
The VLDB Journal 5: 238–263 (1996) The VLDB Journal
c© Springer-Verlag 1996

Building knowledge base management systems

John Mylopoulos1, Vinay Chaudhri 2, Dimitris Plexousakis3, Adel Shrufi1, Thodoros Topaloglou1

1 Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Canada M5S 1A4
2 SRI International, Menlo Park, CA 94025, USA
3 Department of Computing and Information Sciences, Kansas State University, Manhattan, KS 66506, USA

Edited by Gunter Schlageter and H.-J. Schek.
Received May 19, 1994 / Revised May 26, 1995 / Accepted September 18, 1995

Abstract. Advanced applications in fields such as CAD,
software engineering, real-time process control, corporate
repositories and digital libraries require the construction, ef-
ficient access and management of large, shared knowledge
bases. Such knowledge bases cannot be built using exist-
ing tools such as expert system shells, because these do not
scale up, nor can they be built in terms of existing database
technology, because such technology does not support the
rich representational structure and inference mechanisms re-
quired for knowledge-based systems. This paper proposes
a generic architecture for a knowledge base management
system intended for such applications. The architecture as-
sumes an object-oriented knowledge representation language
with an assertional sublanguage used to express constraints
and rules. It also provides for general-purpose deductive in-
ference and special-purpose temporal reasoning. Results re-
ported in the paper address several knowledge base manage-
ment issues. For storage management, a new method is pro-
posed for generating a logical schema for a given knowledge
base. Query processing algorithms are offered for semantic
and physical query optimization, along with an enhanced
cost model for query cost estimation. On concurrency con-
trol, the paper describes a novel concurrency control policy
which takes advantage of knowledge base structure and is
shown to outperform two-phase locking for highly structured
knowledge bases and update-intensive transactions. Finally,
algorithms for compilation and efficient processing of con-
straints and rules during knowledge base operations are de-
scribed. The paper describes original results, including novel
data structures and algorithms, as well as preliminary per-
formance evaluation data. Based on these results, we con-
clude that knowledge base management systems which can
accommodate large knowledge bases are feasible.

Key words: Knowledge base management systems – Stor-
age management – Concurrency control – Constraint en-
forcement – Rule management

1 Introduction

“. . .Databases will be exploited in many environ-
ments in the year 2000 and will offer many new
functions and features. The combination of new en-
vironments and new application areas will pressure
database technology to invent new functionality . . .
At the same time, the natural evolution of database
technology will provide a technology push to make
databases usable for a much broader range of appli-
cations. . . ” Patricia G. Selinger.1

Many advanced applications in diverse areas such as
CAD, software engineering, real-time process control, cor-
porate repositories and digital libraries require the con-
struction, efficient access and management of large, shared
knowledge bases. For example,

– a CAD application for aircraft design may involve tens of
thousands of generic objects, rules and constraints, and
hundreds of thousands of instances of the design schema,
where the generic objects describe aircraft parts (wings,
engines, fuselage, etc.), while constraints and rules spec-
ify policies that must be respected, because they repre-
sent physical laws, government standards or company
regulations;

– real-time knowledge-based systems, which need to mon-
itor incoming data for an industrial process or for traffic
control and offer diagnostic assistance to human opera-
tors in case of an emergency; knowledge bases for such
applications need to store information about the process
being monitored, the problems that can arise and how
to diagnose them; for an industrial process, such knowl-
edge includes a plant schematic, knowledge about plant
components (pipes, valves, boilers, etc.) and their oper-
ational characteristics, knowledge about hardwired func-
tions (what does it mean when alarm 692 goes off) and
diagnostic knowledge used by plant operators to deter-
mine the nature of an emergency (Kramer et al. 1996);

– “grand challenges”, such as information system support
for environmental global change research (Stonebraker

1 VLDB-93 invited lecture, Dublin, Ireland.

239

and Dozier 1991) and the human GENOME project
(Frenkel 1991);

– knowledge-sharing applications that involve construc-
tion of generic knowledge bases that include thousands
of concept descriptions and are used as references in
the construction of knowledge-based systems (Neches
1991).

Such knowledge bases may be built in terms of exist-
ing knowledge representation systems (expert system shells,
for instance) or AI languages such as Lisp or Prolog. Un-
fortunately, such implementations do not scale up for sev-
eral reasons, including inefficient memory management, lack
of provisions for sharing, expensive (and sometimes ill-
defined) knowledge base operations (Lockemann et al. 1991;
Ishikawa et al. 1993).

Alternatively, such knowledge bases may be built on top
of one or more existing database management tools. Unfor-
tunately, this is not a satisfactory solution either. First, the
modeling facilities provided by existing database manage-
ment tools only support a subset of the rich representational
structures and inference mechanisms of knowledge represen-
tation schemes. Second, available optimization mechanisms
do not exploit the rich structure and semantic properties of
knowledge bases. Finally, this approach delegates important
managerial aids, such as semantic integrity enforcement, to
the end-users of the knowledge base, rather than to the sys-
tem that manages the knowledge base.

This paper proposes a generic architecture for a knowl-
edge base management system (KBMS) and describes a
body of results addressing issues that range from storage
management, query processing and concurrency control to
rule processing. The proposed system offers a rich rep-
resentational framework including structuring mechanisms
(generalization, aggregation, classification and others), as
well as an assertion language for expressing deductive rules
and integrity constraints. Moreover, the system supports
reasoning mechanisms, including deductive inference, con-
straint enforcement and temporal reasoning. The represen-
tation language adopted for the KBMS design is Telos
(Mylopoulos et al. 1990).

The term “knowledge base” is used throughout the paper,
instead of “database”, mostly for historical reasons. There
are no technical grounds for distinguishing between the two
terms, in view of the fact that (extended) database systems
(such as ones managing object-oriented, active and deductive
databases) do support some deductive and non-deductive in-
ference mechanisms and structuring facilities analogous to
those found in knowledge bases. The difference in meaning,
if any, between the two terms is mostly in the degree to
which they support representational, structuring and infer-
ence capabilities.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the knowledge representation
framework of Telos. Section 3 proposes a generic architec-
ture for a KBMS and its components. Sections 4–7 describe,
respectively, research results on storage management, query
processing, concurrency control and constraint and rule man-
agement. Each one of these sections defines the problem
in the context of knowledge bases, identifies limitations of
existing approaches (if such exist) and proposes solutions,

along with an evaluation. The methodology used to evalu-
ate the proposed research results varies with the results being
evaluated. Section 8 summarizes the results of this work and
outlines open problems for further research.

2 Overview of Telos

The representational framework of Telos (Mylopoulos et al.
1990) constitutes a generalization of graph-theoretic data
structures used in semantic networks (Findler 1979), seman-
tic data models (Hull and King 1987) and object-oriented
representations (Zdonik and Maier 1989). Telos treats at-
tributes as first-class citizens, supports a powerful classi-
fication (or instantiation) mechanism which enhances ex-
tensibility and offers special representational and inferen-
tial mechanisms for temporal knowledge. In addition, there
have been formal accounts of the semantics of the lan-
guage based on an axiomatic approach (Stanley 1986) or
a possible-worlds model (Plexousakis 1993b). This section
introduces the core features of Telos which are divided into
structural, temporaland assertionalfeatures. A more com-
prehensive description of the language can be found else-
where (Mylopoulos et al. 1990).

2.1 Structural component

A Telos knowledge base consists of structured objects built
out of two kinds of primitive units, individuals and at-
tributes. Individuals are intended to represent entities (con-
crete ones such as John , or abstract ones such as Person),
whereas, attributes represent binary relationships between
entities or other relationships. Individuals and attributes are
referred to by a common term – proposition. As in object
models, Telos propositions have their own internal identi-
fiers.

Every proposition p consists of a source, a label and
a destinationwhich can be retrieved through the functions
from(p) , label(p) and to(p) . A proposition can be
represented by a 3-tuple2 (e.g., [Martin,age,35]).

Propositions (individuals and attributes) are organized
along three dimensions, referred to in the literature as attri-
bution (Attardi and Simi 1981), classificationand general-
ization (Brodie et al. 1984).

Structured objectsconsist of collections of (possibly
multi-valued) attributes that have a common proposition as
a source, thus adding a simple form of aggregation. The
structured object corresponding to an individual, for exam-
ple, may consist of the following set of propositions:

{MTS, [MTS, InstanceOf, Employee],
[MTS, name, Martin], [MTS, sal, 30000],
[MTS, addr, ’10 King’s College Road’],
[MTS, dept, ’Computer Science’] }

In this case, MTS, an employee named Martin , has
a sal attribute with value 30000 , an addr attribute
with value 10 King’s College Road and an attribute

2 Later, when the temporal dimension is introduced, propositions will be
shown as 4-tuples.

240

Author

Person

Employee

Conference

Paper

Univ Affiliate

Organization

Company

Integer

String

Manager

ConfPaper Department

String

String

Real

Referee

String

submittedTo

referee

author

supervisor

dept

sal

comp

name

addr

budgetname

name

Attribute

ISA

Fig. 1. An example Telos knowledge base

dept with value Computer Science . Note that an at-
tribute may also represent abstract relationships such as
[Person,addr,GeographicLocation] , intended to
represent the concept of the address relationship between
persons and geographic locations.

Each proposition is an instance of one or more generic
propositions called classes– thus giving rise to a classi-
fication hierarchy. Propositions are classified into tokens–
propositions having no instances and intended to represent
concrete entities in the domain of discourse, simple classes–
propositions having only tokens as instances, meta-classes–
having only simple classes as instances, meta-meta-classes,
and so on.

Orthogonal to the classification dimension, classes can
be organized in terms of generalizationor isA hierarchies.
A class may have incomparable generalizations leading to
hierarchies that are directed acyclic graphs rather than trees.
The attribute mechanism is also used for attaching assertions
(deductive rules and integrity constraints) to Telos objects.
Inheritance of attributes with respect to generalization is as-
sumed to be strict in the sense that a class definition cannot
override inherited attributes.

Figure 1 shows an example Telos knowledge base in the
form of a labeled directed graph. Instantiation, generaliza-
tion and attribution relationships are represented as edges in
the graph. For example, in Fig. 1 the attribute [Employee,
dept, Department] is represented in this graph as an
edge between Employee and Department which is la-
beled by dept .

2.2 The temporal component

Every Telos proposition has an associated history time and
a belief time. The history time of a proposition represents
the lifetime of a proposition in the application domain (i.e.,
the lifetime of an entity or a relationship). A proposition’s
belief time, on the other hand, refers to the time when the
proposition is believed by the knowledge base, i.e., the in-
terval between the moment the proposition is added to the
knowledge base and the time when its belief is terminated.
Both history and belief time are represented by means of
time intervals. The model of time adopted is a modification
of Allen’s framework (Allen 1983). Seven exclusive tem-
poral relations (e.g., equal, meet, before, after,
during, start, end) together with their inverses are
used to characterize the possible positions of two intervals
on a linear time line. Temporal relationships participate in

the expression of deductive rules and integrity constraints
in the assertion language. Disjunction of temporal relation-
ships is disallowed in order to facilitate efficient temporal
reasoning.

A proposition with history time will now be a 4-tuple.
For example, the proposition [Martian, addr, ’10
King’s College Road’,1/1/89..3/10/89] means
that Martian had an addr of 10 King’s College
Road during the period 1/1/89 to 3/10/89 . The time
component of a proposition p may be retrieved using the
function when(p) .

Telos has several built-in temporal constants, such as
dates and times (e.g., 1988/12/07 denoting December 7,
1988, 1988 denoting the interval starting at the beginning of
1988 and ending at the end of 1988), semi-infinite intervals
having conventional dates or times as one endpoint (e.g.,
1986/10/25 .. *) and the infinite interval Alltime .

2.3 The assertional component

Telos provides an assertion language for the expression of
deductive rules and integrity constraints. The assertion lan-
guage is a first-order language with equality.

Function symbols of the language that have already
been mentioned in the previous sections are from(p),
label(p), to(p) and when(p) , returning the source,
label, destination and duration of p, respectively. In addition,
the assertion language supports selection operations, which
make it possible to “navigate” through a Telos knowledge
base. The selection operations include a dot function opera-
tion x.l [r1 t1] which evaluates to the set of to -values
of the attributes of proposition with source x which belong
to the attribute class labeled by l during intervals which are
in relation r1 with time interval t1 . The definitions of other
functions can be found elsewhere (Mylopoulos et al. 1990).
The terms of the language include variables, constants (in-
cluding conventional dates) and the result of applying func-
tions to terms.

The atomic formulae of the assertion language include
the predicates prop() , instanceOf() , isA() , att() for
an attribute att, the temporal predicates before , during ,
overlaps , meets , starts , finishes , equal and
their inverses after , contains , overlapped by , met
by , started by and finished by . The predicate prop
(p,x,y,z,t) means that p is a proposition with compo-
nents x,y,z and t . The predicate instanceOf(x,y,t1,
t2) means that x is an instance of y for the time period

241

t1 and is believed by the system for the time period t2 .
Similarly, the predicate isA(x y,t1,t2) means that x
is a specialization of y for the time t1 and is believed by
the system for time t2 . Finally, att(x y,t1,t2) denotes
that y is a value of the attribute att of x for t1 and is
believed for t2 . Also, for any terms x and y and any evalu-
able predicate θ, x θ y is an atomic formula with the obvious
meaning.

A meta-predicate Holds denotes the truth of an atomic
formula during a time interval. For example, the history-time
assertion Holds (p(x, y), t) means that there exists a time in-
terval t0 such that prop (pid, x, p, y, t0)∧ (t0 contains t)
is true, if p is a basic predicate, or that the truth of p(x, y)
at time t is derivable from the knowledge base via the
deductive rules, if p is a derived predicate. The predi-
cate p is restricted to be a non-evaluable and non-temporal
predicate3, since the truth of evaluable or temporal pred-
icates is not dependent on their evaluation over a partic-
ular time interval. A belief-time assertion has the form
Believed (HT, t′), where Believed is a meta-predicate
denoting that a history-time assertion HT is believed by
the system throughout a belief time interval t′. Using these
predicates leads to more succinct temporal expressions.

Well-formed formulae of the assertion language are
formed by using the meta-predicates Holds and Believed ,
logical connectives and restricted quantification. Restricted
quantification is of the form Forall x/C and Exists x/C
for a Telos class C. The assertion language is used to pose
queries or to specify the integrity constraints and deductive
rules in the knowledge base.

With respect to the knowledge base of Fig. 1, the fol-
lowing query retrieves all the employees who have had an
increase of more than $5000 in their salary in 1988 and ac-
cording to the beliefs of the system from the beginning of
1988 and on.

ASK e/Employee : Exist t 1, t 2/TimeInterval
(e[t 1].sal ≤ e[t 2].sal − 5000)

and (t 1 before t 2)
ON 1988
AS OF (1988 ..∗)

Similarly, referring to the example knowledge base of
Fig. 1, the following formula expresses the constraint that
“no author of a conference paper can be a referee for it”.
Moreover, the constraint is assumed to be valid from (the
beginning of) 1988 and on.

Forall p/ConfPaper Forall x/Author
Forall r/Referee Forall t/TimeInterval
(Holds (author(p, x), t) ∧ Holds (referee(p, r), t)
⇒ (r /= x)) (at 1988 ..∗)

The same constraint could also be expressed without the
meta-predicate Holds as:

Forall p/ConfPaper ∀x/Author
∀r/Referee /∀t1, t2, t3, t4/TimeInterval
[author(p, x, t1, t2) ∧ referee(p, r, t3, t4)

3 Evaluable predicates are those consisting of a comparison or set mem-
bership operator. Temporal predicates correspond to the 13 possible interval
relationship. The remaining predicates are called non-evaluable.

