
CAPTURING MORE WORLD KNOWLEDGE IN THE REQUIREMENTS SPECIFICATION

Sol J. Greenspan and John Mylopoulos
Department of Computer Science

University of Toronto
Toronto, Ontario, CANADA

Alex Borgida
Department of Computer Science

Rutgers University
New Brunswick, New Jersey, USA

"The real problem is the mass of detailed
requirements; and the only solution is
the discovery or invention of general
rules and abstractions which cover the
many thousands of cases with as few
exceptions as possible."

-C. A. R. Hoare

Abstract

The view is adopted that software requirements
involve the representation (modeling) of
considerable real-world knowledge, not just
functional specifications. A framework (RMF) for
requirements models is presented and its main
features are illustrated. RMF allows information
about three types of conceptual entities (objects,
activities, and assertions) to be recorded
uniformly using the notion of properties. By
grouping all entities into classes or metaclasses,
and by organizing classes into generalization
(specialization) hierarchies, RMF supports three
abstraction principles (classification,
aggregation, and generalization) which appear to be
of universal importance in the development and
organization of complex descriptions. Finally, by
providing a mathematical model underlying our
terminology, we achieve both unambiguity and the
potential to verify consistency of the model.

I. INTRODUCTION

Requirements definition is the task of gathering
all of the relevant information to be used in
understanding a problem situation prior to system
development. The documentation of this information
is called the requirements specification. The form
and content of the requirements specification can
have a tremendous impact on the task of software
throughout its lifetime.

Experience over the last decade has led to some
important observations that point to the need for
improved requirements specification languages.
First, it appears that more attention to
requirements, including a better understanding of

the problem situation, pays off in reduced total
life-cycle effort and cost [3]. Secondly, it has
been learned that it is difficult, indeed, to "get
the requirements right"; some common problems are
ill-defined terms, inconsistencies, ambiguities,
and the tendency to mix requirements with design
decisions [I].

Much of requirements definition involves such
tasks as: defining terms in the domain of
discourse, stating, clarifying and agreeing on
assumptions and constraints, and discussing and
negotiating the needs and objectives of an
organization (business, government, industry).
Whatever the application "world" (e.g. airline
reservations, manufacturing, hospital
administration, etc.) there is a body of
"knowledge" used to interpret and understand that
world.

For example, in considering the development of a
variety of information systems for a large hospital
in Toronto, we have found it necessary to become
intimately familiar with a wide range of subject
matters: medical knowledge, hospital procedures and
policies, available therapies (drugs, surgery,
etc.), legal responsibilities to government, and so
on. We believe that this kind of real world
knowledge needs to be captured in a formal
requirements specification. The ability to
efficiently design appropriate computer systems and
enable them to evolve over their lifetime depends
on the extent to which this knowledge can be
captured.

Most current requirements languages concentrate
primarily on functional specifications, which give
a high-level target system description in terms of
the functions to be performed by the ultimate
system (with an emphasis on what the system is
supposed to do but not how). In functional
specification approaches, the world knowledge,
whose importance we have been discussing, is often
not an explicit part of the requirements
specification. The knowledge is, at least
initially, scattered throughout documents and the
minds of people across the organization.

225
0270-5257/82/0000/0225500.75 © 1982 I E E E

Our research addresses the development of
languages and tools for requirements modeling, a
specification approach directed toward high-level
specifications which capture world knowledge
directly and naturally in the specification. In
this paper we present a framework for requirements
modeling called RMF. An RMF model describes some
"slice of reality". RMF guides the information
gathering job of requirements definition. The
resultant description should be useful in
determining what the problem situation is and what
solutions are possible. The design of RMF
emphasizes the need for structuring the description
to ease the task of finding answers to questions
during system design and implementation and in the
face of changing requirements.

Section 2 of the paper introduces our modeling
approach and discusses the central theme,
abstraction mechanisms. Section 3 is the core of
the paper, presenting the main features of RMF
along with illustrative examples. Section 4
discusses related work and fills in some background
material. Finally, Section 5 discusses some
interesting aspects of the framework and of our
ongoing research.

2. MODELING AND ABSTRACTION

2.1A modeling approach

The major goal of RMF is to form a synthesis of
some modeling principles which we believe are
essential to the requirements modeling task; but we
stop short of providing a specific language
incorporating them. We apply these principles to
answer two key questions about requirements
modeling: (I) What kind of information should be
captured in a requirements model? (2) How should a
requirements model be structured?

We have chosen a representation method in which
a requirements model consists of a collection of
conceptual entities (or simply entities) defined by
their inter-relationships with other entities.
Thus, the first question above is answered by (i)
choosing appropriate specification units, or entity
categories, and (ii) deciding what kinds of
relationships are allowed within and between
entities of each entity category; later on in the
presentation we shall call the relationships
properties and the types of relationships property
categories.

