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"The real problem is the mass of detailed 
requirements; and the only solution is 
the discovery or invention of general 
rules and abstractions which cover the 
many thousands of cases with as few 
exceptions as possible." 

-C. A. R. Hoare 

Abstract 

The view is adopted that software requirements 
involve the representation (modeling) of 
considerable real-world knowledge, not just 
functional specifications. A framework (RMF) for 
requirements models is presented and its main 
features are illustrated. RMF allows information 
about three types of conceptual entities (objects, 
activities, and assertions) to be recorded 
uniformly using the notion of properties. By 
grouping all entities into classes or metaclasses, 
and by organizing classes into generalization 
(specialization) hierarchies, RMF supports three 
abstraction principles (classification, 
aggregation, and generalization) which appear to be 
of universal importance in the development and 
organization of complex descriptions. Finally, by 
providing a mathematical model underlying our 
terminology, we achieve both unambiguity and the 
potential to verify consistency of the model. 

I. INTRODUCTION 

Requirements definition is the task of gathering 
all of the relevant information to be used in 
understanding a problem situation prior to system 
development. The documentation of this information 
is called the requirements specification. The form 
and content of the requirements specification can 
have a tremendous impact on the task of software 
throughout its lifetime. 

Experience over the last decade has led to some 
important observations that point to the need for 
improved requirements specification languages. 
First, it appears that more attention to 
requirements, including a better understanding of 

the problem situation, pays off in reduced total 
life-cycle effort and cost [3]. Secondly, it has 
been learned that it is difficult, indeed, to "get 
the requirements right"; some common problems are 
ill-defined terms, inconsistencies, ambiguities, 
and the tendency to mix requirements with design 
decisions [I]. 

Much of requirements definition involves such 
tasks as: defining terms in the domain of 
discourse, stating, clarifying and agreeing on 
assumptions and constraints, and discussing and 
negotiating the needs and objectives of an 
organization (business, government, industry). 
Whatever the application "world" (e.g. airline 
reservations, manufacturing, hospital 
administration, etc.) there is a body of 
"knowledge" used to interpret and understand that 
world. 

For example, in considering the development of a 
variety of information systems for a large hospital 
in Toronto, we have found it necessary to become 
intimately familiar with a wide range of subject 
matters: medical knowledge, hospital procedures and 
policies, available therapies (drugs, surgery, 
etc.), legal responsibilities to government, and so 
on. We believe that this kind of real world 
knowledge needs to be captured in a formal 
requirements specification. The ability to 
efficiently design appropriate computer systems and 
enable them to evolve over their lifetime depends 
on the extent to which this knowledge can be 
captured. 

Most current requirements languages concentrate 
primarily on functional specifications, which give 
a high-level target system description in terms of 
the functions to be performed by the ultimate 
system (with an emphasis on what the system is 
supposed to do but not how). In functional 
specification approaches, the world knowledge, 
whose importance we have been discussing, is often 
not an explicit part of the requirements 
specification. The knowledge is, at least 
initially, scattered throughout documents and the 
minds of people across the organization. 
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Our research addresses the development of 
languages and tools for requirements modeling, a 
specification approach directed toward high-level 
specifications which capture world knowledge 
directly and naturally in the specification. In 
this paper we present a framework for requirements 
modeling called RMF. An RMF model describes some 
"slice of reality". RMF guides the information 
gathering job of requirements definition. The 
resultant description should be useful in 
determining what the problem situation is and what 
solutions are possible. The design of RMF 
emphasizes the need for structuring the description 
to ease the task of finding answers to questions 
during system design and implementation and in the 
face of changing requirements. 

Section 2 of the paper introduces our modeling 
approach and discusses the central theme, 
abstraction mechanisms. Section 3 is the core of 
the paper, presenting the main features of RMF 
along with illustrative examples. Section 4 
discusses related work and fills in some background 
material. Finally, Section 5 discusses some 
interesting aspects of the framework and of our 
ongoing research. 

2. MODELING AND ABSTRACTION 

2.1A modeling approach 

The major goal of RMF is to form a synthesis of 
some modeling principles which we believe are 
essential to the requirements modeling task; but we 
stop short of providing a specific language 
incorporating them. We apply these principles to 
answer two key questions about requirements 
modeling: (I) What kind of information should be 
captured in a requirements model? (2) How should a 
requirements model be structured? 

We have chosen a representation method in which 
a requirements model consists of a collection of 
conceptual entities (or simply entities) defined by 
their inter-relationships with other entities. 
Thus, the first question above is answered by (i) 
choosing appropriate specification units, or entity 
categories, and (ii) deciding what kinds of 
relationships are allowed within and between 
entities of each entity category; later on in the 
presentation we shall call the relationships 
properties and the types of relationships property 
categories. 

• 4F offers three kinds of specification units: 
object, activity, and assertion. As discussed in 
Section 4, these entity categories have been used 
successfully, in one form or another, across a wide 
range of modeling endeavors. 