∧ during (t3, t1) ∧ during (t4, t2)]
⇒ [r /= x](at 1988 ..∗)

The two forms of this constraint are equivalent, but as we
can see, the former is more succinct than the latter. Also, the
latter form includes explicit quantification over belief time
intervals. For the purpose of this section, we will only use
the succinct form.

The above constraint is an example of a staticconstraint,
i.e., a property applicable to all states of the domain of dis-
course. The canonical example of a dynamicintegrity con-
straint, expressing the property that “an employee’s salary
should never decrease”, can be expressed by the following
assertion language formula:

Forall p/Employee Forall s, s′/Integer
Forall t1, t2/TimeInterval
(Holds (salary(p, s), t1) ∧ Holds (salary(p, s′), t2)
∧ before (t1, t2) ⇒ (s ≤ s′)) (at 02 /01/1988 ..∗)

Notice the absence of belief-time assertions from the ex-
pressions of the above constraints. Both formulae are inter-
preted over the same belief-time interval.

Constraints, as well as deductive rules, are associated
with history and belief time intervals. In the previous ex-
amples, the history time intervals associated with the con-
straints are the semi-infinite intervals (1988 .. *) and
(02/01/1988 .. *) , respectively. If no such associa-
tion appears explicitly with their definition, both intervals are
assumed to be equal to (systime..*) , where systime
denotes the current system time. Examples of different kinds
of constraints expressible in the assertion language are given
in Sect. 7.

Syntactically, deductive rules are considered to be spe-
cial cases of integrity constraints. The general form of a
deductive rule is Forall x1/C1 . . .Forall xn/Cn (F ⇒
A), where F is a well-formed formula and A is a history-
time assertion or an evaluable predicate. As an example,
consider the rule “A university affiliate works in the depart-
ment that has the same address as she does”, expressed by
the formula:

Forall u/UnivAffiliate Forall d/Department
Forall s, s′/Address Forall t/TimeInterval
(Holds (address(u, s), t) ∧ Holds (D addr(d, s′), t)
∧ (s = s′)] ⇒ Holds (works in(u, d), t)) (at 1988 ..∗)

3 System architecture

The KBMS design is based on an extensible and layered
architecture. An extensible architecture is necessary because
the KBMS is intended to support both general-purpose and
special-purpose inference mechanisms. Special-purpose in-
ference mechanisms, for example, spatial reasoning, case-
based reasoning, need to be incorporated depending on spe-
cific application needs, whereas, general-purpose mecha-
nisms will be common across all applications. A layered
architecture supports design based on increasing levels of
abstraction, thereby partitioning the overall design problem
of KBMSs into several sub-problems. In the long term, such
an architecture can lead to standard interfaces for each layer

242

Fig. 2. Global KBMS architecture

and its components, so that layer implementations can be
re-used across different KBMSs.

The system architecture adopted is shown in Fig. 2.4 The
architecture provides for three different layers: an interface
layer, which offers different types of user interfaces, a logical
layer which handles primitive knowledge base operations for
retrieval and update, a physical layer which manages the data
structures used to store the knowledge base, and a variety
of indices and other auxiliary information.

The interface layer offers knowledge base users a vari-
ety of services, including a hypertext interface for ad hoc
user interactions and a programming language (PL) inter-
face which supports the execution of application programs
that include knowledge base operations. In addition, the
interface layer may include knowledge base management
(KBM) tools for knowledge acquisition, knowledge base
verification, validation, evolution and knowledge sharing
(Neches et al. 1991), (Buchanan and Wilkins 1993). These
services are interfaced with the logical layer through the
knowledge representation language interpreter or compiler
and a session manager.

The logical layer maintains information on class defi-
nitions, including rules and constraints, and supports prim-
itive knowledge base operations such as TELL and ASK
(Mylopoulos et al. 1990). Its services are implemented on
top of the physical layer in terms of a collection of modules
which provide for basic data management functions, such as
access path planning for efficient query processing and con-
current execution of transactions, special-purpose reasoners
for temporal, spatial or other types of reasoning, as well
as a rule management component which supports deductive
inference and constraint checking.

Finally, the physical layer is responsible for the manage-
ment of the disk-based data structures on which the knowl-
edge base is stored, indices supported by the architecture,
caching policies, etc. The functionality of the bottom part

4 It has to be noted that this is a fairly abstract and high-level design. Im-
plementation is in a very primitive stage. The performance results reported
were obtained by simulation.

of this layer is assumed to be provided by a storage kernel
such as the ones designed for object-oriented and nested re-
lational databases (Carey et al. 1986; Paul et al. 1987; Biliris
1992).

The remainder of the paper focuses on the logical layer
and the modules that implement it on top of the physical
layer.

4 Storage management

Despite the pace of hardware advances, the knowledge bases
envisioned for the proposed KBMS will be too large to fit
in main memory. Existing knowledge base building tools,
such as expert system shells, do not provide for efficient
secondary memory storage. When the size of a knowledge
base grows beyond system limits, these tools rely on the un-
derlying operating system which manages memory through
paging for disk I/O. This means that disk I/O, generally
considered the most serious bottleneck to a system’s perfor-
mance, is delegated to a system component that knows noth-
ing about the structure and access patterns of the knowledge
base. Not surprisingly, such implementations do not scale
up to knowledge bases of size beyond O(104) tokens. On
the other hand, the coupling of an expert system shell to
an existing (say, relational) DBMS for storing the knowl-
edge base is also a non-solution because conventional data
models are not sufficiently rich to support the representa-
tional and inferential features of a KBMS, thus rendering
DBMS-supported optimization techniques ineffective.

Our objective in this section is to devise a suitable
scheme for storing the knowledge base on a disk, taking into
account the semantic features of a Telos knowledge base.
Within our framework, the generation of a storage manage-
ment scheme is viewed as a three-step process. In the first
step, called logical design, the knowledge base structure is
mapped into a set of logical storage structures (such as a
relational schema). The second step, called physical design,
determines disk layout for the relations defined during log-
ical design. The third step makes provisions for indices to

243

(d) (e)(c)(b)(a)

D E

G

F

BA

CC

A B

F

G

ED

C

A B

F

G

EDED

BA

F

GCG

F

A

C

B

D E

Fig. 3a–e.ISA hierarchies

be used for accessing stored information. In this paper, we
limit the discussion to logical design and indexing.

4.1 Related work

From the logical storage design approaches that have been
proposed for object-oriented databases, two prominent ap-
proaches are the n-ary (direct) storage model (NSM) and
the decomposition storage model (DSM) (Valduriez et al.
1986; Copeland and Khoshafian 1985). The DSM has been
proposed as an implementation technique for relational and
complex object databases. According to the DSM, a sep-
arate relation is defined for each attribute of a class. As
a result, class instances have values of their attributes dis-
tributed over many relations. Object identifiers (OIDs) serve
as the connectives of different attribute values of the same
object. A major advantage of the DSM is that it can be eas-
ily implemented and does not require storage reorganization
because of schema evolution.5 Disadvantages of the DSM
include relatively high storage cost (usually double the cost
of non-decomposed storage schemes) and inefficiency in ex-
ecuting operations which access many attributes of a single
object. Because of these reasons, the DSM is definitely not
appropriate for applications that tend to process objects in
their entirety (e.g., CAD/CAM or software engineering). In
the NSM, a separate relation is defined for each class in the
knowledge base. If the total number of attributes for a class,
including the attributes inherited from parent classes, is n,
then the relation corresponding to this class will have n + 1
attributes. The extra attribute in the relation is needed for
the OID. If the value of an attribute of a class is another
object (or set of objects), then two variations of the NSM
are possible. In the first, the entire object (resp. set of ob-
jects) is stored directly as the attribute value. In the second
variation, an OID (resp. set of OIDs) is stored instead of the
entire object. The advantage of this method is that it effi-
ciently supports the access of a large number of attributes
or sub-classes of a given class. Its greatest disadvantage is
that it is inflexible with respect to schema updates and has
poor performance on sub-class updates.

In summary, both methods can deal with complex ob-
jects, while, in addition, the DSM offers support for gen-
eralization (or isA) hierarchies. However, neither method
addresses issues of storage management for temporal knowl-
edge, deductive rules and integrity constraints. In this sec-
tion, we propose an algorithm called controlled decomposi-
tion method (CDM) that combines the advantages of both

5 Schema evolution means adding to or deleting from the knowledge
base classes or attributes.

the NSM and DSM and also takes into account temporal
knowledge.

As far as access methods are concerned, the most promis-
ing solution for knowledge bases is the join index (Valduriez
1987). The join index is used, as part of the data storage,
by the DSM. Once again, however, this index cannot be
adopted as it is, because it offers no provisions for dealing
with temporal attributes. The CDM extends this index to the
temporal join index (TJI) for this purpose.

4.2 The CDM

Generation of a logical design using the CDM involves three
steps. The first step transforms a given generalization hier-
archy from a general graph to a forest (a set of trees). The
second step generates relations corresponding to the forest.
The final step creates hierarchical OIDs for the tuples of the
relations created in step 2.

Assume that the isA hierarchy associated with a knowl-
edge base is represented as a directed acyclic graph G =
(V,E), where V is the set of classes and E is the set of isA
relationships, declared or derived, between these classes.
Furthermore, it is assumed that statistics for frequency of ac-
cess (number of accesses over time) for every class v ∈ V ,
denoted f (v), and frequency of access for every attribute a
of a class v, denoted g(v, a), are available. Such information
can be obtained by, for instance, looking at the trace of trans-
actions operating on a knowledge base over a period of time.
We define the most preferred parentof a node v, with par-
ents v1, v2, . . . , vk, as node vi if f (vi) ≥ f (vj), 1 ≤ j ≤ k.
If more than one node satisfies this criterion, we arbitrarily
pick one of them as the most preferred parent.

The CDM rule for transforming an isA hierarchy into
a forest is then defined as follows:

C1. For every class v ∈ V choose only one outgoing edge,
the one leading to the most preferred parent. The at-
tribute list of the class v is extended with the attributes
inherited from the disconnected parents.

For example, decomposing the hierarchy shown in Fig. 3a
involves comparing the values of f (A) and f (B). If f (A) >
f (B), the resulting hierarchy will be as shown in Fig. 3b. It
can also be the case that a class does not have a unique com-
mon ancestor (for an example, see Fig. 3c). In such a case,
rule C1 is used to break a hierarchy into two. Figure 3d and
e shows the possible outcome, depending on which of f (B)
and f (A) is greater.

C2. For each class in this forest, a relation is created with
attributes as determined by rule C4 below.

244

PERSON
P ID ENAM
P31 1..6 Alex
P03 4..8 Mary
P24 8..10 Mike
P25 6..9 Nick
P37 6..10 Karen
P28 5..10 John

EMPLOYEE (IsA PERSON)
E ID SAL
P31 1..6 {45 1..4,

55 5..6}
P24 8..10 {60 8..10}
P25 6..9 {55 6..9}
P28 5..10 {45 5..8,

60 9..10}

DEPARTMENT
D ID DNAME
D1 1..6 {Res 1..4,

Sales 5..6}
D2 1..10 {Adm 1..10}
D3 4..10 {Dev 4..10}
D6 9..10 {Res 9..10}
D7 9..10 {Dev 9..10}

EMPDEPT
E ID D ID TIME
P31 D1 1..6
P34 D2 6..8
P34 D3 9..10
P25 D3 6..9
P37 D6 9..10
P28 D7 9..10

DEPT COMP
D ID C ID TIME
D1 O11 1..6
D2 O11 1..10
D3 O11 4..8
D3 O12 9..10
D6 O13 9..10
D7 O14 9..10

ORGANIZATION
O ID BUDGET
O05 3..9 {30M 3..4, 60M 5..9}

COMPANY (IsA ORGANIZATION)
C ID CNAME CADDR
O11 1..10 {ML 1..8, {TOR 1..10}

MA 9..10}
O12 4..10 {KC 6..10} {Toronto 4..8

Paris 9..10}
Fig. 4. Relations created by the CDM

C3. A token is stored as a tuple in the relation correspond-
ing to the most general class of which the token is
an instance. OIDs are assigned to each tuple using a
hierarchical scheme (see Topaloglou 1993).

C4. A relation corresponding to a class will have all the
local attributes of that class, except in the following
cases:

C4a. If an attribute has a complex domain (i.e., its values
are instances of another class), the relation correspond-
ing to this class is decomposed by creating a separate
relation for that attribute. Consider the class R and its
attribute A that has class S as its domain. If ri de-
notes the OID corresponding to a tuple in R and si
denotes the OID corresponding to a tuple in S, then
the decomposed relation RS is specified as:

RS = {(ri, si, t)|ri.A [at t] = si}
C4b. If an attribute A of a class R has a simple domain

(e.g., Integer, String, etc.) and its access
frequency g(A,R) is greater than a threshold value gT ,
then the relation corresponding to class R is decom-
posed such that the attribute A is stored in a separate
relation RA. If ri is an OID for a tuple in R, then the
relation RA is specified as follows:

RA = {(ri, ai, t)|ri.A [at t] = ai}
C5. Every attribute A is stored as a 3-tuple 〈ai, hi, bi〉,

where ai is the value of the attribute, hi is the his-
tory time and bi is the belief time.6

According to this logical schema representation of the
knowledge base, the attributes of a class that are spread
across several relations will have the same OID. The reader
may have noticed that rules C2, C3 and C4a are adaptations
from the DSM, whereas rule C4b is adopted from the NSM.
Rule C5 accounts for temporal knowledge.

The relations which are generated by the CDM algorithm
for a portion of the knowledge base of Fig. 2 are shown in
Fig. 4. The EMPLOYEErelation stores only the local attribute

6 In the discussion that follows we restrict ourselves to history time only.

of the Employee class (e.g., sal) whereas the employee
name is stored in the PERSONrelation (rule C4). Since the
attribute dept of the class Employee has a complex do-
main Department , a separate EMPDEPTrelation is cre-
ated for it. The example only shows the history times as-
sociated with each attribute and instance-of relationship. In
particular, each attribute value is stored with its correspond-
ing history time interval. Values of the attribute at different
history times are indicated by braces.

4.3 Performance evaluation of the CDM

This section compares the CDM with the DSM and the NSM
with respect to storage cost and reorganization cost incurred
by changes in the schema.

4.3.1 Storage cost

The following table summarizes the parameters which char-
acterize a tree-structured isA hierarchy H . (We consider
a tree-structured hierarchy here, because the rule C1 of the
CDM transforms an arbitrary iSA hierarchy into a set of
trees.)

Knowledge Base Parameters

C number of classes in H
d average degree of decomposition in H
l average number of locally defined attributes per class
N average number of instances per class
b branching factor of the isA tree
h height of the isA tree
i size of an OID, attribute value and temporal identifier7

Let us now compute the required disk storage (rds) for
each of the three models.

7 For simplicity, we assume that these sizes are equal and thus in Equa-
tion 1, for instance, we use the multiplier 2 to denote a value and a tem-
poral identifier. A more general model that does not make this assumption
is available elsewhere(Topaloglou 1993).

245

Table 1. Summary of update costs

update operation NSM DSM CDM
insert attribute not supported new binary relation rule C4
insert sub(super)class not supported l + 1 new relations rules C2, C4
insert token (in disk writes) 1 1 + 2n (1− d) + d(1 + 2n)

As mentioned earlier, NSM stores one relation with n+1
fields per class, where n is the sum of the number of locally
defined attributes and the number of inherited attributes. The
total number of relations is

∑h
k=0 b

k. A class at depth k has
k ∗ l inherited attributes, giving n = l + kl. Therefore, the
required disk storage is estimated by the equation:

rds(NSM) =
h∑
k=0

[(2 ∗ (l + kl) + 1)i]bkN . (1)

DSM stores one relation per attribute which amounts to∑h
k=0 b

kl relations. In each relation there is a tuple for each
of the instances of that class. Therefore, the total number of
DSM tuples is determined by the formula N =

∑h
k=0(bkl)(1+∑h

j=k+1 b
j)N . Each tuple has three fields. Therefore, the rds

can be estimated as follows:

rds(DSM) =
h∑
k=0

3 ∗ (bkl)(1 +
h∑

j=k+1

bj)N . (2)

Note that Eqs. 1 and 2 modify (Copeland and Khoshafian
1985) formulas for NSM and DSM storage, taking into ac-
count attributes defined over isA hierarchies.