• 4F offers three kinds of specification units:
object, activity, and assertion. As discussed in
Section 4, these entity categories have been used
successfully, in one form or another, across a wide
range of modeling endeavors.

For a long time it has been asserted that
abstraction is the best tool we have toward the
intellectual manageability of complex descriptions
[11,14]. The framework is based on the premise that
effective structuring of large descriptions such as
requirements models depends on the use of good
abstractions. Below we introduce the abstraction
mechanisms used in the framework.

2.2 Abstraction mechanisms

An abstraction mechanism is any descriptive
facility that allows certain kinds of information
to be included while precluding other,
"lower-level" or "less important" details. In
Software Engineering, abstraction is usually
equated with the suppression of design decisions or
implementation details. In this sense a
requirements model should be "very abstract";
indeed, it is proposed as the "most abstract"
specification for use in Software Engineering.

In ~MF we propose the use of a set of
complementary abstraction mechanisms for
descriptive purposes. A first abstraction
mechanism, aggregation, allows an entity to be
viewed as a collection of components, or parts. A
second abstraction mechanism is classification,
which allows a new entity, the class, to capture
common characteristics shared by a group of
entities. A third abstraction, generalization,
captures the common characteristics of several
classes.

Classification allows one to consider only the
characteristics shared by the instances of a class
and to ignore individual differences. Aggregation
allows one to consider an entity while ignoring
further detail about the components. Generalization
allows one to consider only those properties that a
collection of classes have in common without
considering the classes' individual differences.

A principal design goal of our RMF is to apply
the abstraction mechanisms uniformly over all the
entity categories. That is to say, there are, in an
RMF model, classes for object, activity, and
assertion entities; entities of all categories can
have component parts; and classes of each entity
category are organized according to their
generality/specificity.

We feel that a specification language exhibiting
such uniformity will be much easier to formalize,
understand and use.

3. THE FEATURES OF RMF

We first show in terms of objects how the
abstraction mechanisms work, and then we extend the
presentation to activities and assertions as well.

3.1 Tokens, classes, and metaclasses

Entities are stratified into classification
levels according to whether they are considered
"individuals", called tokens, collections of tokens
called classes, classes of classes called
metaclasses, and so on. The tokens of a class are
called its instances; similarly, a class is said to
be an instance of a metaclass.

Simple examples of object tokens are john-smith
(representing a particular person) and 7
(representing the n~ber 7). PERSON is an example
of a class, whose instances are tokens such as
john-smith, while INTEGER is a class whose
instances would include 7.

226

An example of a metaclass is PERSON CLASS, whose
instances are classes of persons, such as PERSON,
PATIENT, PHYSICIAN, NURSE.

In addition to its instances, a class bears
additional information, but for this we need the
notion of properties.

For the remainder of the paper we will use lower
case letters and digits for token identifiers and
upper case letters for class and metaclass
identifiers. The suffix " CLASS" will be use for
metaclass identifiers.

3.2 Properties -- factual and definitional

Entities can be related to other entities by
participating in properties. Properties consist of
three items of information: a subject, an attribute
(or property name), and a value. To express the
property of the token john-smith that his age is
23, we could write

<john-smith, age, 23>
where the subject, attribute, and value are
john-smith, age (an identifier), and 23,
respectively. This property expresses "factual"
information about the subject and thus is termed a
factual property.

Factual information alone is clearly not
adequate for requirements modeling. We have
introduced classes (and metaclasses) for the
purpose of defining and describing collections of
entities that, presumably, are grouped together
because some uniform conditions hold over all of
them. What is needed is a facility for specifying
generic information that pertains to each of the
instances of a class (or metaclass). For example,
we may want to specify for the class PERSON that
each person has an age which is an AGE VALUE. The
RMF feature used for this is called a definitional
property. The triple

(PERSON, age, AGE VALUE)
is used for now to represent tee above information.
The three components are again called subject,
attribute, and value. (Note that we have used
angular brackets and parentheses to distinguish the
two kinds of properties.)

It may be helpful to think of a definitional
property as defining a function, e.g.,

age: PERSON --> AGE VALUE
whose domain is the property --subject and whose
range in the property value. Evaluation of the
function for an instance of the domain results in a
corresponding factual property, e.g.

age(john-smith) = 23.

The most important point to notice here is that
23 is, and must be, an instance of A(~ VALUE. In
general, for a class C with definitional-- property
(C,a,V), for every instance x of C, it must be the
case that a(x) is an instance of V. The close
correspondence between definitional and factual
properties is called the property induction
principle. The principle requires as well that
every factual property of an object be induced by a
definitional property of some containing class.