For a long time it has been asserted that 
abstraction is the best tool we have toward the 
intellectual manageability of complex descriptions 
[11,14]. The framework is based on the premise that 
effective structuring of large descriptions such as 
requirements models depends on the use of good 
abstractions. Below we introduce the abstraction 
mechanisms used in the framework. 

2.2 Abstraction mechanisms 

An abstraction mechanism is any descriptive 
facility that allows certain kinds of information 
to be included while precluding other, 
"lower-level" or "less important" details. In 
Software Engineering, abstraction is usually 
equated with the suppression of design decisions or 
implementation details. In this sense a 
requirements model should be "very abstract"; 
indeed, it is proposed as the "most abstract" 
specification for use in Software Engineering. 

In ~MF we propose the use of a set of 
complementary abstraction mechanisms for 
descriptive purposes. A first abstraction 
mechanism, aggregation, allows an entity to be 
viewed as a collection of components, or parts. A 
second abstraction mechanism is classification, 
which allows a new entity, the class, to capture 
common characteristics shared by a group of 
entities. A third abstraction, generalization, 
captures the common characteristics of several 
classes. 

Classification allows one to consider only the 
characteristics shared by the instances of a class 
and to ignore individual differences. Aggregation 
allows one to consider an entity while ignoring 
further detail about the components. Generalization 
allows one to consider only those properties that a 
collection of classes have in common without 
considering the classes' individual differences. 

A principal design goal of our RMF is to apply 
the abstraction mechanisms uniformly over all the 
entity categories. That is to say, there are, in an 
RMF model, classes for object, activity, and 
assertion entities; entities of all categories can 
have component parts; and classes of each entity 
category are organized according to their 
generality/specificity. 

We feel that a specification language exhibiting 
such uniformity will be much easier to formalize, 
understand and use. 

3. THE FEATURES OF RMF 

We first show in terms of objects how the 
abstraction mechanisms work, and then we extend the 
presentation to activities and assertions as well. 

3.1 Tokens, classes, and metaclasses 

Entities are stratified into classification 
levels according to whether they are considered 
"individuals", called tokens, collections of tokens 
called classes, classes of classes called 
metaclasses, and so on. The tokens of a class are 
called its instances; similarly, a class is said to 
be an instance of a metaclass. 

Simple examples of object tokens are john-smith 
(representing a particular person) and 7 
(representing the n~ber 7). PERSON is an example 
of a class, whose instances are tokens such as 
john-smith, while INTEGER is a class whose 
instances would include 7. 
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An example of a metaclass is PERSON CLASS, whose 
instances are classes of persons, such as PERSON, 
PATIENT, PHYSICIAN, NURSE. 

In addition to its instances, a class bears 
additional information, but for this we need the 
notion of properties. 

For the remainder of the paper we will use lower 
case letters and digits for token identifiers and 
upper case letters for class and metaclass 
identifiers. The suffix " CLASS" will be use for 
metaclass identifiers. 

3.2 Properties -- factual and definitional 

Entities can be related to other entities by 
participating in properties. Properties consist of 
three items of information: a subject, an attribute 
(or property name), and a value. To express the 
property of the token john-smith that his age is 
23, we could write 

<john-smith, age, 23> 
where the subject, attribute, and value are 
john-smith, age (an identifier), and 23, 
respectively. This property expresses "factual" 
information about the subject and thus is termed a 
factual property. 

Factual information alone is clearly not 
adequate for requirements modeling. We have 
introduced classes (and metaclasses) for the 
purpose of defining and describing collections of 
entities that, presumably, are grouped together 
because some uniform conditions hold over all of 
them. What is needed is a facility for specifying 
generic information that pertains to each of the 
instances of a class (or metaclass). For example, 
we may want to specify for the class PERSON that 
each person has an age which is an AGE VALUE. The 
RMF feature used for this is called a definitional 
property. The triple 

(PERSON, age, AGE VALUE) 
is used for now to represent tee above information. 
The three components are again called subject, 
attribute, and value. (Note that we have used 
angular brackets and parentheses to distinguish the 
two kinds of properties.) 

It may be helpful to think of a definitional 
property as defining a function, e.g., 

age: PERSON --> AGE VALUE 
whose domain is the property --subject and whose 
range in the property value. Evaluation of the 
function for an instance of the domain results in a 
corresponding factual property, e.g. 

age(john-smith) = 23. 

The most important point to notice here is that 
23 is, and must be, an instance of A(~ VALUE. In 
general, for a class C with definitional-- property 
(C,a,V), for every instance x of C, it must be the 
case that a(x) is an instance of V. The close 
correspondence between definitional and factual 
properties is called the property induction 
principle. The principle requires as well that 
every factual property of an object be induced by a 
definitional property of some containing class. 