In the CDM, the degree of decomposition depends on the
average number of attributes with complex domains and the
access frequency of the attributes. The storage cost for CDM
is the weighted sum of the costs for the NSM and DSM, ex-
cept for one difference. Unlike NSM, the attributes are not
inherited, and in each relation corresponding to each class,
there is a tuple corresponding to all its instances. There-
fore, in Eq. 1, the term kl is dropped when computing the
storage cost, and a correction cor(NSM) is applied to take
into account the cost of storage of the instances (a more de-
tailed analysis appears elsewhere; Topaloglou 1993). With
this change, the expression for the storage cost of CDM is
as follows:

rds(CDM) = (1 − d) ∗ (rds(NSM) + cor(NSM))

+d ∗ rds(DSM) . (3)

The estimates of space costs suggested by the above for-
mulae confirm the claim of Copeland-Khoshafian (1985) that
DSM requires 2 to 4 times more data storage than NSM. As
expected, CDM’s storage costs fall between those of the
other two schemes. The first graph in Fig. 5 shows relative
storage costs for a balanced-tree isA hierarchy with height
4 and branching factor 2 as the number of local attributes
for each class is varied from 1 to 4. These results suggest
that CDM requires on average 65% of the required space of
DSM.

storage cost

DSM

CDM

NSM

rds()/rds(NSM)

local attr 1.00

1.50

2.00

2.50

3.00

1.00 2.00 3.00 4.00

update cost (insert token)

DSM

CDM

NSM

disk writes

l 0.00

10.00

20.00

30.00

40.00

0.00 1.00 2.00 3.00

Fig. 5. a Storage and b update cost

4.3.2 Update costs

The most frequent types of updates in a knowledge base and
their estimated cost functions are given below. The compar-
isons are also shown in Table 1.8

1. Adding a new attribute to a class.This type of update
can be realized incrementally by creating a new relation for
this attribute.

2. Adding a sub-class/super-class.First, the new class
receives an identifier denoting its position in the isA hier-
archy. Then, a new relation with l + 1 fields is created; l is
the number of the specialized attributes associated with the
new class that have primitive attribute domains. Those with
complex domains form additional relations, as required by
rule C4.

3. Inserting a new token.For the NSM, this operation
requires a single tuple insertion which corresponds to one
disk access. In the DSM, this operation requires 2n+1 writes,
where n is the number of attributes of the token. The cost in
CDM is the weighted sum of the costs of the NSM and DSM
models. Experimental results have shown that the CDM’s
cost can be as low as 1/4 of DSM costs (Topaloglou 1993).

8 Deletions in Telos are analyzed as transactions consisting of an update
value and an insertion part.

246

4. Updating the value of an attribute.First, the relevant
storage record is located by accessing an index. Then, the
block which contains that record is written and the attribute’s
index is updated. For the DSM, as with the CDM, this re-
quires on average three writes (Khoshafian and Copeland
1986). Appropriate buffering policy may further minimize
that cost. The graph of Fig. 5b shows the cost for the token
insertion case.

In summary, the CDM performs as well as the DSM
on attribute value and schema updates, and performs better
than the DSM on token updates. The CDM’s performance is
worse than that of the NSM’s for token updates. However,
the NSM cannot handle schema updates at all. A summary
of the comparison is presented in Table 1.

4.4 Access methods

The access methods supported in the proposed KBMS ar-
chitecture are based on three types of indices: the simple
temporal index (STI), the TJI, and the record-addressing in-
dex (RAI). STI and TJI are used to select OIDs satisfying
a certain condition. Given an OID, RAI determines the lo-
cation of its components on disk. Due to space limitations,
only a brief discussion of STI and TJI is presented here. The
interested reader can find more details about the function-
ality and the performance of the above indices elsewhere
(Topaloglou 1993).

The STI and TJI are generalizations of non-temporal in-
dices where, in contrast to the traditional 〈key, value〉 pair,
each entry is a triplet 〈key, value, time〉, where time is the
history time during which the entry is true. With these in-
dices, it is possible to perform selection using keys and time
simultaneously. Since the index entries are no longer points,
it is assumed that they are implemented as spatial access
methods (Guttman 1984). Moreover, the indices are hier-
archical in the sense that one index stores information for
all the instances of a class (including inherited ones). This
choice is consistent with a previous study (Kim et al. 1989),
which shows that a hierarchical index always outperforms
the simple class index.

The STI is used on attributes with primitive domains.
Its searching key is a pair of a domain value and a time
segment, i.e., 〈value, time〉, and the returned value is a list
of qualified token identifiers. An STI is defined for most
frequently accessed attributes. The design of a more com-
prehensive set of criteria for index selection, along the lines
studied in Finkelstein et al. (1988) and Frank et al. (1992)
remains an unresolved problem.

The TJI is used to describe a time-dependent relationship
between the instances of two classes. In a TJI corresponding
to the classes R and S, each entry is a 3-tuple 〈r, s, t〉, where
r and s are OIDs for some instances of classes R and S, and
t is the history time for which this relationship is true. For
example, the relations DEPT COMPand EMPDEPTin Fig. 4
represent such relationships. The searching key in a TJI is a
pair of an OID and a temporal interval. For example, for the
key 〈OID, time〉, a TJI will return the OIDs of instances of
the second class which are in a TJI tuple containing OID for
a time interval overlapping with time. Moreover, TJI is a bi-
directional index, so that it can be accessed by the OID of the

either of the classes. To make the two-way access efficient,
we assume that two copies of a TJI are stored. Each copy
is clustered on one of the OIDs of the two classes. A series
of TJIs can be used to form the temporal equivalent of the
multi-join index (Bertino and Kim 1989).

5 Query processing

For the Telos KBMS, queries are specified through an ASK
operation (Mylopoulos et al. 1990) that has the following
structure:

ASK x1/S1, ..., xn/Sn : W
ON t1

AS OF t2

x1, . . . , xn are assumed to be target variables for which
the query processor needs to determine values; S1, . . . ,Sn

are either set expressions or classes which denote the range
of the variables; t 1, t 2 are time interval constants such as
dates, and Wis a formula expressed in the Telos assertion
language. The temporal sub-expression in the query formula
is interpreted as follows: answer the query W with respect to
all propositions whose history time is covered by or overlaps
with t1, according to what was believed by the knowledge
base over the intervalt2.

For example, the first query shown below retrieves all
employees who had a salary increase of more than 5K since
the beginning of 1988, according to the system’s beliefs
for the same time period. The second query retrieves all
employees who worked for the database group of IBM in
1990, according to what the system currently believes. The
first query is a temporal query and the second is a historical
query (Snodgrass 1987).

Q1. ASK e/Employee : Exist t 1, t 2/TimeInterval
(e[t 1].salary ≤ e[t 2].salary − 5000)

and (t 1 before t 2)
ON 1988
AS OF (1988 ..∗)

Q2. ASK e/Employee : e.dept .comp.name = “IBM”
and e .dept .name = “dbgroup ”

ON 1990

As with database systems, such queries are expressed in
a declarative fashion, in the sense that a query does not in-
dicate how the data should be accessed from the knowledge
base physical store. In general, a query is subjected to four
phases of processing: parsing, optimization, code generation
and execution (Selinger et al. 1979). The focus of this sec-
tion is on the optimization phase.

Query optimization for knowledge bases is hard for sev-
eral reasons. First, the representation formalism adopted for
the knowledge bases is more expressive given a query lan-
guage with temporal, spatial, class- and meta-class-related
expressions. This requires us to develop new methods for
the problem of syntactic and semantic simplification. Sim-
ilarly, novel indexing techniques for knowledge bases, for
instance, ones dealing with temporal knowledge or deduc-
tive rules, render existing optimization techniques ineffective
and require new ones in their place.

247

Our proposed query optimization method consists of two
phases: semantic query optimizationand physical query op-
timization. During semantic query optimization, a query is
simplified according to the semantic features of the knowl-
edge base, resulting in a query that is equivalent to the orig-
inal but less expensive to evaluate. During physical query
optimization, estimates are obtained for the cost of different
access operations required to evaluate the query, resulting
in a sequence of operations (the access plan) that will lead
to minimum execution cost. This section addresses both se-
mantic and physical query optimization.

5.1 Semantic query optimization

Semantic query optimization in knowledge bases exploits
the semantic information due to structural, temporal and as-
sertional properties. That allows for three different steps of
semantic optimization: temporal, syntactic and semantic sim-
plification.

The contributions of our method are the following. First,
we propose temporal simplificationin the context of knowl-
edge bases. Second, we have reformulated the known tech-
niques for syntactic simplification(Jarke and Koch 1984;
Chakravarthy et al. 1988) to exploit the properties of a
knowledge base, such as generalization and aggregation. Fi-
nally, we have advanced the semantic transformationtech-
niques by using theory resolution (Stickel 1985) and spe-
cialized reasoners. In the following, we summarize the three
steps in semantic optimization. More details can be found
elsewhere (Topaloglou et al. 1992).

5.1.1 Temporal simplification

Temporal simplification attempts to identify those parts of a
knowledge base that are relevant to a query from a temporal
viewpoint (Jarke and Koubarakis 1989). Temporal simplifi-
cation involves the following three steps:

1. check for inconsistent or redundant temporal constraints
in the query expression;

2. check whether there are available data for all the target
variables of the query, for the historical and the belief
period that the query refers to;

3. select the part of the knowledge base which is involved in
the answering of the query from a temporal viewpoint. At
this step, the deductive rules and the integrity constraints
that are effective for the time periods specified in the
query are selected.

The first step is formulated as a constraint satisfaction
problem (CSP) on the temporal relations of the query for-
mula. These relations are interval constraints which belong
in the pointsableclass and therefore the CSP is solved in
polynomial time (Vilain et al. 1989).

The second step requires us to maintain meta-information
which is able to answer the following schema query: does
class C have instances in the knowledge base at the his-
torical (resp. belief) time of the query?On a “no” answer
for this, the original query receives “empty answer” and its

processing is completed. The testing of the temporal con-
dition in the schema query is formulated as a CSP with
integer-orderconstraints, which is solved in polynomial time
(Dechter et al. 1989).

For the last step, we need to index the rules and the
constraints on their history and belief time. In the two-
dimensional space that history and belief time define, each
rule or constraint is viewed as a rectangular area. We use an
R-tree-based spatial access method (Guttman 1984) to assist
the temporal selection with logarithmic complexity.

5.1.2 Syntactic simplification

Syntactic simplification exploits the properties of the struc-
tural features of Telos (i.e., isA , instanceOf and pro-
position relationships). Also, sub-expressions within the
query expression that are always true, always false, or in-
consistent are detected.

The syntactic simplification algorithm operates on a
query graph representation of the syntactic aspects of the
query, where the input query is submitted in prenex dis-
junctive normal form. Nodesin a query graph represent the
constant and variable terms and edgesrepresent the atomic
formulae. The query transformations are carried out using
graph re-writing operations. The transformation rules are di-
vided into two groups: completion rulesand simplification
rules.

Completion rules add information to the query that may
be used either for inconsistency detection or simplifica-
tion. For instance, the isA transitivity rule adds the predi-
cate isA(C1,C3,t1 ∗t3,t2 ∗t4) for any isA(C1,C2,
t1,t2) ∧ isA(C2,C3,t3,t4) pattern that is encoun-
tered in the query expression.9

When the completion phase is executed, the simplifi-
cation rules are applied to obtain a simplified representa-
tion of the query, to eliminate redundant information and to
detect inconsistent queries. As an example, the query sub-
expression isA(C1,C2,t1,t2) ∧isA(C2,C1,t3,t4)
is replaced with False if t1 ∗t3 and t2 ∗t4 are not de-
fined.

5.1.3 Semantic transformation

The objectives of the semantic transformation step are the
same as in the previous step, except that it uses deductive
rules and integrity constraints. This step proceeds as follows:
it takes as input the set of relevant deductive rules and in-
tegrity constraints, called the rule base, which is returned
from the temporal simplification algorithm, and the query
form which is returned from the syntactic simplification al-
gorithm and applies the transformation to the query using
theory resolution (Stickel 1985).

There are some unique features of this algorithm. First,
it uses the reduced-size rule base that is produced by the
temporal simplification and is specific to the query being
optimized; consequently, it reduces the search space for the

9 t k = t i ∗ t j denotes the common time interval between two intervals
t i , t j in case they overlap, and it is undefined if they are disjoint.

248

resolution-based transformations. Second, it uses theory res-
olution that can accommodate the use of specialized reason-
ers for taxonomic, inequality and temporal sub-expressions
of Telos queries. Theory resolution is, in general, more effi-
cient than classical resolution, because it decreases the length
of refutations and the size of the search space. Finally, our
semantic transformation algorithm has been shown to be
sound (Topaloglou et al. 1992).

5.2 Physical query optimization

The task of the physical query optimizer is to take the simpli-
fied query as generated by the semantic optimization phase
and generate an optimal execution strategy. The success of a
query optimizer in discovering an optimal execution strategy
depends critically on how well it can utilize the available
physical data structure and the associated access methods.
Therefore, statistics about the knowledge base need to be
available, as well as a cost model that predicts the cost of
using each access operation.

The contributions of this section are as follows. First,
we develop the necessary cost formulae for the estimate in-
dicators, which consist of the disk I/O costs and size es-
timates of intermediate results. Second, we identify a set
of access level operations and associated costs for execut-
ing simple queries, and we generalize this result to more
complex queries. Third, we tackle the problem of access
planning in queries with arbitrary number of path expres-
sions. Finally, we show through an experimental study that,
in the context of our KBMS, join-index-based query pro-
cessing achieves better performance than the nest-loop and
sort-merge methods.

The physical query optimizer performs the following
steps. Initially, a simplified query obtained from the seman-
tic query optimizer, is transformed to a query graph which
is successively transformed into a set of parametrized oper-
ator trees and a set of execution trees. Each execution tree
represents a possible access plan. Once the execution trees
are available, the one with the least cost is selected using the
access optimizer. We will now explain each of these steps
in more detail.

5.2.1 Query graphs

Suppose the formula Wof the example query (shown at the
beginning of this section) has the form F1 ∧ F2 ∧ . . . ∧ Fn.
Each Fi is a path expression xi.A1.A2 . . . Ak.ai op vi where
xi is a variable ranging over a target class Ci. Each Aj de-
notes a complex attribute10 from class Cj−1 to class Cj , ai is
a simple attribute defined at class Ck, vi is an atomic value
from the domain of attribute ai and op is a restriction opera-
tor from the set {=,≤, <,≥, >}. Each Ai defines an attribute
link between the classes Cj−1 and Cj , except A1, which de-
fines a link between the class of xi and C1. For example, the

10 Recall that a simple attribute is an attribute whose values range over
primitive domains, such as integers and strings. The values of a complex
attribute range over non-primitive domains, for example, Employee . Also
notice that the form of the query graph in the physical optimization is
different from the one used in the syntactic simplification.

path expressions in query Q2 are e.dept.comp.name =
"IBM" and e.dept.name = "dbgroup" .

Let C be the set of all distinct classes for which attribute
links occur in W. A query graph then is defined as the undi-
rected graph whose set of nodes is C and its set of edges
consists of all (Cj−1, Cj) pairs for which a distinct attribute
Aj appears in W. The nodes of classes for which a primitive
attribute restriction of the form ai op vi appears in Ware
annotated by a label (ai, op, vi, t), where t is the historical
time specified in the ONfield of the query (t is substituted
by the temporal constant Now if no historical time is spec-
ified). For example, the query graph for the query Q2 is as
shown in Fig. 6.