It is useful to be able
properties to classes as
example, the information

"the average age of persons is 21"
"the number of nurses is 200"

should be considered factual rather
definitional, that is

<PERSON, average-age, 21>
<NURSE, cardinality, 200>

since the information pertains directly
subjects rather than to their instances.

to associate factual
well as to tokens. For

than

to the

The inclusion of metaclasses in the framework
allows the property induction principle to be
extended. In order to allow the specification of
the above two factual properties, it would be
necessary to have also specified definitional
properties that induce them, such as

(PERSON CLASS, average-age, AGE VALUE)
(PERSONCLASS, cardinality, NUMBER).

At this point in the paper, we have described
how two abstraction principles, classification and
aggregation, are incorporated into the framework.
The classification abstraction is supported by the
"instance oP' relationship between tokens and
classes and between classes and metaclasses; we
consider the three levels to be adequate for most
modeling purposes. The grouping of all the
properties of an entity relates the entity to other
entities which may in turn be the subjects of other
properties; this supports the aggregation
abstraction. The property induction principle
relates these two dimensions in a coherent way.

3-3 Objects, activities, assertions

As implied by the examples above, objects
represent the "things" in the world, such as
persons, numbers, equipment, documents, etc.

PERSON CLASS PATIENT
association ward : HOSPITAL WARD,

primary-physician : PHYSICIAN,
consulting-physician : PHYSICIAN,

inserted-by register: A~dITPATIENT,
initially phys-ward?:

primary-physician.specialty ~ ward
=> consulting-physician.specialty = ward,

updated-by transfer:
TRANSFER(self,new-ward:WARD),

removed-by release: RELEASE(self),
end {PATIENT}

Figure I

Figure I is a description of the object class
PATIENT, giving general information about patients
for a particular hospital. The class is defined to
be an instance of the metaclass PERSON CLASS and
has a number of definitional properties ~onsisting
of

<attribute> : <value>
pairs and grouped into property categories such as
association, inserted-by, and initially.

The properties of PATIENT relate each patient to
a ward and two physicians, one primary and the

227

other consulting. Patients are "created" through an
ADMIT PATIENT activity, updated through a TRANSFER
activity and removed through a RELEASE activity.
When a patient is first created, it must be the
case that if the ward to which a patient is
assigned is not the specialty of his/her primary
(ca~e) physician, then it must be the specialty of
the consulting physician.

ACTIVITY CLASS ADMIT PATIENT
input p: PERSON?
control w: WARD,

phys, consulting-phys: PHYSICIAN,
output pt : PATIENT,
triggered-by a1: ARRIVAL(p),
precondition already-in?: NOT INST(p,PATIENT),

room-left? :
PATIENT.cardinality <

PATIENT MAX,
postcondition admitted?: INHOSPITA~(p),
part check-id: CHECK ID(p),

put : CHOOSE WARD~w,phys ,consulting-phys) ,
admit: INSERT(p,PATIENT),
increment : INCREMENT(PATIENT.cardinality),
urinalysis: PERFORM URINALYSIS(p),
blood-count : PERFORM BLOOD COUNT(p),
blood-pressure : PERFORM_BLOODPRESSURE (p) ,
temp: TAKETEMP(p),

end {ADMIT PATIENT}

Figure 2

In Figure 2, we present a definition of the
activity class ADMIT PATIENT. It consists of one
input property, a person, and one output property,
a patient; also, it has three control properties, a
ward and two physicians. The activity is triggered
by instances of the assertion class, ARRIVAL, which
is instantiated each time a person arrives at the
hospital for admission.

ADMIT PATIENT also includes two preconditions
(already:in? and room-left?) and a postcondition
(admitted?) that must be true before and after t~e
activity, respectively. The preconditions assert
that the person must not be already a patient of
the hospital, and also that the number of patients
(PATIENT.cardinality) is less than the hospital
capacity (PATIENT MAX). The postcondition asserts
that the person ha~ indeed been admitted once the
ADMIT PATIENT activity is over.

Final~y, the "body" of ADMIT PATIENT is defined
by several part properties --which specify the
components of an ADMIT PATIENT activity. The
components involve checking the person's ID,
choosing a ward and assigning a primary care and a
consulting physician, inserting the person into the
PATIENT class and incrementing the cardinality
property of PATIENT; also, some tests are performed
(urinalysis, blood-count, blood-pressure, and
temperature).

We present an example of an assertion class in
Figure 3 to underscore the uniform treatment of the
entity categories. The assertion class IN HOSPITAL
has one argument, a patient, and assert~ through
its part property that the person is now physically

ASSERTION CLASS IN HOSPITAL
argument p : PE-RSON,
part patient?: INST(p,PATIENT),

present? : PHYSICALLYPRESENT(p),
end {IN HOSPITAL}

Figure 3

present at the hospital.