It is useful to be able 
properties to classes as 
example, the information 

"the average age of persons is 21" 
"the number of nurses is 200" 

should be considered factual rather 
definitional, that is 

<PERSON, average-age, 21> 
<NURSE, cardinality, 200> 

since the information pertains directly 
subjects rather than to their instances. 

to associate factual 
well as to tokens. For 

than 

to the 

The inclusion of metaclasses in the framework 
allows the property induction principle to be 
extended. In order to allow the specification of 
the above two factual properties, it would be 
necessary to have also specified definitional 
properties that induce them, such as 

(PERSON CLASS, average-age, AGE VALUE) 
(PERSONCLASS, cardinality, NUMBER). 

At this point in the paper, we have described 
how two abstraction principles, classification and 
aggregation, are incorporated into the framework. 
The classification abstraction is supported by the 
"instance oP' relationship between tokens and 
classes and between classes and metaclasses; we 
consider the three levels to be adequate for most 
modeling purposes. The grouping of all the 
properties of an entity relates the entity to other 
entities which may in turn be the subjects of other 
properties; this supports the aggregation 
abstraction. The property induction principle 
relates these two dimensions in a coherent way. 

3-3 Objects, activities, assertions 

As implied by the examples above, objects 
represent the "things" in the world, such as 
persons, numbers, equipment, documents, etc. 

PERSON CLASS PATIENT 
association ward : HOSPITAL WARD, 

primary-physician : PHYSICIAN, 
consulting-physician : PHYSICIAN, 

inserted-by register: A~dITPATIENT, 
initially phys-ward?: 

primary-physician.specialty ~ ward 
=> consulting-physician.specialty = ward, 

updated-by transfer: 
TRANSFER(self,new-ward:WARD), 

removed-by release: RELEASE(self), 
end {PATIENT} 

Figure I 

Figure I is a description of the object class 
PATIENT, giving general information about patients 
for a particular hospital. The class is defined to 
be an instance of the metaclass PERSON CLASS and 
has a number of definitional properties ~onsisting 
of 

<attribute> : <value> 
pairs and grouped into property categories such as 
association, inserted-by, and initially. 

The properties of PATIENT relate each patient to 
a ward and two physicians, one primary and the 
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other consulting. Patients are "created" through an 
ADMIT PATIENT activity, updated through a TRANSFER 
activity and removed through a RELEASE activity. 
When a patient is first created, it must be the 
case that if the ward to which a patient is 
assigned is not the specialty of his/her primary 
(ca~e) physician, then it must be the specialty of 
the consulting physician. 

ACTIVITY CLASS ADMIT PATIENT 
input p: PERSON? 
control w: WARD, 

phys, consulting-phys: PHYSICIAN, 
output pt : PATIENT, 
triggered-by a1: ARRIVAL(p), 
precondition already-in?: NOT INST(p,PATIENT), 

room-left? : 
PATIENT.cardinality < 

PATIENT MAX, 
postcondition admitted?: INHOSPITA~(p), 
part check-id: CHECK ID(p), 

put : CHOOSE WARD~w,phys ,consulting-phys) , 
admit: INSERT(p,PATIENT), 
increment : INCREMENT(PATIENT.cardinality), 
urinalysis: PERFORM URINALYSIS(p), 
blood-count : PERFORM BLOOD COUNT(p), 
blood-pressure : PERFORM_BLOODPRESSURE (p) , 
temp: TAKETEMP(p), 

end {ADMIT PATIENT} 

Figure 2 

In Figure 2, we present a definition of the 
activity class ADMIT PATIENT. It consists of one 
input property, a person, and one output property, 
a patient; also, it has three control properties, a 
ward and two physicians. The activity is triggered 
by instances of the assertion class, ARRIVAL, which 
is instantiated each time a person arrives at the 
hospital for admission. 

ADMIT PATIENT also includes two preconditions 
(already:in? and room-left?) and a postcondition 
(admitted?) that must be true before and after t~e 
activity, respectively. The preconditions assert 
that the person must not be already a patient of 
the hospital, and also that the number of patients 
(PATIENT.cardinality) is less than the hospital 
capacity (PATIENT MAX). The postcondition asserts 
that the person ha~ indeed been admitted once the 
ADMIT PATIENT activity is over. 

Final~y, the "body" of ADMIT PATIENT is defined 
by several part properties --which specify the 
components of an ADMIT PATIENT activity. The 
components involve checking the person's ID, 
choosing a ward and assigning a primary care and a 
consulting physician, inserting the person into the 
PATIENT class and incrementing the cardinality 
property of PATIENT; also, some tests are performed 
(urinalysis, blood-count, blood-pressure, and 
temperature). 

We present an example of an assertion class in 
Figure 3 to underscore the uniform treatment of the 
entity categories. The assertion class IN HOSPITAL 
has one argument, a patient, and assert~ through 
its part property that the person is now physically 

ASSERTION CLASS IN HOSPITAL 
argument p : PE-RSON, 
part patient?: INST(p,PATIENT), 

present? : PHYSICALLYPRESENT(p), 
end {IN HOSPITAL} 

Figure 3 

present at the hospital. 