5.2.2 Parametrized operator trees

Given a query graph, we first need to find an order in which
the query graph nodes are to be processed, and second, to
replace the conceptual entities appearing in the query graph
with physical entities and operations for manipulating them.
The first step is called the execution orderinggeneration step
and its output is a set of parametrized operatortrees (PO
trees). This step is formulated as follows:

input: a query graph QG
output: a set of PO trees, each of which is de-
noted as, J(. . . J(J(C1, C2), C3), . . . Cn), and repre-
sents the different orderings of QG nodes,
C1, C2, . . . Cn such that

P1. C1 is any node (class) in QG.
P2. In QG, Ci is adjacent to one of the nodes in the

sequence C1 . . . Ci−1.

J is a PO which represents the intermediate results
and is defined in more detail later.

Another way to understand the PO tree is to view it as
a left-deep tree representation of a possible traversal of the
underlying query graph. More specifically, a PO tree is a
binary tree in which every internal node has at least one leaf
node from the set of nodes of the query graph. A non-leaf
node of the tree represents the result obtained by applying
the operation J to its children. As we will see in the sequel,
this operation involves one of the standard join operations.

The rationale for focusing on left-deep trees, rather than
the more general bushy trees, stems from three observations.
First, the search space (that is, all possible access plans) in
case of the generalized bushy trees becomes unmanageably
large. Second, it has been argued that the space of left-deep
trees covers the space containing the execution strategies that
incur the least cost, where cost is typically measured in terms
of disk I/O required by the strategy (Steinbrunn et al. 1993).
Third, in the controlled decomposition model adopted here,
the left-deep trees better utilize the join index relations that
are available.

The number of all possible PO trees for a query graph
with n nodes is at most n(n − 1). Property P2 in conjunc-
tion with the connectivity of the query graph decreases the
number of possible PO trees. As an example, in Fig. 6, we
show a possible PO tree for query Q2.

249

Dept,CompJI

(a) (b)

(c) Execution tree

RI

Emp

Dept

Comp Emp

Join

Join

Comp

Dept

F

name=dbg

name=IBM

Query graph Parametrized operator tree

name=dbg

name=IBM

on Comp

name=dbg

Emp.Dept
I

I

name=IBM
RI

JI R

R

I
Dept

Emp.Dept

Emp,Dept,Comp
IR

IR
I
Comp

Dept→Comp

Emp←Dept

Fig. 6a–c.An example of the successive stages in the processing of query Q2

Table 2. Costs of basic operations

Operation Cost

Scan S(RC , P) =
|C|∗SIZE(TUPLERC)

B
Restriction Indexing RI(IC , P) = htree + σ(P) ∗ LP
Inverted Join Index JII (RC1←C2, LC2) = Yao(| LC2 |, LP, VC,2 ∗ r) + htreeI
Forward Join Index JIF (RC1→C2, LC1) = Yao(| LC1 |, LP, | C1 | ∗r) + htreeF
Intersection I(L1, L2) =| L1 | × | L2 |
Object Fetching F (RC , LC , P) = Yao(| LC |,MRC , | C |)

Legend:
RC storage relation for class C; P qualification predicate
σ selectivity of a predicate; ICa index relation for class C, attr. a
B storage capacity of a page; LC list of OIDs of class C
Yao(K,M,N) Yao’s formula (Yao 1977); LP Index pages at leaf level
VC,i unique instances of C in the ra avg. number of historical values

domain of ith attribute; associated with each occurrence of attr. a
htree height of an index tree; MRC number of pages for storage relation RC
| C | cardinality of a class; RC1←C2 join index relation

5.2.3 Execution trees

An execution tree (ET) is a parametrized tree in which the
exact steps for materializing the query result are specified.
To this end, logical entities are replaced by physical storage
relations as well as the low-level operations that manipulate
these relations. Recall that a logical class entity Ci is ma-
terialized in terms of a set of physical relations such that
a physical relation RCi stores the subset of its primitive
attributes. Furthermore, a physical join relation RCi,Cj ma-
terializes the join between classes Ci and Cj , which is due
to the complex attribute A of Ci. The final ET is expressed
in terms of primitive operation being performed on these
physical entities.

Before proceeding further, we will briefly present the
primitive operations that can be used to access the data from
the physical store. The following operations, which are also
listed in Table 2, are available in our storage model.

– Scan. A scan operation, S(RC , P), accepts a predicate
P and a physical relation RC for class C as input and
returns a list of OIDs for objects satisfying the predicate.

– Index retrieval. An index retrieval, RI(IC , P), accepts
as input a qualification predicate P on some attribute

(possibly temporal) of a class C, and uses an index tree
(B-tree for a non-temporal case, R-tree for the temporal
case), denoted IC , to return a list of OIDs for objects
satisfying the predicate.

– Forward join index. An inverted join index operation,
JIF (RC1→C2, LC1), accepts as input a list of OIDs of
class C1 and uses the join index relation RC1→C2 to
return the OIDs of class C2 that are joined through the
attribute link. If the list of OIDs of C1 is not specified,
then the entire index relation is scanned.

– Inverted join index. A forward join index operation,
JII (RC1←C2, LC2), is the inverse of the above oper-
ation except that now the OIDs of the domain class C2
are used to look up the matching OIDs of class C1. Here,
the physical index relation RC1←C2 is used instead.

– Intersection. An intersection operation, I(L1, L2), takes
as input two lists of OIDs of the same class and returns
the OIDs that are common to both lists.

– Object fetching. An object fetching operation, F (RC , LC ,
P), takes a physical relation RC for class C, a list LC
of OIDs and a predicate P as input. It then accesses the
objects in the list and applies the predicate P , thereby
retaining only the ones satisfying P . Note that this op-

250

eration is different from the scan operation in the sense
that only a subset of objects are retrieved which may be
dispersed over several pages.

In generating an ET from a PO tree, we substitute the
nodes of the PO tree with the primitive operations along
with the physical relations that they operate on. Each leaf
node is labelled by one of the primitive operations (index
retrieval or scan) and each non-leaf node is labelled by the
join method (forward join index, inverted join index or in-
tersection). The following two examples explain this process
in detail.

Example.Two-classes query.The query graph for this query

is:
�

��
Emp

�

��
Dept , and the PO tree is J(Emp,Dept). Sup-

pose also that there exists a restriction predicate name=
"dbgroup" on class Dept. Notice that this query is a sub-
query of Q2. The following ETs can be generated:

ET1: JII (REmp←Dept, RI(IDept, P2))
ET2: F (RDept, JI

F (REmp→Dept,)), name =
dbgroup)
ET3: I(JIF (REmp→Dept,), RI(IDept, name =
dbgroup))

Multiple classes query.Without any loss of generality
we can assume the simple case of three classes. For conve-
nience, we take this to be Q2. Figure 6a shows the query
graph. There are four POs that are accepted by property P2:

J(J(Emp,Dept), Comp), J(J(Dept, Emp), Comp),
J(J(Dept, Comp), Emp), J(J(Comp,Dept), Emp)

Let us now explore one of these PO trees, say J(J(Emp,
Dept), Comp) (Fig. 6b). For these POs, we can derive six
ET s. As seen above, there are three possibilities for the
J(Emp,Dept) operation. Let IR Emp,Dept be the interme-
diate result of this operation. Finally, for the remaining
J(IR Emp,Dept, Comp) step there are two execution possi-
bilities:

EP1: I(RI(IComp, name = IBM), JIF (RDept→Comp, IR))
EP2: I(IR , JII (RDept←Comp, RI(Comp, name = IBM)))

Continuing this process for the rest of the PO trees,
we can derive 24 possible ETs. Figure 6c shows one of
them (ET1+EP1). The next section describes how to avoid
generating the vast number of all possible ET trees.

5.2.4 The selection of an access plan

As the number of classes in the query increases, it becomes
prohibitively expensive to simply enumerate all the access
plans in the strategy space. For a query with n classes, there
are n(n−1) parametrized trees generated, in the worst case.
Unfortunately, the substitution of the primitive operations
on the parametrized tree implies O(2n−1) size of the exe-
cution space that obviates the enumeration of all possible
executions (Selinger et al. 1979).

In order to pick an ET with an optimal cost, we need a
cost function that is used to compute the cost of access plan
corresponding to each ET. Furthermore, we need a heuristic

search algorithm to walk selectively the space of possible
executions. The costs of the primitive operations that were
shown in the previous section are given in Table 2. For our
KBMS, we have adopted a heuristic search method based
on the enumeration of the most promising execution plan
based on the selectivity of classes. Exploring randomized
algorithms (Ioannidis and Kang 1991) is a topic for future
research.

5.2.5 Performance analysis

In this section, our goal is to quantitatively evaluate the pro-
posed join-index-based query processing methods. Specifi-
cally, this section compares the join index strategy to the
sort-merge and nested-loop strategies. The sort-merge strat-
egy represents the traditional database approach in comput-
ing large joins. The nested-loop strategy represents the tra-
ditional AI approach in query processing, where process-
ing is done in a tuple-oriented fashion (Bocca 1986). Our
key conclusion is that our choice of using the join index
for evaluating joins performs better than the sort-merge and
nested-loop methods.

In our test knowledge base, the total number of classes
is 40. We also varied the fanout that connects each class
with the others in the aggregation hierarchy, from one to
three. The cardinality of classes at levels 0, 1, 2, and 3 are
randomly selected from the intervals (20–50k), (10–20k),
(5–10k) and (1–5k) respectively. Each class has two prim-
itive attributes, one of which is indexed. Moreover, each
attribute cardinality is randomly chosen from the range (5–
20%) of the domain class cardinality. Thus, these comprise
the complex attributes in each class on which join indices
are built. The fanout determines the length of aggregation
hierarchies that are generated. The object size for each class
is chosen at random between 200 and 300 bytes. It should
be noted that we varied these parameters and the relative
performance of the strategies remained unaffected. Also, the
number of classes chosen was deemed reasonably large in
view of statistics empirically observed in real knowledge
bases (Chaudhri 1995). The cardinalities of the classes and
the primitive attributes were chosen randomly within rea-
sonable ranges as in Ioannidis et al. (1993). This has thus
ensured that the generation of data is not biased towards a
particular strategy.

For the above knowledge base, random queries were gen-
erated with path expressions that had a given fanout and
depth of query graph (QG). The fanout controls the num-
ber of complex attributes emanating from a given node in
QG or, alternatively, the number of path expressions in the
query qualification. The depth of the query graph, on the
other hand, controls the length of the path expressions for
each predicate. In addition, some of the nodes, which are
chosen randomly, have a restriction predicate on a simple
attribute.

For each join strategy, we keep track of the number of
page I/Os incurred as we process each class (node) in the ac-
cess plan. For the join-index, we make use of the cost model
presented earlier to estimate the cost of performing the join.
For nested-loop and sort-merge, we use known formulae,
which are shown below. In these formulae, the parameter

251

0
20
40
60
80
100
120
140
160
180

1 2 3

C
o
s
t

i
n

P
a
g
e
s

(
x
1
0
0
0
)

Depth of Query Graph

Fanout=1

JI
NL
SM

a

0

400

800

1200

1 2 3

C
o
s
t

i
n

P
a
g
e
s

(
x
1
0
0
0
)

Depth of Query Graph

Fanout=3

JI
NL
SM

b

Fig. 7a,b. Cost of join execution over path expressions

Mc denotes the number of data pages needed to store the
objects of class c, and Mem denotes the size of the main
memory cache in pages.

Nested-loop (NL):
max(Mc1 ,Mc2)

Mem−1 min(Mc1 ,Mc2)
+max(Mc1 ,Mc2)

Sort-merge (SM): Mc1 logMc1 + Mc2 logMc2 + Mc1 + Mc2

The results for fanout values of 1 and 3 are shown in
Fig. 7. For each graph, the fanout is fixed and then the depth
is varied. Clearly, the join-index query strategy outperforms
both the nested-loop and sort-merge in all configurations of
the QG. Note also that the nested-loop sometimes does better
than sort-merge, as in a knowledge base setup joins are not
large. As we increase the number of path expressions and the
depth, the cost may actually decrease, since the addition of
new predicates restricts the number of qualifying instances
and, in turn, the size of intermediate results.

The superiority of the join-index strategy stems from its
ability to focus only on the relevant OIDs as the algorithm
traverses attributes moving from one class to another during
the resolution of the query. In contrast, the other two meth-
ods experience drastic deterioration whenever a class, with
large cardinality, is encountered along the path.

These results experimentally establish that the join-index-
based query processing is indeed a better approach for eval-
uating queries in a KBMS setting.

6 Concurrency control

This section focuses on locking-basedalgorithms for knowl-
edge bases, as these have been most successful in ensuring
serializability for relational and object-oriented databases.
The best known locking algorithm, two-phase locking(2PL)
(Eswaran et al. 1976), works along the following lines. As-
sociated with each data item is a distinct “lock”. A trans-
action must acquire a lock on a data item before accessing
it. While a transaction holds a lock on a data item no other
transaction may access it.11 A transaction cannot acquire any
additional locks once it has started releasing locks (hence the
name “two-phase” locking).

Transactions in a knowledge base system often access a
large number of data items. In such situations, 2PL implies
that a transaction will have to hold each lock until it finishes
acquiring all the locks that it will ever need, thereby locking
most of the knowledge base for other users. Hence, concur-
rency is significantly reduced when running such “global”
transactions. For this reason, our research has been directed
towards the development of new methods that only hold
a small number of locks at any one time, even for global
transactions.

Interestingly, knowledge bases generally possess much
richer internal structure than that of traditional databases
(e.g., generalization and aggregation hierarchies, deductive
rules, temporal dimensions defined in terms of history or be-
lief time, etc.). Information about this structure can be po-
tentially useful in allowing release of locks before a transac-
tion has acquired all the locks that it needs. Indeed, concur-
rency control algorithm does exist for databases that have a
directed acyclic graph structure [and is accordingly called
DAG policy (Silberschatz and Kedem 1980; Yannakakis
1982)]. Under the DAG policy, a transaction may begin
execution by locking any item. Subsequently, it can lock
an item if it has locked all the predecessors of that item
in the past and is currently holding a lock on at least one
of those predecessors. Moreover, under the DAG policy, a
transaction may only lock an item once. The DAG policy
exploits the assumption that there are no cycles in the un-
derlying structure and the structure does not undergo any
change. Unfortunately, such a policy cannot be adopted for
knowledge bases without modifications. The structure of a
knowledge base is likely to contain cycles (e.g., the infer-
ence graph generated for a collection of recursive rules) and
will undergo change (e.g., when rules are added or deleted).

In summary, neither 2PL nor DAG policies are, by them-
selves, appropriate for knowledge bases. 2PL is too con-
servative, thereby causing reduced concurrency, while the
DAG policy does not provide sufficient functionality. Ac-
cordingly, we are proposing a new graph-based policy, the
dynamic directed graph policy(DDG) that can handle cycles
and updates in the knowledge base and also allows release of
locks before a transaction commits, thereby promising better
performance than 2PL.

11 In a simple generalization of this model, the transactions may hold
sharedand exclusivelocks on data items.

252

6.1 The DDG policy

For purposes of concurrency control, a knowledge base is a
directed graph G(V,E), where V is a set of nodes vi (e.g.,
Employee in Fig. 1), and E is a set of edges which are or-
dered pairs (vi, vj) of nodes (e.g., (Manager,Employee) in
Fig. 1). This graph includes as a sub-graph the class schema
mentioned in Sect. 4 and also represents structural infor-
mation about tokens and cross-references among deductive
rules. There can be several alternative ways to generate such
a graph for a given knowledge base. In the performance ex-
periments that we report later, the graph was created by
representing each class and each token by a node and in-
troducing an edge between two nodes if there is a semantic
relationship (for example, partof or isA) between the two.

