′

15: (x∗, y)k := (x∗, y)†k + Hklim+1+k(x∗, x∗)′klim
A′C ′

16: end for

17: for k = klim down to 0 do

18: (x∗, x∗)k := (x∗, x∗)k+1H
′ +

(

(x∗, y)k − x∗
1+ky

′
1

)

K ′ + x∗
1+kx

∗
1
′

19: end for

20: (xT , x∗)klim
:= (x∗, x∗)klim

21: for k = klim−1 down to 0 do

22: (xT , x∗)k := J(xT , x∗)k+1 + P
(

(x∗, x∗)k − x∗
T x∗

T−k
′
)

+ xT
T x∗

T−k
′

23: end for

24: (x∗, xT )0 := (xT , x∗)′0
25: L := −JxT

1 xT
1

′
J ′ + J(xT , x∗)1P

′ + P ((x∗, xT )0 − x∗
T xT

T

′
) + xT

T xT
T

′

26: (xT , xT )0 := SolveLyapunov( J, J ′, L )
27: (xT , xT )1 :=

(

(xT , xT )0 − xT
1 xT

1

)

J ′ + (xT , x∗)1P
′

28: (xT , y)klim
:= (x∗, y)klim

29: for k = klim−1 down to 0 do

30: (xT , y)k := J(xT , y)k+1 + P
(

(x∗, y)k − x∗
T y′T−k

)

+ xT
T y′T−k

31: end for

32: (y, xT )0 := (xT , y)′0
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Algorithm 3 Steady-state Computations

1: Λ1
0 := SolveDARE( A, C, Q, R )

2: S := CΛ1
0C

′ + R

3: K := Λ1
0C

′S−1

4: Λ0
0 := Λ1

0 − KCΛ1
0

5: J := Λ0
0A

′(Λ1
0)

−1

6: Λ0 := SolveSylvester( J, J ′, Λ0
0 − JΛ1

0J
′ )

7: V T
1 := V T

0 J ′

8: H := A − KCA

9: P := I − JA

Algorithm 4 Compute Approximate First and Last klag 1st-order Statistics

1: x∗
1 := π1 + K(y1 − Cπ1)

2: for k = 2 to klag do

3: x∗
t := Hx∗

t−1 + Kyt

4: end for

5: xT
klag

:= x∗
klag

6: for k = klag−1 down to 1 do

7: xT
t := JxT

t+1 + Px∗
t

8: end for

9: x∗
T−klim

:= 0

10: for k = T−klag+1 to T do

11: x∗
t := Hx∗

t−1 + Kyt

12: end for
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