We close this section by giving a definition of 
the metaclass PERSON CLASS, in Figure 4. As stated 
in the previous section, PATIENT is entitled to a 
cardinality property only because it is an instance 
of this metaclass. Note that METACLASS is a 
built-in metametaclass that has all metaclasses as 
instances. Two other built-in metametaclasses have 
been found useful because they allow references to 
all entities and to all generic entities, 
respectively: (i) ENTITY, which has as instances 
all entities in a specification, including itself, 
and (ii) CLASS, which has as instances all classes, 
metaclasses, and the three built-in metametaclasses 
METACLASS, CLASS, and ENTITY. 

METACLASS PERSON CLASS 
association--average-age: ACE VALUE, 

cardinality: NUMBER, 
end {PERSON CLASS} 

Figure 4 

3.4 Generalization 

To support the generalization abstraction 
mechanism, a new relationship, subclass, is offered 
which can be declared between two classes or two 
metaclasses. For example, suppose PERSON has been 
defined as shown in Figure 5. (Note: The part 
properties of a data class instance do not change 
values, while the association properties do.) Then, 
changing the first line of the definition of 
PATIENT (Figure I) to 

PERSON CLASS PATIENT subclass of PERSON 
makes PATIENT a subclass or specialization of 
PERSON and PERSON a generalization of PATIENT. 

PERSON CLASS PERSON 
part name: PERSON NAME, 

sin: SOCIAL INSURANCE_#, 
chip: ONTARIO INS #, 

association address: ADDRESS, 
age: AGE VALUE, 

end {PERSON} 

Figure 

What does it mean to say that PATIENT is a 
specialization of PERSON? Well, for one thing we 
expect that every instance of PATIENT is, under all 
circumstances, also an instance of PERSON. Indeed, 
the semantics of becoming an instance of a class 
include becoming an instance of all of the 
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generalizations of the class. Conversely, when an 
object ceases to be an instance of a class, it also 
ceases to be an instance of its specializations. 

Another aspect of specialization concerns the 
definitional properties of the two classes 
involved. All definitional properties of PERSON are 
inherited by PATIENT; so, by virtue of being 
declared a specialization of PERSON, PATIENT has, 
in addition to the properties specified in Figure 
I, also a name, a social insurance number, an 
address, etc. 

Property inheritance allows for economy of 
expression in a specification because a 
definitional property need only be mentioned once 
for the most general class to which it is 
applicable. Inheritance also serves as a memory 
aid, since knowing that a class is a subclass of 
another allows one to concentrate on the additional 
information needed to describe the subclass. 

PERSON CLASS CHILD subclass of PERSON 
a-ssociation age: CHILD ACE VALUE, 

guardian: PERSON, 
invariant guardian.age > 30, 

end {CHILD} 

PERSON CLASS SURGICAL PATIENT subclass of PATIENT 
association blood-type: BLOOD TYPE, 

surgery: SURCERY TYPE, 
end {SURGICAL PATIENT} 

PERSON CLASS TRANSPLANT SURCERY PATIENT 
-- subclass-of SURGICAL PATIENT 
association donor: PERSON, 

end {TRANSPLANT SURGERY PATIENT} 

PERSON CLASS CHILD PATIENT 
subclass of CHILD, PATIENT 

association nurse: NURSE, 
end {CHILD PATIENT} 

Figure 6 

To illustrate the importance of generalization, 
suppose we have already defired the class PERSON 
and its specialization PATIENT. A n~nber of other 
object classes are also relevant for our hospital 
example. CHILD specializes PERSON by restricting 
its age property bo allow only values in 
CHILD ACE VALUE. SURGICAL PATIENT as well as 
TRANSPLANT SURCERY PATIENT-- are specializations of 
PATIENT. CHILD PATIENT gives an example of a class 
that has more than one immediate generalization. 
Figure 6 includes the definitions of all these 
object classes while Figure 7 summarizes the 
subclass relation for the object classes defined so 
fa r. 

Specialization opens the door to a form of 
stepwise refinement that is based on the 
introduction of detail for special cases. Moreover, 
this form of refinement is not applicable only to 
object classes. Consider, for example, some 
specializations of A~MIT PATIENT, as shown in 
Figure 8. The first, ADMIT CHILD PATIENT, simply 

PERSON 

(PHYSICIAN) CHILD PATIENT (NURSE) 

/ / \  
CHILDPATIENT ~ MEDICAL_PATIENT 

SUR GICAL_PATIENT 

/ \ 
( SURGICAL C HILDPATIENT ) 

TRANSPLANT SURCERY PATIENT 

(The classes in parentheses have not been defined.) 

Figure 7 

assigns a nurse to the child patient in addition to 
all the things done for other patients. The second 
specializes A~4IT PATIENT for surgical patients 
where a blood test is done for possible 
transfusion. ADMIT SURGICAL CHILD PATIENT, the 
third, is a specialization-- of ~he previous two 
activities and therefore inherits all their 
definitional properties; in addition, it has a 
definitional property of its own which obtains 
permission for surgery from the child's guardian. 