We first define some properties of directed graphs that
are necessary for specifying our algorithm. A root of a di-
rected graph is a node that does not have any predecessors.
A directed graph is rooted if it has a unique root and there
is a path from the root to every other node in the graph.
A directed graph is connected, if the underlying undirected
graph is connected. A strongly connected component(SCC)
Gi of a directed graph G is a maximal set of nodes such that,
for each A,B ∈ Gi, there is a path from A to B. An SCC
is non-trivial if it has more than one node. An entry pointof
an SCC, Gi, is a node B such that there is an edge (B,A)
in G, A is in Gi, but B is not in Gi. Thus, if a node is an
SCC by itself, its entry points are simply its predecessors.

The dominator D of a set of nodes W is a node such
that, for each node A ∈ W , either every path from the root
to A passes through D, or D lies on the same SCC as A.
Thus, in a rooted graph, the root dominates all the nodes
in the graph, including itself. All nodes on a SCC dominate
each other.

The DDG policy has three types of rules. Preprocessing
rules convert an arbitrary graph to a rooted and connected
graph. Locking rulesspecify how each transaction should ac-
quire locks. Maintenance rulesspecify additional operations
that must be executed by transactions to keep the structure
rooted and connected. The rest of the discussion in this sec-
tion focuses on locking rules. A detailed description of the
DDG algorithm appears elsewhere (Chaudhri 1995).

A transaction may lock a node in sharedor exclusive
mode (Bernstein et al. 1987). Two transactions may simul-
taneously lock a node only if both lock it in shared mode.
(The version of the DDG policy that supports both shared
and exclusive locks is called the DDG-SX policy, but for
the sake of brevity in the present paper, we continue to use
the DDG policy to denote the DDG-SX policy.) The locking
rules for the DDG policy are as follows:

L1. Before a transaction T performs any INSERT, DELETE
or WRITEoperation on a node A (or an edge (A,B)),
T has to lock A (both A and B) in exclusive mode.
Before T performs a READoperation on a node A (an
edge (A,B)), it has to lock A (both A and B) in either
mode.

L2. A node that is being inserted can be locked at any time.
L3. Each node can be locked by T at most once.
L4. The first lock obtained by T can be on any node. If the

first node locked by T belongs to a non-trivial SCC,

all nodes on that SCC are locked together in the first
step.
Subsequently,

L5. All nodes on an SCC are locked together if:
L5a. All entry points of that SCC in the present stateof G

have been locked by T in past, and T is now holding
a lock on at least one of them, and

L5b. For every node A on this SCC that is a successor of
an entry point, and every path A1, . . . , Ap, A, p ≥ 1,
in the present state of the underlying undirected graph
of G, such that T has locked A1 (in any mode), and
A2, . . . , Ap in shared mode, T has not unlocked any
of A1, . . . , Ap so far.

Theorem 6.1. The DDG-SX policy produces only serializ-
able schedules (Chaudhri 1995; Chaudhri and Hadzilacos
1995).

In general, the DDG policy does not permit concurrency
within cycles (see rule L4 above). This suggests that if a
knowledge base contains very large cycles which need to be
locked as one node, concurrency will be reduced. We have a
version of the DDG policy (called, DDG

′
policy) that does

permit concurrency within cycles (Chaudhri et al. 1992).
We adopted the above version, because the transactions in
knowledge bases tend to access all the nodes on a cycle to-
gether and, therefore, the cycles are a natural unit of locking.

In order for a transaction to be able to satisfy locking
rules L3a and L3b for all the nodes that it needs to lock, it
has to begin by locking the dominator of all the nodes that
it is going to access. This is not a contradiction to locking
rule L1, which just states that to lock the first node (which
would usually be the dominator of the set of nodes that the
transaction expects to lock), no other condition needs to be
satisfied.

6.2 Implementation of the DDG policy

There are two main issues in the implementation of the
DDG policy. First, to enforce the rules of the locking policy,
we need to compute and maintain information about several
graph properties. Second, we need a mechanism to decide
the order in which the locks should be acquired and released.

To enforce the locking rules, we need information on
the dominator relationships and the SCCs within the knowl-
edge base graph. In our implementation, the dominator tree
of the knowledge base is computed at compile time using
a bit vector algorithm (Lengauer and Tarjan 1979). Using
this information, the dominator of the set of nodes in the
transaction can be computed in time linear in the length of
a transaction using the nearest common ancestor algorithm
(Schieber and Vishkin 1988). The dominator information is
maintained using an incremental algorithm (Carroll 1988).
The information on SCCs is computed at compile time in
time O(m) (Aho et al. 1987), where m is the number of
edges in the graph. We developed a new algorithm for in-
crementally maintaining information on SCCs as the knowl-
edge base evolves (Chaudhri 1995), as the algorithm for this
purpose was not available.

Let us describe the order in which a transaction acquires
and releases locks. A transaction always begins by locking

253

the dominator of all the nodes that it might access. The dom-
inator is computed on the assumption that a transaction may
access all the descendants of the first node on which it re-
quests a lock. Subsequently, every time a lock is requested,
the locking conditions are checked, and if not enough pre-
decessors are locked (rule L5a), lock requests for them are
issued recursively. Before a node A can be unlocked by a
transaction T , the following conditions must be satisfied:

U1. A is no longer needed by T , and
U2. releasing the lock on node A does not prevent the lock-
ing of any of its successors at a later stage in the execution
of T (as required by rule L5a), and
U3. for every path A,A1, . . . , Ap, B in the present state of
the underlying undirected graph, such that A is locked (in
any mode), A1, . . . , Ap are locked in shared mode, T intends
to lock B in future, T must not unlock any of A,A1, . . . , Ap

(by locking rule L5b).

To implement U1, we require T to send a message to
the lock manager when it has finished processing a node.

To implement U2, we have to know how many of the
descendants might be later locked by T . Moreover, of all the
predecessors of a node A, only one has to be kept locked
until T locks A. Therefore, we distinguish one of the prede-
cessors that needs to be locked until all the successors have
been locked, and associate with it the number of successors
that are yet to be locked. Once the number of successors yet
to be locked for a node becomes zero, U2 is satisfied for
this node.

To implement U3, we check all the undirected paths from
A to all the nodes that T may lock in future. U3 needs to be
checked only when T acquires an exclusive lock or when
T locks a node, none of whose descendants will be locked
by it in future. The check can be made more efficient by
observing that, if U3 is not satisfied for a node A, it is also
not satisfied for descendants of A, and therefore, the paths
passing through them need not be checked.

These data structures are integrated into the lock manager
by maintaining an unlock table. This table is indexed on the
node identifier and transaction identifier. An unlock record
has three fields that were described above: neededByTrans-
action, onePredecessorand count. These entries are created
when the transaction begins execution and are incrementally
updated as the transaction progresses and as changes in the
underlying structure of the graph occur.

6.3 Performance results

The DDG policy has been implemented in the DeNet (Livny
1986) simulation environment. Our performance model is
similar to that presented in (Agrawal et al. 1987) and has
four components: a source, which generates transactions, a
transaction manager, which models the execution behavior
of transactions, a concurrency control manager, which im-
plements the details of a particular algorithm; and a resource
manager, which models the CPU and I/O resources of the
database. More details about the model and the simulations
are available elsewhere (Chaudhri et al. 1994).

The primary performance metric adopted for the simu-
lation is the response time of transactions in each class. We

employ a batch means method for the statistical data analysis
of our results, and run each simulation long enough to ob-
tain sufficiently tight confidence intervals (90% confidence
level, within 5% of the mean; Law and Kelton 1991).

Performance of the DDG policy was studied on a knowl-
edge base under development for industrial process con-
trol. The objects represented in the knowledge base (boilers,
valves, preheaters, alarms, etc.) are organized into a collec-
tion of classes, each with its own sub-classes, instances and
semantic relationships to other classes.

There are five kinds of relationships in this knowledge
base. The isA relationship captures the class-sub-class re-
lationship, the instanceOf relationship represents the in-
stances of a class, the linkedTo relationship stores how
the components are linked to each other in the power plant,
the partOf relationship indicates the part-sub-part relation-
ship. And finally, the Equipment relationship associates an
equipment with each alarm.

For our experiments, we view this knowledge base as a
directed graph. Each class and each instance is represented
by a node. There are 2821 nodes in this graph. There is
an edge between two nodes if they have some semantic re-
lationship. For example, there is an edge from node A to
node B, if the object represented by B is a part of the object
represented by node A.

The graph corresponding to this knowledge base has cy-
cles and undergoes changes. Moreover, the knowledge base
receives two types of transactions. The first type consists
of short transactions, which look-up or update an attribute
value and occasionally change the structural relationships in
the knowledge base (such as isA, partOf, etc.). The second
class consists of long transactions which search the knowl-
edge base along one of its structural relationships. The pro-
portion of the transactions of the first type was determined
to be 73% with the remaining 27% being of the second type.

Calibration of the simulation required determination of
the relative running costs of the 2PL and DDG policies. For
this, we divided running costs into three components: setup,
locking and commit cost. For the DDG policy, the setup
cost includes pre-processing of the transactions and gener-
ating information that will be used in prereleasing locks. It
also includes the cost of creating entries in the lock table
and the transaction table. For 2PL, no pre-processing of the
transactions is required but entries in the transaction table
and the lock table are created at setup time. The locking
cost includes the CPU time required between the time a
lock request was made and the time it was finally granted.
If the transaction gets blocked, information on the process-
ing used so far is maintained and, when it gets unblocked
later, it is added to any further processing used. For the DDG
policy, the cost of locking also includes the cost of check-
ing for lock pre-release, cost of releasing locks and cost of
unblocking of transactions in each call to the lock manager.
The cost of commit includes the processing required to re-
lease all the locks and to finally commit the transaction. In
general, the cost of commit for 2PL is higher as compared to
the DDG policy. This is because, under the DDG policy, a
transaction would have already released several of its locks
prior to commit, whereas for the 2PL policy all the locks
are released at commit time.

254

All simulation measurements were done on a DECSta-
tion 5000 (model 132). The values of overheads are subject
to fluctuations. To maintain the consistency of results across
different simulation runs, the values of overheads measured
from the implementation were given as parameters to the
simulation.

These parameters, along with the knowledge base and
its associated transactions, were used as input to the simu-
lation model. Preliminary experiments showed that, for the
parameter values of this application, the system response
degrades due to a large number of long transactions and
that the number of short transactions is not the key influ-
encing factor. Therefore, we used a load control strategy in
which the number of long transactions active at any time
is controlled, whereas short transactions are processed as
soon as they enter the system. In Fig. 8, we plot the per-
centage improvement in response time of Class-2 trans-
actions obtained by using the DDG policy as compared
to 2PL. If R(j)2PL and R(j)DDG are the mean response
times of transactions in class j, then the percentage im-
provement of the DDG policy over 2PL is computed as
100 × (R(j)2PL −R(j)DDG)/R(j)2PL.

The results for Class-2 transactions indicate that, when
Class-1 transactions are read only, the performance of the
DDG policy is comparable to 2PL. When Class-1 transac-
tions also perform some updates, the DDG policy can im-
prove considerably (of the order of 50%) the response time
of Class-2 transactions that are running concurrently. The re-
sults for Class-1 transactions are not shown here. We found
that at low update probabilities there was slight degradation
(about 10%) in Class-1 response time by using the DDG
policy, and at high update probabilities there was no signif-
icant difference between the two algorithms. These results
make sense, because when there are only shared locks in
a transaction, the DDG policy cannot allow any release of
locks before its locked point, but incurs extra overhead and
therefore, leads to a slight degradation in response time. On
the other hand, if the Class-1 transactions are update inten-
sive, they release locks before their locked point, and the
extra overhead is more than offset by the increased con-
currency obtained due to lock pre-release leading to a net
improvement in Class-2 response time.

In Fig. 8, we can observe that the improvements are
smaller at high multi-programming levels. At low multi-
programming levels (for example, at MPL=1), any release of
locks by a transaction before its locked point contributes to
the improvement in response time of concurrently executing
Class-2 transactions. At higher multi-programming levels,
this may not be necessarily true, because the lock released
by a Class-1 transaction could be acquired by another Class-
1 transaction giving no benefit to Class-2 transactions. As a
result, we see greater improvements in the Class-2 response
time at low multi-programming levels of Class-1 as com-
pared to improvements at high multi-programming levels.

The overall system response time can be computed as the
weighted sum of the individual class response times, where
class throughputs are used as weights. In the APACS work-
load the throughput of Class-2 (25 transactions/s) is much
higher than the throughput of Class-1 (approximately 0.4
transactions/s), and therefore the behavior of Class-2 trans-
actions dominates the overall response time. On computing

the improvements in the overall response time, we found that
improvements were very close to the corresponding values
for Class-2 response time, as shown in Fig. 8.

In view of the relative behavior of the two algorithms,
we designed an adaptive scheme which can switch between
2PL and the DDG policy, depending on the load conditions.
Such a scheme uses 2PL at low write probabilities and the
DDG policy at high write probabilities, thus giving the best
of the two algorithms. Since simultaneously using the two
algorithms may lead to non-serializable, schedules the adap-
tive scheme uses a transition phase while switching from
one algorithm to the other. While switching from 2PL to
the DDG policy, transactions locked according to the DDG
policy are forced to behave as 2PL transactions by delaying
the release of lock until locked point. While switching from
the DDG to 2PL, the adaptive scheme waits until all active
transactions running under the DDG policy complete execu-
tion. This results in an algorithm which is a hybrid of 2PL
and the DDG policy and performs consistently better than a
concurrency control algorithm that only uses 2PL.

Of course, an important consideration in the choice be-
tween the two algorithms is the relative complexity of the
two algorithms. The DDG policy is more complex than 2PL,
and therefore, its implementation requires a greater effort.
For example, in our simulation, 2PL required approximately
1000 lines of code and the DDG policy required 3000 lines
of code. Our simulations incorporate the cost of extra com-
plexity by measurements of run-time overhead of the two
algorithms and show that there is a net improvement in re-
sponse times. Thus, the final choice between the DDG pol-
icy and 2PL has to be made by the implementor, who has to
evaluate whether the improvements shown above are worth
the added complexity of the DDG policy.

Even though our experiments are based on a knowledge
base of rather small size, we can predict the relative perfor-
mance of the two algorithms on larger knowledge bases. It
has been shown that the performance results of a 2PL algo-
rithm on a knowledge base of size of D entities with N ac-
tive transactions are indicative of its performance on another
knowledge base of size bD entities with bN active transac-
tions, where b > 0 (Tay 1987). In a similar fashion, we
expect that our results are representative of the relative per-
formance of 2PL and the DDG policy on knowledge bases
that are larger and have greater number of active transac-
tions. Another important aspect in scaling up of these results
to larger knowledge bases is the run-time cost for incremen-
tal maintenance of graph properties, which include, SCCs
and dominator relationships. The run-time cost of incremen-
tal algorithms is highly dependent on the nature of changes
in the graph. For example, if the insertions and deletions to
the graph cause only local changes in a graph property, the
run-time cost is minimal. On the other hand, if the changes
are such that they lead to a change in a substantial part of
the solution, the computational cost can be excessive. It is
difficult to comment on this aspect in the absence of a spe-
cific knowledge base and its workload. In general, if the
database is highly structured (Chaudhri 1995) the locality of
changes is almost assured, and the incremental algorithms
and therefore the results presented in this section will scale
up to larger problems.

255

Class 2

5 10 15 20 25 0

0.2

0.4

0

25

50

Multiprogramming level Class 1 write
probability

%
Im

pr
ov

em
en

t
ov

er
2P

L

Fig. 8. Comparison of DDG and 2PL – percentage improvements

The present section has presented an overview of the
results based on the second author’s doctoral dissertation
(Chaudhri 1995), which have also been published as confer-
ence length papers (Chaudhri et al. 1992, 1994; Chaudhri
and Hadzilacos 1995; Chaudhri and Mylopoulos 1995).

7 Integrity constraint and rule management

Integrity constraints specify the valid states of a knowledge
base (staticconstraints), as well as the allowable knowledge
base state transitions (dynamicconstraints). Integrity con-
straints are used to express general, complex semantic rela-
tionships that cannot be built into the data structures used to
represent knowledge. Such relationships may refer to state
transitions or histories (Plexousakis 1993a).

As an example, consider the following integrity con-
straints on the knowledge base of Sect. 2. (These constraints
are expressed in an equivalent form without using the meta-
predicate Holds .)

IC1: ∀p/ConfPaper ∀x/Author ∀r/Referee
∀t1, t2, t3, t4/TimeInterval
[author(p, x, t1, t2) ∧ referee(p, r, t3, t4)
∧during(t3, t1) ∧ during(t4, t2)] ⇒ [r /= x]

IC2: ∀c/Conference ∀p/ConfPaper ∀a/Author
∀d/Department ∀t1, t2/TimeInterval
(submitted to(p, c, t1, t2) ∧ organized by(c, d, t1, t2)
∧author(p, a, t1, t2)∧works in(a, d, t1, t2) ⇒ False)

IC3: ∀p/Employee)(∀s, s′/Integer
∀t1, t2, t3/TimeInterval
(salary(p, s, t1, t2) ∧ salary(p, s′, t3, t2)
∧before (t1, t3) ⇒ (s ≤ s′))

IC4: ∀p, c, l/Proposition ∀t, t′/TimeInterval
(prop (p, c, l, c, t) ∧ instanceOf (p,Class , t, t′) ⇒
(∀T, T ′/TimeInterval (overlaps (t, T)
∧overlaps (t′, T ′)

⇒ instanceOf (p,Class , T, T ′)))

Constraints IC1 and IC2 are static, expressing the prop-
erties that “no author of a paper can be its referee” and “an
author cannot submit a paper to a conference organized by
the department she works in”, respectively. Constraint IC3
enforces the property that “an employee’s salary can never
decrease”. This constraint expresses a transitional property,
as it refers to more than one state of the domain being
modeled. Constraints referring to multiple domain states are
called dynamic. The last of the above formulae is an exam-
ple of a dynamic epistemic (meta-) constraint expressing the
property that “the system cannot stop believing a class defi-
nition”. Constraints of this type refer to multiple knowledge
base states in addition to multiple domain states.

The above types of constraints are significantly more
general than functional dependencies, type constraints and
other types of constraints traditionally supported in relational
or object-oriented databases. In particular, these constraints
contain semantic information in the form of aggregation and
generalization relationships, and represent temporal knowl-
edge.

The presence of deductive rules in a knowledge base is
an additional impediment to the problem of constraint en-
forcement, because implicitly derived knowledge may affect
the properties specified by the constraints. For example, con-
sider the following deductive rules:

DR1: ∀u/UnivAffiliate ∀d/Department
∀s, s′/String ∀t1, t2/TimeInterval

(address(u, s, t1, t2) ∧ D addr(d, s′, t1, t2)
∧ (s = s′) ⇒ works in(u, d, t1))

DR2: ∀d/Department ∀u/University ∀s/String
∀t1, t2/TimeInterval
(univ(d, u, t1, t2) ∧ location(u, s, t1, t2)

⇒ D addr(d, s, t1))

DR1and DR2express the rules that “A university affiliate
works in the department that has the same address as she
does” and “A university department’s address is the same

256

as the university’s location”, respectively. Looking at the
expressions of rule DR1and constraint IC2 , it can be easily
seen that an update in any of the literals in the body of DR1
may change the truth value of its conclusion literal which
occurs in IC2 and thus violate IC2 . In the same fashion,
facts implicitly derived using DR2may trigger the evaluation
of DR1 and, as before, violate constraint IC2 .

The key issue in our research has been to devise an ef-
ficient method for constraint checking. Constraint checking
consists of verifying that all constraints remain satisfied in
the state resulting from an update to the knowledge base.
Constraint checking constitutes a major performance bottle-
neck and most commercially available database systems only
guarantee very limited types of integrity constraint checking,
if at all. Incrementalintegrity checking methods are based on
the premise that constraints are known to be satisfied prior
to an update. Accordingly, only a subset of the constraints
needs to be verified after the update, namely those that are af-
fected by it. Moreover, incremental integrity checking can be
further optimized by specializing integrity constraints with
respect to the anticipated types of updates and by performing
simplifications on the specialized forms. In the presence of
deductive rules, an integrity checking method must account
for implicit updates induced by the interaction of explicit up-
dates and deductive rules. In other words, it has to be verified
that no implicitly generated insertion or deletion may violate
any of the constraints. The method we propose in this sec-
tion is an incremental compile-time simplification method
that accounts for implicit updates, as well as for temporal
knowledge.

A last issue in constraint enforcement is that of in-
tegrity recovery, i.e., the undertaking of appropriate action
for restoring the consistency of the knowledge base once it
has been violated by some updating transaction. At present,
we adopt a coarse-grained approach to integrity recovery,
namely the rejection of any integrity-violating transaction. A
transaction is not committed until all constraints are found
to be satisfied. 12

7.1 Inadequacies of existing methods

A number of incremental constraint-checking techniques
for relational (e.g., Nicolas 1982; Ceri and Widom 1990;
Ling and Lee 1992; Gupta et al. 1994), deductive (e.g.,
Decker 1986; Bry et al. 1988; Kuchenhoff 1991), object-
oriented (Jeusfeld and Jarke 1991) and temporal databases
(Chomicki 1992), have appeared in the recent literature. A
complementary approach, which modifies transactions prior
to their execution to ensure knowledge base integrity, is stud-
ied in (Stonebraker 1975) and (Wallace 1991). Along the
same lines, a transaction modification technique for tem-
poral constraints has been proposed in (Lipeck 1990), but
does not account for implicit updates. A transaction mod-
ification method for temporal constraints and implicit up-
dates appears in (Plexousakis 1996) and (Plexousakis and
Mylopoulos 1996). Transaction modification is less flexible

12 A finer grained approach could initiate a sequence of updates that
change the knowledge base, so that constraints are satisfied in the resulting
state.

than constraint simplification, since each transaction has to
be modified for each relevant constraint.

Most promising, as a basis for enforcing more expres-
sive constraints such as the ones expressible in the assertion
language of Telos, are the compilation methodof Bry et al.
(1988) and the historical knowledge minimizationtechniques
of Hulsmann and Saake (1990) and Chomicki (1992). The
former method, extended with the ability to deal with object
identity, aggregation and classification, has been used in the
integrity sub-system of the deductive object base Concept-
Base (Jeusfeld and Jarke 1991; also based on a version of
Telos). However, this method does not deal with temporal
or dynamic constraints. Historical knowledge minimization
techniques assume a formulation of constraints in temporal
logic and attempt to minimize the historical information re-
quired in order to verify the constraints. They are applicable
to relational databases only and assume a fixed set of con-
straints. Thus, neither of these methods by itself is sufficient
to deal with the integrity constraints of our KBMS.

This section describes a novel method for compile-time
simplification of temporal integrity constraints in a deductive
object-oriented setting. The method uses a comprehensive
compilation and simplification scheme that leads to an effi-
cient implementation of constraint checking by allowing us
to pre-compute implicit updates at compile time. Moreover,
a number of optimization steps, including temporal simpli-
fication, are performed at compile time, so that the resulting
forms are easier to evaluate at update time. The compilation
scheme allows for dynamic insertion or removal of integrity
constraints and deductive rules without having to re-compile
the entire knowledge base. The method is described in more
detail in Plexousakis (1993a).

7.2 A constraint enforcement algorithm

Our constraint enforcement method operates in two phases:
compilation and evaluation. Compilation is performed at
schema definition time and leads to the organization of sim-
plified forms of rules and constraints into a dependence
graph, a structure that reflects their logical and temporal
interdependence. The evaluation phase is performed every
time there is an update to the knowledge base. This phase
is responsible for enforcing the constraints and incremen-
tally maintaining the dependence graph that was generated
during compilation. We will first give some definitions and
then describe the compilation and evaluation phases in more
detail.

7.2.1 Formal framework

Integrity constraints are expressed declaratively as rectified13

closed well-formed formulae of the assertion language. An
integrity constraint can have one of the following two forms:

I ≡ ∀x1/C1 . . . ∀xk/CkF , or
I ≡ ∃x1/C1 . . . ∃xk/Ck F ,

13 A formula is rectified if no two quantifiers introduce the same variable
(Bry et al. 1988).

257

where F is any well-formed formula of the assertion lan-
guage whose quantified sub-formulae are of the above forms
and in which the variables x1, . . . , xk are free variables.
Each Ci is a Telos class and the meaning of each restricted
quantification is that the variable bound by the quantifier
ranges over the extension of the class instead of the en-
tire domain. Any constraint in this form is range-restricted
(Decker 1986).14

The typed quantifications ∀x/CF and ∃x/CF are short
forms for the formulae:

∀x ∀t instanceOf (x,C, t)
∧instanceOf (t,TimeInterval ,Alltime) ⇒
F ,
∃x ∃t instanceOf (x,C, t)
∧instanceOf (t,TimeInterval ,Alltime)∧F .

The introduction of temporal variables and their restricting
literals is necessary, since all atomic formulae of the asser-
tion language have a temporal component.

Deductive rules are considered to be special cases of
integrity constraints. Their general form is:

DR≡ ∀x1/C1 . . . ∀xn/Cn (F ⇒ A) ,

where F is subject to the same restrictions as above and
A is an atom of the assertion language. In addition, deductive
rules are assumed to be stratified15 (Ullamn 1988).

Let us now introduce some terminology that we will use
in the rest of the section.

Definition 7.1. An update is an instantiated literal. A posi-
tive literal is considered as an insertion, whereas a negative
literal is considered as a deletion.

Given the general form of constraints, it can be seen that
a constraint is affected by an update only when a “tuple” is
inserted into the extension of a literal occurring negatively in
the constraint, or when a “tuple” is deleted from the exten-
sion of a literal occurring positively in the constraint. The
definition of relevancefound in (Jeusfeld and Jarke 1991)
is not sufficient in the presence of time. The following def-
inition provides sufficient conditions for “relevance” of a
constraint to an update by considering the relationships of
the time intervals participating in the literals of the constraint
and the update.

Definition 7.2. (Affecting Update) An updateU (, , t1, t2)
is an affecting update for a constraintI with history and
belief time intervalsT and T ′ respectively, if and only if
there exists a literalL(, , ,) in I such thatL unifies with
the complement ofU and the intersectionst1 ∗ T andt2 ∗ T ′
are non-empty.

Similar to the above definition, we define the notion of
concerned classfor a literal L. The role of a concerned class
is to limit the search space for constraints affected by an up-
date. This is possible because of the fine granularity – not

14 This class of constraints is equivalent to both the restricted quantifi-
cation formof Bry et al. (1988) and the range formof Jeusfeld and Jarke
(1991).

15 A set of rules is stratified if, whenever a negated literal P occurs in
the body of a rule with head Q, there is no derivation path for P in which
Q occurs in the body of a rule.

found in relational databases – provided by aggregation. De-
termining concerned classes for literals in constraints takes
into account the instantiation and specialization relationships
in the knowledge base.

Definition 7.3. (Concerned Class) A classC(, , t1, t2) is a
concerned class for a literalL(, , T, T ′) if and only if in-
serting or deleting an instance ofC affects the truth ofL,
the intersectionst1 ∗ T and t2 ∗ T ′ are non-empty andC is
the most specialized class with these properties.

The notions of dependenceand direct dependenceare
used to characterize the logical and temporal interdepen-
dence between rules and constraints and the generation of
implicit updates. A dependence graphis a structure repre-
senting such a dependence relation for a set of deductive
rules and integrity constraints.

Definition 7.4. (Direct Dependence) A literal L directly de-
pends on literalK if and only if there exists a rule of the
form ∀x1/C1 . . . ∀xn/Cn (F ⇒ A) such that there exists a
literal in the bodyF of the rule unifying withK with most
general unifierθ andAθ = L.

Dependenceis the transitive closure of direct depen-
dence.

Definition 7.5. (Dependence) A literal L depends on literal
K if and only if it directly depends onK or depends on a
literal M that directly depends onK.

For example, literal works in of constraint IC2 directly
depends on literal D addr of rule DR1 and (transitively)
depends on literal location of rule DR2.

7.2.2 Compilation phase

The compilation process employs a number of rules for
parametrized form generationand formula simplification.
The former type of rules generate a simplified parametrized
form for each integrity constraint and deductive rule defined.
Formula simplification rules apply a number of simplifica-
tion steps, including temporal simplifications to the origi-
nal expressions, in order to produce more easily evaluable
forms. The final step in the compilation phase is dependence
graph generation. This incremental process accepts as input
the parametrized forms generated and represents them in the
form of a dependence graph. In the following paragraphs,
we describe the application of the above rules and the gen-
eration of the graph structure in more detail.

7.2.2.1 Parametrized form generation.For each literal l oc-
curring in a constraint or the body of a deductive rule,
the compilation process generates a parametrized simplified
structure(PSS). A PSS is a 6-tuple 〈l, p, c, h, b, s〉, where l
is the literal, p is the list of instantiation variables 16 occur-
ring in l, c is the concerned class of l, h is the history time
and b is the belief time of the constraint or rule with respect
to which the simplified form is generated. A PSS allows us
to efficiently retrieve the constraints or rules affected by an

16 Instantiation variables are universally quantified and are not governed
by an existential quantifier.

258

update by indexing with respect to time, characteristic literal
or class. The rules for the generation of parametrized forms
are given below. Rules PF1a to PF1d are used to determine
concerned classes for literals. Rules PF2 to PF5 are used to
simplify the formulae and generate the parametrized forms.

PF1. For each literal appearing in an integrity constraint
or deductive rule, compute the concerned class as
follows:

PF1a. Instantiation literals : for literals of the
form instanceOf (x, y, t1, t2), if y is instantiated,
then y is the concerned class provided this class
exists during t1 and its existence is believed during
t2; otherwise, the built-in class InstanceOf is the
concerned class.

PF1b. Generalization literals : for literals of the
form isA (x, y, t1, t2) where both x and y stand for
classes, the concerned class is the built-in class isA ,
since the truth of an isA literal does not depend on
the insertion/deletion of instances to/from the exten-
sions of x and y.

PF1c. Attribute literals : for a literal of the form
att(x, y, t1, t2), where att is an attribute of the class
x, if both x and y are un-instantiated, then the con-
cerned class of the literal is the unique attribute
class q with components from (q) = X, label (q) =
att, to (q) = Y and when(q) = T , that is such that
x is an instance of X for t1, y is an instance of
Y for t1 and both these are believed during t2. In
other words, the most specialized concerned class
is the attribute class that includes all instantiated at-
tributes that relate objects x and y of types X and Y ,
respectively, under the assumption that to each at-
tribute literal of the assertion language corresponds
a unique proposition with the above properties.

PF1d. For a literal of the form prop (p, x, y, z, t), if the
components x and z are equal, then the concerned
class is the built-in class Individual ; if not, the
concerned class is the class Attribute . In case
none of x and z are instantiated, the concerned class
is the class Proposition . However, prop liter-
als will not be considered in the generation of sim-
plified forms, because it is assumed that, for every
proposition p with components x, y, z, t, there exist
token propositions in the knowledge base defining
the components.17

PF2. Drop the quantifiers binding the instantiation vari-
ables and set the parameter list to be the list of
instantiation variables.