ACTIVITY CLASS ADMIT CHILD PATIENT 
- subclass of ADMIT PATIENT 

input p: CHILD, 
control n: NURSE, 
out~ut pt: CHILDPATIENT, 
part find-nurse: FIND NURSE(n,w), 

admit: INSERT(P,CHILD PATIENT), 
end {ADMIT CHILD PATIENT} 

ACTIVITY CLASS ADMIT SURGICAL PATIENT 
- -  - subclass of ADMIT PATIENT 

output pt: SURGICAL PATIENT, 
triggered-by al: ARRIVAL(p) 

AND SURGERYNEEDED(p), 
part blood-typing: PERFORM BLOODTYPING, 

end {AI~MIT SURGICAL PATIENT} 

ACTIVITY CLASS ADMIT SURGICAL CHILD PATIENT 
subclass of ADMIT CHILD PATYENT, 

ADMIT SURGICAL PATIENT 
part obtain-permission: 

OBTAIN PERMISSION(p,p.guardian), 
end {ADMIT SURGICAL CHILD PATIENT} 

Figure 8 

Note that redefinitions of definitional 
properties must be consistent with the properties 
they replace. For example, the value of the age 
property of child, CHILD ACE VALUE, must be a 
specialization of ACE VALUE (Figures 5 and 6). 
Similarly, the redefinitions of properties such as 
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p and pt in ADMIT CHILD PATIENT are all consistent 
with the properties of ADMIT PATIENT they replace 
(Figures 2 and 8). An interes[ing application of 
this consistency rule involves properties whose 
value is an assertion class such as the al property 
of ADMIT PATIENT (Figure 2). For ADMIT PATIENT the 
value of al is the assertion ARRIVAL(p)? while for 
ADMIT SURGICAL PATIENT (Figure 8) the value of al 
is The stronger assertion ARRIVAL(p) AND 
SURCERYNEEDED(p). 

Specialization can also be used to structure 
assertion class definitions. The IN HOSPITAL 
assertion class, for instance, can be specialized 
by specializing its arguments, by adding conjuncts 
(parts), or even by redefining some of its parts. 
Thus, for child patients, IN HOSPITAL might be 
specialized (see Figure 9) t~ check that the 
patient is in a ward accompanied by a nurse. 

ASSERTION CLASS CHILD IN HOSPITAL 
subclass of IN HOSPITAL 

argument p: CHILD 
part in-ward?: IN WARD(p), 

with-nurse?-- WITH_NURSE(p) , 
end {CHILD IN HOSPITAL} 

Figure 9 

We close th~s section by pointing out that 
metaclasses (and metametaclasses) are also 
organized into specialization hierarchies, as 
suggested in Figure 10. 

4. RELATED WORK 

In this section we argue the advantages and 
utility of the requirements modeling framework. We 
justify our choices of specification concepts 
(namely, the entity categories, property 
categories, and abstraction mechanisms) by 
demonstrating that they are based on a consensus 
over a wide variety of specification and modeling 
experience. Moreover, our framework subsumes the 
features of important requirements languages. 

4.1 Related requirements languages 

The achievement of a highly uniform framework is 
a goal partly inspired by Softech's SADT [22]. SADT 
offers data and activity concepts and uses the same 
graphical box and arrow notation for describing 
both. A data concept is defined (decomposed) in a 
diagram showing the data subparts as boxes 
interconnected by arrows representing activities. 
Activity objects are defined by a "dual" kind of 
diagram in which activity boxes are interconnected 
by data arrows. 

RMF's "object" and "activity" correspond to 
SADT's data and activity, and RMF adds a third, 
complementary specification unit, assertions, to 
facilitate the explicit specification of 
information which in an SADT model would usually be 
specified in accompanying natural language text. In 
addition, ~MF makes explicit the use of abstraction 
principles, which we believe the modeler tends to 

ENTITY 

T 
CLASS 

T 
METACLASS 

Generalization hierarchy for metametaclasses 

ANY CLASS 

/ -T "--.. 
OBJECT CLASS ASSERTION CLASS ACTIVITY CLASS 

T 
PERSON CLASS 

Generalization hierarchy for metaclasses 

Figure 10 

use implicitly during requirements modeling to 
interpret an SADT model. 

By way of analogy with SADT's three arrow types 
(Input/Control/Output) between data and activity, 
we have considered various kinds of relationships 
between RMF's three entity categories as candidate 
property categories. RMF property categories offer 
some explicit interpretations for the relationships 
represented by the SADT arrows. 

A second language which supports requirements 
specifications is PSL (Problem Statement Language) 
[26] which was the first automated facility for 
storing and managing "problem statements". A 
problem statement is a functional specification in 
the form of a data-oriented target-system 
description. Such a functional specification 
differs from a requirements model by making design 
decisions that determine system boundaries. "System 
structures" are distinguished from internal process 
and data structures that are used to capture 
characteristics of the target system. 