PF3. Constrain the temporal variables with respect to the
history and belief times of the constraint using the
during temporal predicate and conjoin them with
the constraint or rule.

PF4. Substitute the atom into (from) whose extension an
insertion (deletion) takes place by the Boolean con-
stant True (False), since after the update it is
known that the fact expressed by the literal is true
(false).

17 It is possible to express referential integrity in Telos as a meta-
constraint in the assertion language.

PF5. Apply absorption rules (see Table 3) until no further
simplification is possible.

PF6. Apply temporal simplification rules (see Table 4)
until no further simplification is possible.

Example: The concerned class for literal author of con-
straint IC1 is the attribute class defined by the proposition
(Paper , author, Author , t), with t satisfying the proper-
ties of rule PF1c. Assume that the history and belief time in-
tervals of the constraint are the intervals (01/01/1988 ..∗)
and (21/01/1988 ..∗), respectively. Applying the rest of the
rules to constraint IC1 for an insertion author(P,X,T,T′)
yields:

∀r/Referee ∀t3, t4 TimeInterval
(referee(P, r, t 3, t 4)

∧ during (t 3,T) ∧ during (t 4,T′)
∧ during (t 3, (01/01/1988 ..∗))
∧ during (t 4, (02/01/1988 ..∗))
⇒ (r /= X))

At update time, if the constraint is affected by the update,
the form that will have to be verified is
∀r/Referee (referee(P, r, t 3, t 4)

∧ during (t 3,T) ∧ during (t 4,T′) ⇒ (r /= X)) .

Let us briefly comment on the application of compila-
tion to dynamic (epistemic) constraints. The expressions of
dynamic constraints may contain atoms occurring more than
once, since the properties expressed refer to two or more
states. In such a case, the compilation process will generate
one PSS for each literal occurrence. The forms will differ
in their parameter lists, as well as in their simplified forms.
The original constraint will be violated if any of its simpli-
fied forms is. However, in such a case, not all occurrences
of the literal can be replaced by their truth values on the
basis that both the update and the fact that constraints were
satisfied before the updates are known. This would be pos-
sible only if it were known that the constraints were non-
trivially satisfied in the previous state. A logical implication
is trivially satisfied if its antecedent is false. This kind of
knowledge requires the maintenance of meta-level informa-
tion about the satisfaction of constraints. For the moment,
we will assume that no such knowledge is available and that
a PSS is generated for each literal occurrence in an integrity
constraint. The following example shows the application of
the compilation process in the case of a dynamic constraint.

Example: Assume that the history and belief time intervals
of constraint IC3 of our working example are T and T ′,
respectively. The literal salary occurs twice in the expres-
sion of the constraint. Only one of the history time variables
t1 and t3 will be instantiated in each of the two forms. It
is known that the constraint is satisfied before an update
to a salary literal occurs. Hence, according to the current
beliefs of the system, either all employees have not had a
change in salary, or, for those that have had a salary change,
this change was an increase. If no information exists about
whether the satisfaction of the constraint prior to the update
is strict or trivial, the following two forms can be generated
by the compilation process:

259

Table 3. Absorption rules

φ ∧ True ≡ φ φ ∧ False ≡ False φ ⇒ True ≡ True φ ⇒ False ≡ ¬φ
φ ∨ True ≡ True φ ∨ False ≡ φ True ⇒ φ ≡ φ False ⇒ φ ≡ True
¬True ≡ False ¬False ≡ True φ ⇔ True ≡ φ φ ⇔ False ≡ ¬φ

∀s/Integer ∀t1/TimeInterval (salary(p, s, t1, t2)
∧ during (t1, T) ∧ during (t3, T)
∧ before (t1, t3) ∧ during (t2, T ′) ⇒ (s ≤ s′)) ,

∀s′/Integer ∀t3/TimeInterval (salary(p, s′, t3, t2)
∧ during (t1, T) ∧ during (t3, T)
∧ before (t1, t3) ∧ during (t2, T ′) ⇒ (s ≤ s′)) .

Were it known that IC3 was non-trivially satisfied, only
one simplified form would be generated, namely the form
resulting from dropping all quantifiers from the above forms
and replacing the salary literals by True . If however it
was trivially satisfied before the update, i.e., at least one of
the salary literals was false or the temporal constraint was
violated, then the salary literals cannot be eliminated. �
7.2.2.2 Temporal simplification.The objective of temporal
simplification rules is to simplify a conjunction of tempo-
ral relationships into a single temporal relationship. In its
full generality, this task is intractable (Allen 1983). In our
method, however, we require that at least one of the tempo-
ral variables in each temporal relation should be instantiated,
and with this condition the simplification can be performed
efficiently. In fact, only a table lookup is required.

Formally, the problem of temporal simplification is stated
as follows: given a conjunction during (t, i1) ∧ r 1(t, i2) ∧
r 2(i1, i2), where r 1 and r 2 are any of the 13 possible rela-
tionships (or their negation) between any two time intervals,
and i1, i2 are known time intervals, find a temporal relation-
ship r and an interval i such that r (t, i) is satisfied if and
only if the original conjunction is satisfied. For some com-
binations of r 1 and r 2, r is a disjunction of temporal rela-
tionships. In those cases, and for the sake of completeness,
we do not replace the original expression by the equivalent
disjunction. Table 4 shows the simplified forms obtainable
from the various combinations of temporal relationships for
r 1 and r 2. F denotes a logical contradiction, and the cases
where no simplification is possible without introducing dis-
junction are denoted by the entry “no simp.”.

Example: Consider the conjunction

during (t, 01/88..09/88)∧ before (t, 05/88..12/88)
∧ overlaps (01/88..09/88, 05/88..12/88) .

Using Table 4, it can be simplified into
during (t, 01/88..05/88). �
7.2.2.3 Formal properties of simplification.The following
properties have been proven for the simplification method
described in the previous paragraphs. Detailed proofs can
be found elsewhere (Plexousakis 1996).

Theorem 7.1. The simplification rules PF1–PF6 are sound.
Temporal simplification (rule PF6) is also complete.

The simplification method consists of a number of truth-
preserving transformations that produce formulae which, if
proven not to be satisfied in the resulting knowledge base

state, imply that the original formulae are not satisfied. More-
over, no inconsistency can be introduced by any of the sim-
plification steps. Temporal simplification is also complete in
the sense that all possible temporal transformations are per-
formed. No transformation takes place in those cases where
the derived temporal relationship is a disjunction of temporal
predicates.

7.2.2.4 Dependence graph organization.This section de-
scribes the organization of compiled forms of integrity con-
straints and deductive rules into a dependence graph. The
graph is used for computing the effects (direct or indirect)
of updates on integrity constraints.

The notions of dependenceand direct dependencehave
already been defined in Sub-section 7.2.1. The dependence
graph for a knowledge base KB with a set of integrity con-
straints I and a set of deductive rules R is defined as follows:

Definition 7.6. GivenKB = (, I, R), the dependence graph
for KB is a directed graphG = (V,E) with the following
properties. There is a nodev ∈ V corresponding to each
parametrized simplified structure (PSS) of each deductive
rule and integrity constraint. The setV is partitioned into
two disjoint setsVI andVR, where eachv ∈ VI is a PSS cor-
responding to a literal appearing in an integrity constraint
and eachv ∈ VR is a literal appearing in a deductive rule.
There is an edge(u, v) ∈ E between nodesu ∈ VR and
v ∈ V if and only if v directly depends onu. The setE of
edges is made up of edges between rule nodes (ERR) and
edges from rule to constraint nodes (ERC).

Example: Figure 9 shows the dependence graph for our
working example. The edge from the PSS for literal address
of rule DR1 to the works in literal of IC2 denotes the di-
rect dependence of IC2 on constraint DR1.

From the previous definition it can be seen that the
dependence graph has a special structure: there are no
edges outgoing from a node v ∈ VI . There can be cy-
cles among deductive rule nodes in the graph. This hap-
pens when R contains mutually recursive rules. There are
no trivial cycles in the graph and it has the following prop-
erty (Plexousakis 1996):

Theorem 7.2. For any Telos knowledge base, dependence
graph construction yields a graph that may contain cycles of
length at most equal to the number of deductive rules partic-
ipating in the same recursive scheme.

Furthermore, the graph is sparse for an average num-
ber α of literals per rule body or constraint greater than
2. The graph’s sparsity will be exploited for the efficient
maintenance of the graph’s transitive closure. The depen-
dence graph is constructed once when the knowledge base
is compiled and is updated incrementally when new rules
or constraints are inserted or deleted. The transitive clo-
sure of the graph is computed by a modification of the
δ-wavefront algorithm (Qadah et al. 1991). The algorithm

260

Table 4. Temporal simplification table

by (fb)

started by (sb)

met by (mb)

by (ob)

contains (c)

after (a)

equal (e)

finishes (f)

starts (s)

meets (m)

before (b)

overlaps (o)

during (d)

finished

overlapped

b d o m s f e a c ob mb sb fbr2(i1,i2)

simp.

FFF

F

F F

F F

F

FF

F

F

FFFF

F FFF

F F

FFFF

FF

FF

F

F

F

F

F

F

(i1−,i2−)

i2

(i1−,i2+)(i1−,i2+)

(i1−,i2−)
equal

starts

starts

i2i2

i2

i2i2i2i2

duringduring

during

during

during

i1i1

finishes

finishes

finishes

finishesfinishes
(i1−,i2−)(i1−,i2−)(i1−,i2−)
during no

no

simp.

simp.

F

F F F F

F F

F

FFFFFF

FFFFF

FFF FFFF

i1

(i1−,i2+)

(i2−,i1+)
finishes

finishes

finishes

i1−i2
starts

starts

startsstarts

(i2+,i1+)

(i2+,i1+)

(i2+,i1+)

(i2+,i1+)
during

during

i1−i2
during

i1
during

simp.

simp.

no

no

no
simp.

no

F F F

FFF

F FF F F

FF

FFFFduring
i1

i1*i2i1*i2i1*i2 i1−i1*i2i1−i1*i2
startsfinishesoverlapsduringduring

i1
finishes

i1
during

i1
during

during
i1

during
i1

i1
during

i1
during

FFFFFF

F F F F F

FFFFFF

F F F F F F

F F

FFFFFF

FFFFFF

F(i1−,i2−) F

(i1−,i2+)

F

F

F

F

F

F

r1(t,i2)

F: false; *: intersection operator; -: difference operator; no simp.: no simplification possible; t−: left endpoint; t+: right endpoint

DR1_D_addr

DR1_addressDR2_locationDR2_univ

IC2_author

IC1_author

IC2_submitted_to IC2_works_in

IC1_ref_by IC2_organized_by

Fig. 9. A dependence graph

has been modified to apply to cyclic graphs and take ad-
vantage of the dependence graph properties. Evaluating the
dependence graph’s transitive closure amounts to comput-
ing the potential implicitupdates caused by explicit updates
on literals occurring in the bodies of deductive rules. The
actual implicit updates are obtained during the evaluation
phase. The time complexity for computing implicit updates
caused by an explicit update matching some node in the
graph is O(|E|), and O(|VR| ∗ |E|) for computing the transi-
tive closure of the entire graph by solving |VR| single-source
problems (Plexousakis 1996). Experiments with randomly
generated dependence graphs have shown that, on the aver-
age, the execution time of computing single-source implicit
updates is sub-linear in |E| (Plexousakis 1993a).

7.2.3 Evaluation phase

In this section, we describe the evaluation phase of our al-
gorithm. We first discuss how the dependence graph gener-
ated in the compilation phase is used to check the integrity
constraints at the time of update. Then we describe how
this graph is incrementally maintained as the set of integrity
constraints and deductive rules changes.

7.2.3.1 Using dependence graphs for constraint checking.
The dependence graph reflects both the logical and tempo-
ral interdependence of rules and constraints. To check if an
update U affects an integrity constraint, we first locate all
literals Li in the dependence graph that unify with the up-
date. The set of integrity constraints that may be violated are
those which have at least one node on a path initiating at a
literal Li. As mentioned earlier, the dependence graph tran-
sitive closure can be pre-computed at compile time. Hence,
at update time reachability information does not need to be
re-computed. It suffices to verify that the potential implicit
updates are actual updates by instantiating the literals of the
implicit updates and evaluating the bodies of rules in which
they belong. For example, in Fig. 9, an update on literal
univ might cause a violation of constraint IC2 , since one
of IC2 ’s literals lies on a path with source from univ .

7.2.3.2 Incremental maintenance of dependence graphs.As
rules and constraints are inserted or deleted, we incremen-
tally modify the dependence graph instead of reconstructing
it from scratch. The dependence relationships between rules
and constraints also change and have to be reflected in the
graph’s transitive closure that was computed during the com-
pilation phase. In the rest of this section, we briefly describe

261

how insertions and deletions of rules and constraints are
handled. A more detailed description of the algorithms for
incremental transitive closure maintenance and their com-
plexity can be found elsewhere (Plexousakis 1993a, 1995).

Insertion of an integrity constraint is accepted only if
the constraint is satisfied by the knowledge base. Then it is
transformed into a set of parametrized forms, one for each of
its literals. These forms are added as nodes to the dependence
graph and in case that there exist rules already in the graph
on which the constraint directly depends, edges from the
rule nodes to the constraint nodes are added. The worst-case
complexity of the dependence graph modification in case of
a constraint insertion is O(|VR|), since the newly introduced
nodes have to be connected with as many rule nodes as
the number of rules whose conclusion literal matches the
constraint literal. On the average, as experimental results
with randomly generated graphs suggest, the cost is much
smaller, since only a subset of the deductive rules will match
the constraint literals. The deletion of a constraint cannot
violate the integrity of the knowledge base. It suffices to
remove all nodes corresponding to some simplified form of
the constraint along with their incident edges. The worst-
case complexity of the deletion process is O(|E|).

When a new deductive rule is inserted, its direct de-
pendence to existing rules or constraints is determined and
represented in the graph. If there exist PSSs of constraints or
rules with literals unifying with the rule’s conclusion literal,
then the conclusions of the rule and any implicit updates
must be derived and checked for possible constraint vio-
lations. If no violation of constraints arises, then the rule
is compiled and inserted in the dependence graph. If a lit-
eral of a rule/constraint unifies with the rule’s conclusion,
then appropriate edges are added, as described in the pre-
vious section. This process has a worst-case complexity of
O(|VR| ∗ |E|). Similarly, if an already compiled rule is to
be deleted and there exist rules or constraints with literals
matching the rule’s negated conclusion, then the literals de-
ducible with this rule are treated as normal deletions. If they
do not cause integrity violation, the parametrized forms of
the rule must be deleted along with all their incident edges.
Rule deletion requires a worst-case time of O(|VR| ∗ |E|).
An analytical model giving more precise characterizations
of the cost of updates of rules and constraints can be found
elsewhere (Plexousakis 1996).

In addition to updating the dependence graph, we also
need to incrementally compute its transitive closure. Incre-
mental transitive closure algorithms available in the literature
can deal only with DAGs (Ibaraki and Katoh 1983; Italiano
1988). In our research, we have developed an algorithm that
incrementally computes transitive closure for general graphs
(Plexousakis 1996). Our preliminary experiments with ran-
domly generated sparse cyclic graphs have shown that this
algorithm can efficiently update the transitive closure of a
dependence graph. In the experiments carried out, the aver-
age cost for on-line transitive closure maintenance of sparse
dependence graph was as low as 0.1 ∗ |E| for the case of
randomly generated sparse cyclic graphs.

8 Concluding remarks

The proposed architecture for a knowledge base management
system addresses several performance issues in a novel way.

– The physical data structures on which the knowledge
base is stored are derived through the CDM and include
a novel temporal indexing technique.