PSL does offer a number of useful relationship 
types which support our choice of property 
categories. These relationship types fall into 
several groups, some of which are roughly as 
follows : (i) System Flow -- a process may receive 
input data and generate output data; (ii) Data 
Derivation -- a process may use data to derive or 
update data; (iii) System Dynamics -- events occur 
when a condition becomes true/false or upon 
inception/termination of a process, and an event 
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may trigger a process. (~st of the words used in 
(i)-(iii) above stem from the PSL vocabulary of 
keywords.) Many of the RMF property categories 
coincide with these useful PSL relationships, and 
all PSL statements can be expressed in RMF. 
Moreover, by applying the notions of symmetry 
inspired by SADT, we discovered other useful 
relationships. The resultant symmetry among RMF 
relationships is what permits a rather concise 
formalization of ~dF. 

RSL (the Requirement Statement Language) is part 
of perhaps the most comprehensive project to date 
to examine and improve the state of the art [2]. 
The language itself is a functional specification 
language oriented to real-time systems such as 
command and control systems. It offers a set of 
relationships similar to but somewhat more concise 
than PSL, with the major differences being due to 
its real-time-system orientation. RSL allows 
members of an "entity-class" to be members of one 
subordinate "entity-type". However, there is no 
enforced relationship between data associated with 
an entity-class and data associated with its 
entity-types. This is a simple form of a kind of 
subclass relationship and an example of where RMF 
attempts to provide a more general modeling 
facility. 

RSL also offers a general graphical control flow 
specification feature called an Rnet. The Rnets 
describe partial ordering among processes, have a 
"subnet" notation for suppressing details, and 
provide for control flow events to "trigger" other 
events. Thus, Rnets provide a formal structure for 
specifying information about events and conditions. 
• dF uses its assertion objects in several roles 
(property categories) to express these kinds of 
information. 

4.2 Semantic database modeling and 
knowledge representation 

As illustrated by a recent workshop [9], 
researchers in several areas of Computer Science, 
notably in Artificial Intelligence (AI) and Data 
Base Management, have independently concluded that 
real-world modeling is of paramount importance for 
building computer systems, albeit each of these 
areas has goals and perspectives that differ 
somewhat from those of Software Engineering. 

One of the central themes of AI is the 
Representation of Knowledge [8], which has been 
found indispensable for simulating human behavior 
(e.g., natural language understanding) and for 
building "expert" systems. Semantic Networks (see 
[7] for a review) have been used in AI for over a 
decade as ways of representing and especially 
organizing world knowledge through the notions of 
"nodes" (for entities) and "links" of various types 
(indicating types of relationships). The 
abstraction principles used in RMF are directly 
supported by many versions of semantic networks. 
Generalization, under the heading of "IS-A 
hierarchies", has received considerable attention 
in AI. The basic organization of RMF, modulo the 
assertion classes, has been directly influenced by 
this AI research, especially PSN [15]. The 

popularity of semantic networks in AI provides 
independent motivation to our work and further 
confidence in its appropriateness. 

In the field of Data Bases, semantic or 
conceptual models (see [17] for an overview) have 
gained increasing popularity as ways of describing 
database schemata which enhance comprehensibility, 
and hence facilitate database design and 
maintenance. In fact, the terms "aggregation" and 
"generalization" were introduced in [24] in the 
context of database design. Semantic data models, 
however, concentrate by and large on the 
specification of objects (i.e. "data"). Increasing 
attention is being given to specification of 
constraints on the validity of data, and to a 
lesser extent to specification of activities. As 
discussed in [18], extending current modeling 
capabilities with respect to logical information 
and activities is essential to improving on current 
semantic models. 

The Taxis model [19] is one of the few semantic 
data models that extends the use of abstraction 
facilities beyond data. In fact, Taxis uses 
aggregration, generalization, and classification 
for organizing relations, transactions, exceptions, 
and "scripts" for user interfaces [5]. Our current 
work on requirements modeling has been carried out 
within the framework of Taxis, with the purpose of 
providing a higher-level specification language 
that would be appropriate for expressing, as a 
special case of requirements specification, 
Corporate Requirements, the need for which is 
described in [16]. We expect, as well', that the use 
of the same abstraction principles in the RMF aS in 
Taxis will enhance the utility of the RMF for 
information system design using Taxis. 

Our approach is consistent with views in [29] 
that strongly advocate the use of semantic modeling 
in Software Engineering. Among other semantic 
modeling work relevant to requirements modeling, we 
note the work reported in [10],[23], and [25], 
which similarly emphasize the importance of 
modeling real-world phenomena as a system analysis 
approach. [23] presents a conceptual modeling 
approach based on semantic networks and uses an 
IS-A hierarchy for organizing concepts. Another 
language similar in spirit to RMF is presented in 
[27]; it is based on variations of the same 
abstraction principles provided by P44F. 

We point out that although PuMF has its roots in 
previous work in AI and Data Bases, it provides 
novel capabilities. These include assertions as 
another category of entities, property categories 
for defining (abbreviating) pertinent information 
types, and the uniform application of the 
abstraction principles to all object categories. 

Of course, any descriptive framework based on 
classes must acknowledge Simula as a precursor. We 
also acknowledge Smalltalk (see Byte magazine, 
August 1981) as having influenced our basic 
framework; both RMF and Smalltalk are 
"object-oriented" (this is a different sense of the 
word "object" than used elsewhere in this paper) in 
that each specification unit encapsulates the 
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description of some conceptual entity. Just how the 
ideas of these (as well as of certain other) 
programming languages compare to our framework is 
quite interesting, but such a discussion is beyond 
the scope of this paper. 

5. AN ASSESSMENT OF RMF 

5.1 Concerning methodology 

At the heart of many software development 
methodologies lies one or more abstraction 
mechanisms, which allow us to ignore details at 
some level, plus a refinement principle which 
provides for the guided and gradual reintroduction 
of details across the abstraction dimension. The 
aggregation abstraction forms the core of software 
design methodologies such as "stepwise refinement" 
(e.g., [28]). Similarly, the "implementation" 
dimension is the basis for the abstract machine and 
abstract data type related methodologies (e.g., 
[20]). The generalization abstraction has not been 
exploited in Software Engineering as have the other 
dimensions. Yet, it is our contention that it is an 
invaluable organizational tool for system 
description in general, and for requirements 
modeling in particular. 

The main idea of specification guided by 
generalization is that a model can be constructed 
by modeling first the most general classes, and 
then proceeding to more specialized classes. For 
example, in modeling a hospital world, one might 
consider first the concepts of patient, doctor, 
admission, treatment, etc. Later, the modeler can 
differentiate between child patients, heart 
patients, internists and surgeons, surgical and 
medical treatments, etc. At each step, only the 
information (properties) appropriate to that level 
are specified. (We do not rule out the need to 
iterate, i.e. to go back to revise previous level.) 

Ceneralization is the appropriate principle to 
exploit when the difficulty of modeling is due to a 
large number of details rather than due to the 
complexity of the system/world; a hierarchy of 
classes organized along this dimension provides a 
convenient structure for distributing information 
(expressed uniformly as properties in RMF) and 
associating it where it most naturally belongs. 
Such stepwise refinement by specialization [6] is 
orthogonal and complementary to the more usual 
"stepwise refinement by aggregation", whose main 
effect is to decompose complex situations into a 
number of less complex ones. Both kinds of 
refinement are orthogonal and complementary to a 
third dimension, the progression from 
"world-oriented" specifications to specifications 
of a more and more completely implemented system. 

5.2 An underlying model for RMF 

Since descriptive languages are notoriously 
ambiguous, we are working on a detailed formal 
definition of a language based on RMF. We limit our 
discussion to an outline of the underlying 
formalism and the advantages of such a definition. 
(For a detailed presentation, see [13].) 

The underlying model is based on a logic 
involving time, in which we can make assertions 
about the properties that any entity has with 
respect to special time entities called 
"situations". At any moment in time (i.e., in any 
situation), the "world" being described is 
characterized essentially by knowledge of what 
entities are instances of what classes 
(metaclasses,etc). Object classes have as instances 
those entities that are deemed to exist (i.e. to be 
relevant) at that time; an activity class has as 
instances activities that are occurring, or active, 
at that time; an assertion class is considered to 
have as instances assertions that are true at that 
moment. 

Each period when an entity belongs to a class is 
characterized by an initial (insertion) time and a 
final (removal) time. During this period, the 
object is expected to have the factual properties 
induced by the definitional properties of the 
class. Thus, a description can, in fact, be 
expressed in the form of axioms defining the 
meaning of the "instance-of" and "subclass-of" 
relations. 

Property categories can now be explained as 
designating axiom schemata, which provide templates 
for the axioms that represent properties in the 
respective property categories. For example, an 
initial condition for an object class expresses a 
condition that is true for each object that enters 
the class at its time of entry. This is captured in 
our logic by an axiom defining the property 
category initially as a predicate over properties 
of objects, involving the object, an assertion, and 
the insertion time (situation). 

The axiom schemata give precise meaning to 
property categories, so that property categories 
can now be seen as abbreviations for commonly 
encountered restrictions on properties. The way is 
open for users of RMF to extend the list of 
property categories as dictated by the exigencies 
of special domains of discourse. 

Such an underlying model relates an RMF 
description to formal semantics which will be 
useful for developing theoretical and pragmatic 
tools supporting the consistency of descriptions. 

The big advantage of descriptions based on logic 
with time is that the descriptions are quite 
declarative. One has a view of the entire time-line 
(more precisely, over all relevant situations). 
Information that is typically represented by 
control flow specifications in other models is 
subsumed here by logical formulae involving 
situations plus information about the relationships 
between situations, which impose a partial (time) 
ordering on situations. 