– The query optimization includes semantic optimization
in the presence of temporal knowledge, as well physi-
cal optimization based on the cost models for our new
storage and indexing schemes.

– Our concurrency control algorithms are extensions of ex-
isting algorithms for DAG databases, intended to take
full advantage of the rich structure of a knowledge base;
moreover, we have proven the correctness of our con-
currency control policy, and have established both im-
plementation and performance results.

– Our assertion compilation methods combine and extend
previous results on compiling and simplifying static and
dynamic temporal assertions. Soundness and complete-
ness of the simplification method have been proven and
preliminary performance results have been established.

Clearly, the design and performance analysis of the pro-
posed architecture is not complete. In particular, work is in
progress on the physical design of the KBMS (Shrufi 1994),
exploring the use of existing database storage kernels. A
thorough experimental performance analysis is planned to
validate the cost function of our storage and query model.
The study of semantic criteria for reducing the search space
when an access is planned is an issue that requires further
research. The use of machine learning techniques, in order
to train the query optimizer with past experience, is one
possible direction for further exploration. Record clustering
and buffer management are other directions of research that
could lead to performance improvements.

We are generalizing our concurrency control algorithm,
so that it can distinguish between different semantic rela-
tionships, and to include multiple granularities of locking.
Further down the road, we expect that the issues of fault
tolerance, such as recovery, will become more important.

As far as rule management is concerned, a hybrid the-
orem prover for simplified constraints needs to be devised,
possibly by combining existing special-purpose reasoners.
Moreover, issues such as the efficient storage and access
of the dependence graph and storage and indexing of rules
and constraints are currently under investigation. The per-
formance of the compilation method needs to be assessed
and compared to methods that interleave compilation and
evaluation (e.g., (Kuchenhoff 1991)). A dual approach to
constraint enforcement, based on compiling constraints into
transaction specifications, is a topic of current research
(Plexousakis 1996) and (Plexousakis and Mylopoulos 1996).
Finally, a more fine-grained approach to integrity violation
needs to be devised, possibly adopting ideas of finite con-
straint satisfiability (Bry et al. 1988).

In addition, we are working towards benchmarks for
knowledge based systems, so that we can have a standard
method to evaluate the algorithms developed for such sys-
tems.

262

On the basis of these results, we believe that a KBMS
technology which offers the representational and inferen-
tial mechanisms of state-of-the-art knowledge representa-
tion schemes, while at the same time addresses efficiently
database issues such as storage management, query process-
ing and concurrency control, is viable.

Acknowledgements.Results reported in this paper are based on research
conducted within the project titled “A Telos Knowledge Base Management
System”, funded by the Province of Ontario through the Information Tech-
nology Research Center; additional funding for the project has been received
from the Department of Computer Science of the University of Toronto
and the National Science and Engineering Research Council of Canada.
Our work has significantly benefited from the contributions of several peo-
ple. Special thanks are due to our colleagues Lawrence Chung, Prof. Vas-
sos Hadzilacos, Igor Jurisica, Manolis Koubarakis (now at UMIST) Bryan
Kramer, David Lauzon, Brian Nixon, Thomas Rose (now at FAW, Ulm),
Prof. Ken Sevcik and Huaiqing Wang; also to visitors Prof. A. Illarramendi
(Universidad del Pais Vasco, Spain), Prof. Yannis Ioannidis (University of
Wisconsin), Prof. Matthias Jarke (Technical University of Aachen), L. Sbat-
tella (Politechnico di Milano, Italy) and Prof. Yannis Vassiliou (Technical
University of Athens).

References

Agrawal R, Carey MJ, Livny M (1987) Concurrency control performance
modeling: alternatives and implications. ACM Trans Database Sys,
12:4–654,

Aho AV, Hopcroft JE, Ullman JD (1987) Data structures and algorithms.
Addison-Wesley, Reading, Mass

Allen J (1983) Maintaining knowledge about temporal intervals. Commun
ACM 26:11–843

Attardi G, Simi M (1981) Semantics of inheritance and attributions in the
description system OMEGA. Technical Report S-81-16, Universita Di
Pisa. Also MIT AI memo 642, 1981

Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and
recovery in database systems. Addison-Wesley, Reading, Mass

Bertino E, Kim W (1989) Indexing techniques for queries on nested objects.
IEEE Trans Knowl Data Eng1:2–214

Biliris A (1992) The performance of three database storage structures for
managing large objects. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

Bocca J (1986) On evaluation strategy of EDUCE. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp
368–378

Brodie M, Mylopoulos J, Schmidt J (1984) On conceptual modeling: per-
spectives from artificial intelligence, databases and programming lan-
guages. Springer, Berlin Heidelberg, New York

Bry F, Decker H, Manthey R (1988) A uniform approach to constraint
satisfaction and constraint satisfiability in deductive databases. In: 1st
Int. Conference on Extending Data Base TechnologyVenice, Italy, pp
488–505

Buchanan BG, Wilkins DC (1993) Readings in knowledge acquisition and
learning. Morgan Kaufmann, San Mateo, Calif

Carey M, DeWitt D, Richardson J, Shekita E (1986) Object and file man-
agement in the EXODUS extensible database system. In: Proceedings
of the 12th International Conference on Very Large Data Bases, pp
91–100

Carroll MD (1988) Data flow analysis via dominator and attribute updates.
Technical Report LCSR-TR-111, Rutgers University

Ceri S, Widom J (1990) Deriving production rules for constraint main-
tenance. In: Proceedings of the 16th Int. Conference in Very Large
Databases, pp 566–577

Chakravarthy V, Grant J, Minker J (1988) Foundations of semantic query
optimization for deductive databases. In: Minker J, editor, Foundations
of Deductive Databases and Logic Programming. Morgan-Kaufmann,
San Mateo, Calif, pp 243–273

Chaudhri VK (1995) Transaction synchronization in knowledge bases: con-
cepts, realization and quantitative evaluation. PhD thesis, University
of Toronto, Toronto

Chaudhri VK, Hadzilacos V (1995) Safe locking policies for dynamic
databases. In: Fourteenth ACM Symposium on Principles of Database
Systems, pp 233-247

Chaudhri VK, Hadzilacos V, Mylopoulos J (1992) Concurrency control for
knowledge bases. In: Proceedings of the Third International Conference
on Information and Knowledge Representation and Reasoning, pp 762–
773

Chaudhri VK, Hadzilacos V, Mylopoulos J, Sevcik K (1994) Quantita-
tive evaluation of a transaction facility for a knowledge base manage-
ment system. In: Proceedings of the Third International Conference on
Knowledge Management, Gaithersberg, Md. pp 122–131

Chaudhri VK, Mylopoulos J (1995) Efficient algorithms and perfor-
mance results for multi-user knowledge bases. In: Proceedings of the
1995 International Joint Conference on Artificial Intelligence, Mon-
treal, pp 759–766

Chomicki J (1992) History-less checking of dynamic integrity constraints.
In: 8th Int. Conference on Data Engineering, Phoenix, Ariz. pp 557–
564

Copeland G, Khoshafian S (1985) A decomposition storage model. In:
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pp 268–279

Dechter R, Meiri I, Pearl J (1989) Temporal constraint networks. In:
Proceedings of the First International Conference on Knowledge Rep-
resentation and Reasoning, pp 83–93

Decker H (1986) Integrity enforcement in deductive databases. In: Expert
Database Systems, 1st Int. Conference, pp 271–285

Eswaran K, Gray JN, Lorie RA, Traiger IL (1976) The notions of consis-
tency and predicate locks in database systems. Commun ACM19:9–633

Findler N (1979) Associative networks. Academic Press, New York
Finkelstein S, Schkolnick M, Tiberio P (1988) Physical database design for

relational databases. ACM Trans Database Sys13:1–128
Frank M, Omiecinski E, Navathe S (1992) Adaptive and automated index

selection in RDBMS. In: Proceedings of International Conference on
Extending Database Technology, pp 277–292

Frenkel KA (1991) The human genome project and informatics. Commun
ACM 34:11–51

Gupta A, Sagiv Y, Ullman J, Widom J (1994) Constraint checking with
partial information. In: ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pp 45–55

Guttman A (1984) R-trees: a dynamic index structure for spatial search-
ing. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp 47–57

Hull R, King R (1987) Semantic database modeling: survey, applications
and research issues. ACM Comput Surv19:201–260

Hulsmann K, Saake G (1990) Representation of the historical information
necessary for temporal integrity monitoring. In: 2nd Int. Conference
on Extending Data Base Technology, Venice, Italy, pp 378–392

Ibaraki T, Katoh N (1983) On-line computation of transitive closures of
graphs. Inf Process Lett16:3–97

Ioannidis Y, Ramakrishnan R, Winger L (1993) Transitive closure algo-
rithms based on graph traversal. ACM Trans Database Sys18:3–576

Ioannidis YE, Kang YC (1991) Left-deep vs. bushy trees: an analysis of
strategy spaces and its implications for query optimization. In: Pro-
ceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pp 168–177

Ishikawa H, Suzuki F, Kozakura F, Makinouchi A, Miyagishima M, Izu-
mida Y, Aoshima M, Yamane Y (1993) The model, language, and
implementation of an object-oriented multimedia knowledge base man-
agement system. ACM Trans Database Sys18:1–50

Italiano G (1988) Finding paths and deleting edges in directed acyclic
graphs. Inf Process Lett28:1–11

Jarke M, Koch J (1984) Query optimization in database systems. Comput
Surv16:2–143

Jarke M, Koubarakis M (1989) Query optimization in KBMS: overview,
research issues, and concepts for a Telos implementation. Techni-
cal Report KRR-TR-89-6 Dept. of Computer Science, University of
Toronto

Jeusfeld M, Jarke M (1991) From relational to object-oriented integrity sim-

263

plification. In: 2nd Int. Conference on Deductive and Object-Oriented
Databases, Munich, Germany, pp 460–477

Khoshafian S, Copeland G (1986) Object identity. In: Proceedings of
OOPSLA-86, Portland, Oregon, pp 406–416

Kim W, Kim K-C, Dale A (1989) Indexing techniques for object-oriented
databases. In: Object-Oriented Concepts, Databases and Applications.
ACM Press, New York

Kramer B, Mylopoulos J, Benjamin M, Chou Q, Ahn P, Opala J (1996)
Developing an Expert System Technology for Industrial Process Con-
trol: An Experience Report. In: McCalla G (ed) Proceedings of the
11th Biennial Conference of the Canadian Society for Computational
Studies in Intelligence (AI ’96). Lecture Notes in Artificial Intelligence,
No 1081, Toronto, Canada, Springer Verlag, pp 172–186

Kuchenhoff V (1991) On the efficient computation of the difference be-
tween consecutive database states. In: 2nd International Conference
on Deductive and Object-Oriented Databases, Munich, Germany, pp
478–502

Law AM, Kelton WD (1991) Simulation modeling and analysis. McGraw-
Hill, New York

Lengauer T, Tarjan RE (1979) A fast dominator algorithm for finding
dominators in a flow graph. ACM Trans Program Lang Sys1:1–141

Ling T, Lee S (1992) Integrity checking for transactions in relational
databases. In: International Computer Science Conference, pp 245–
251

Lipeck U (1990) Transformation of dynamic integrity constraints into trans-
action specifications. Theor Comput Sci76:115–142

Livny M (1986) DeNeT user’s guide (Version 1.5). Technical report,
University of Wisconsin

Lockemann PC, Nagel H-H, Walter IM (1991) Databases for knowledge
bases: empirical study of a knowledge base management system for a
semantic network. Data Knowl Eng7:115–154

Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990) Telos: a language
for representing knowledge about information systems. ACM Trans Inf
Sys8:4–362

Neches R, Fikes R, Finin T, Gruber T, Patil R, Senator T, Swartout W
(1991) Enabling technology for knowledge sharing. AI Mag 12:36–56

Nicolas J-M (1982) Logic for improving integrity checking in relational
databases. Acta Inf 18:227–253

Paul H-B, Schek H-J, Scholl M, Weikum G, Deppish U (1987) Architec-
ture and implementation of a Darmstadt database kernel system. In:
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, San Francisco, Calif, pp 196–207

Plexousakis D (1993) Integrity constraint and rule maintenance in temporal
deductive knowledge bases. In: Proceedings of theInternational Con-
ference on Very Large Data Bases, Dublin, Ireland. Morgan Kaufmann,
San Mateo, Calif, pp 146–157

Plexousakis D (1993) Semantical and ontological consideration in Telos: a
language for knowledge representation. Comput Intell9:1–72

Plexousakis D (1996) On the efficient maintenance of temporal integrity
in knowledge bases. PhD thesis, Department of Computer Science,
University of Toronto. 1996

Plexousakis D, Mylopoulos J (1996) Accommodating integrity constraints
during database design. In: Proceedings of International Conference on
Extending Database Technology, Avignon, France, pp 497–513

Qaddah G, Henschen L, Kim J (1991) Efficient algorithms for the instan-
tiated transitive closure queries. IEEE Trans Software Eng17:3–309

Schieber B, Vishkin U (1988) On finding lowest common ancestors: sim-
plification and parallelization. SIAM J Comput17:6–1262

Selinger G, Astrahan M, Chamberlin D, Lorie R, Price T (1979) Ac-
cess path selection in a relational database management system. In:
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pp 23–34

Shrufi A (1994) Performance of clustering policies in object bases. In:
Proceedings of the Third Conference on Information and Knowledge
Management, pp 80–87

Silberschatz A, Kedem ZM (1980) Consistency in hierarchical database
systems. J Assoc Comput Mach27:1–80

Snodgrass R (1987) The temporal query language TQuel. ACM Trans
Database Sys12:2–298

Stanley M (1986) CML: a knowledge representation language with ap-
plication to requirements modeling. Technical report, University of
Toronto, Toronto

Steinbrunn M, Moerkotte G, Kemper A (1993) Optimizing join orders.
Technical Report MIP-9307, Universität Passau, Fakultät für Mathe-
matik and Informatik

Stickel M (1985) Automated deduction by theory resolution. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence, Los
Angeles, Calif, pp 455–458

Stonebraker M (1975) Implementation of integrity constraints and views by
query modification. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp 65–78

Stonebraker M, Dozier J (1991) An overview of the SEQUOIA 2000
project. Technical Report SEQUOIA-TR-91/5, University of Califor-
nia, Berkeley

Tay YC (1987) Locking performance in centralized databases. Academic
Press, London

Topaloglou T (1993) Storage management for knowledge bases. In:
Proceedings of Second International Conference on Information and
Knowledge Management (CIKM’93)

Topaloglou T, Illarramendi A, Sbattella L (1992) Query optimization for
KBMSs: temporal, syntactic and semantic transformation. In: Proceed-
ings of the International Conference on Data Engineering, pp 310–319

Ullman J (1988) Principles of data base and knowledge base systemsvol-
ume 1. Addison Wesley, Reading, Mass

Valduriez P (1987) Join indices. ACM Trans Database Sys12:2–246
Valduriez P, Khoshafian S, Copeland G (1986) Implementation techniques

of complex objects. In: Proceedings of the 12th International Confer-
ence on Very Large Data Bases, Kyoto, Japan, pp 101–109

Vilain M, Kautz H, van Beek P (1989) Constraint propagation algorithms
for temporal reasoning: a revised report. In: Weld D, Kleer J de
(eds) Readings in qualitative reasoning about physical systems, Morgan
Kaufmann, San Mateo, Calif, pp 373–381

Wallace M (1991) Compiling integrity checking into update procedures.
In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence, pp 903–908

Yannakakis M (1982) A theory of safe locking policies in database systems.
J Assoc Comput Mach29:3–740

Yao S (1977) Approximating block accesses in database organizations.
Commun ACM20:4–261

Zdonik SB, Maier D (1989) Readings in object-oriented databases. Morgan
Kaufmann, San Mateo, Calif