5.3 Uniformity 

There are several senses in which the framework 
exhibits high uniformity. Given the "instance-of" 
relation and inltial/final situations, it is 
straight-forward to define primitive insert/remove 
actions which add and delete entities from classes. 
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These actions are intuitive for objects. Applying 
the same ideas to assertions and activities, we 
model activation/termination of activities, and 
becoming true/false for assertions as the 
insertion/removal of entities of the respective 
categories. 

The imposition of generalization hierarchies on 
each object category results in an interesting 
perspective as well. For objects, one can view an 
entity as starting out in a particular class and 
moving around on the hierarchy throughout its 
lifetime. For example, a person could become a 
child patient, later (by virtue of growing older) 
an adult patient, and so on. An activity's behavior 
can be viewed at several levels of generalization 
depending on what aspects of its participants 
(inputs, outputs, controls) its effects 
(preconditions, postconditions, and conditions it 
maintains), and components (parts) are associated 
at each level. For assertions, the imposition of a 
generalization hierarchy is particularly novel and 
interesting. Assertions viewed as entities are 
propositions whose (semantic) interpretation (i.e. 
specification of under what circumstances they are 
true) depends on the classes in which they reside. 
Clearly, in RMF, one assertion class is a 
specialization of another only if the former 
logically implies the latter. Property inheritance 
ensures consistency between assertion classes. 
Thus, the generalization abstraction organizes 
assertions according to both their arguments and 
their assertional import. 

Concerning property categories, it turns out 
that most of those we have found useful can be 
defined in terms of a small number of items of 
information. There are many forms of uniformity 
(symmetry, duality) present. Many of the axiom 
schemata for the property categories are virtually 
identical except for, e.g., the entity category of 
the property subject or value, whether the insert 
vs. remove time is mentioned, the order of binding 
through quantifiers over classes and time, etc. As 
a simple example, initially, precondition, and 
inserted-by property categories all assert 
something about the insert time of the property 
subject, while postcondition and removed-by 
property categories all assert something about the 
remove time of the property subject. Parts and 
constraints are examples of property categories of 
objects that pertain to the entire instance 
interval and, in fact, their schemata are identical 
except for the fact that a part associates an 
object while a constraint associates an assertion. 

5.4 Conclusion 

We do not claim to have invented the abstraction 
mechanisms combined in the framework; rather, we 
have argued that they are independently motivated 
by several modeling endeavors. What we HAVE done is 
to combine them in a simple, constructive way, and 
we have explained some principles of interaction 
and their appropriateness for requirements 
specification. 

When we say RMF "captures more world knowledge" 
than other specification techniques, we are 

referring to the semantic information that is 
conveyed by the three concept types, the kinds of 
relationships provided, and the use of assertions 
in roles where English is used in other techniques. 
More specifically, we mean that RMF captures world 
knowledge more formally (in the same sense that 
Predicate Calculus is more formal than English), 
and without resorting to more implementation 
oriented concepts. 

We wish to stress that successful modeling 
depends not just on how one represents knowledge 
but on how one structures or organizes it. For 
example, Predicate Calculus would be adequate, from 
the point of view of expressibility, for 
representing knowledge; however, it does not 
provide good structuring facilities. We have argued 
in this paper that structuring/organizing a model 
should be based on useful abstraction mechanisms 
such as those offered by RMF. 

In this paper we have bypassed discussing the 
important task of how the relevant terms of the 
domain of discourse are initially identified and 
recorded. We propose that this task should be done 
separately and thoroughly prior to RMF modeling. We 
intend to use an SADT-Iike technique to set up an 
initial (ustruetured") lexicon of the terms whose 
semantic relationships are of importance to the 
model. Our current research [13] investigates the 
connection between such a lexicon and the RMF 
model: how to proceed from the former to the latter 
and how to maintain consistency between them. 

A common problem with using abstractions is that 
humans often over-abstract in an effort to 
establish regularity in their environment; thus, 
although at first sight all patients admitted to 
the hospital must have blood-pressure taken, some 
subclasses such as AMPUTEE may not, and even the 
most heartless hospital will not reject a patient 
because he doesn't know his health insurance 
number. One aspect of our current research concerns 
appropriate responses to such exceptional 
situations and how exception specifications serve 
as yet another abstraction principle in organizing 
large, detailed descriptions [4]. 

We also believe (calendar, clock) time to be 
essential to requirements modeling, since many 
requirements involve expressing things about time. 
The time model proposed in [10] would be 
appropriate and fits directly into our framework as 
object modeling; we would extend it to activity and 
assertion entities within RMF. 

Finally, within the Taxis Project at the 
University of Toronto, we are applying the same 
general principles to different phases of Software 
Engineering, and we believe they will be a key 
factor in developing a unified approach to Software 
Engineering. 
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