We close this section by giving a definition of
the metaclass PERSON CLASS, in Figure 4. As stated
in the previous section, PATIENT is entitled to a
cardinality property only because it is an instance
of this metaclass. Note that METACLASS is a
built-in metametaclass that has all metaclasses as
instances. Two other built-in metametaclasses have
been found useful because they allow references to
all entities and to all generic entities,
respectively: (i) ENTITY, which has as instances
all entities in a specification, including itself,
and (ii) CLASS, which has as instances all classes,
metaclasses, and the three built-in metametaclasses
METACLASS, CLASS, and ENTITY.

METACLASS PERSON CLASS
association--average-age: ACE VALUE,

cardinality: NUMBER,
end {PERSON CLASS}

Figure 4

3.4 Generalization

To support the generalization abstraction
mechanism, a new relationship, subclass, is offered
which can be declared between two classes or two
metaclasses. For example, suppose PERSON has been
defined as shown in Figure 5. (Note: The part
properties of a data class instance do not change
values, while the association properties do.) Then,
changing the first line of the definition of
PATIENT (Figure I) to

PERSON CLASS PATIENT subclass of PERSON
makes PATIENT a subclass or specialization of
PERSON and PERSON a generalization of PATIENT.

PERSON CLASS PERSON
part name: PERSON NAME,

sin: SOCIAL INSURANCE_#,
chip: ONTARIO INS #,

association address: ADDRESS,
age: AGE VALUE,

end {PERSON}

Figure

What does it mean to say that PATIENT is a
specialization of PERSON? Well, for one thing we
expect that every instance of PATIENT is, under all
circumstances, also an instance of PERSON. Indeed,
the semantics of becoming an instance of a class
include becoming an instance of all of the

228

generalizations of the class. Conversely, when an
object ceases to be an instance of a class, it also
ceases to be an instance of its specializations.

Another aspect of specialization concerns the
definitional properties of the two classes
involved. All definitional properties of PERSON are
inherited by PATIENT; so, by virtue of being
declared a specialization of PERSON, PATIENT has,
in addition to the properties specified in Figure
I, also a name, a social insurance number, an
address, etc.

Property inheritance allows for economy of
expression in a specification because a
definitional property need only be mentioned once
for the most general class to which it is
applicable. Inheritance also serves as a memory
aid, since knowing that a class is a subclass of
another allows one to concentrate on the additional
information needed to describe the subclass.

PERSON CLASS CHILD subclass of PERSON
a-ssociation age: CHILD ACE VALUE,

guardian: PERSON,
invariant guardian.age > 30,

end {CHILD}

PERSON CLASS SURGICAL PATIENT subclass of PATIENT
association blood-type: BLOOD TYPE,

surgery: SURCERY TYPE,
end {SURGICAL PATIENT}

PERSON CLASS TRANSPLANT SURCERY PATIENT
-- subclass-of SURGICAL PATIENT
association donor: PERSON,

end {TRANSPLANT SURGERY PATIENT}

PERSON CLASS CHILD PATIENT
subclass of CHILD, PATIENT

association nurse: NURSE,
end {CHILD PATIENT}

Figure 6

To illustrate the importance of generalization,
suppose we have already defired the class PERSON
and its specialization PATIENT. A n~nber of other
object classes are also relevant for our hospital
example. CHILD specializes PERSON by restricting
its age property bo allow only values in
CHILD ACE VALUE. SURGICAL PATIENT as well as
TRANSPLANT SURCERY PATIENT-- are specializations of
PATIENT. CHILD PATIENT gives an example of a class
that has more than one immediate generalization.
Figure 6 includes the definitions of all these
object classes while Figure 7 summarizes the
subclass relation for the object classes defined so
fa r.

Specialization opens the door to a form of
stepwise refinement that is based on the
introduction of detail for special cases. Moreover,
this form of refinement is not applicable only to
object classes. Consider, for example, some
specializations of A~MIT PATIENT, as shown in
Figure 8. The first, ADMIT CHILD PATIENT, simply

PERSON

(PHYSICIAN) CHILD PATIENT (NURSE)

/ / \
CHILDPATIENT ~ MEDICAL_PATIENT

SUR GICAL_PATIENT

/ \
(SURGICAL C HILDPATIENT)

TRANSPLANT SURCERY PATIENT

(The classes in parentheses have not been defined.)

Figure 7

assigns a nurse to the child patient in addition to
all the things done for other patients. The second
specializes A~4IT PATIENT for surgical patients
where a blood test is done for possible
transfusion. ADMIT SURGICAL CHILD PATIENT, the
third, is a specialization-- of ~he previous two
activities and therefore inherits all their
definitional properties; in addition, it has a
definitional property of its own which obtains
permission for surgery from the child's guardian.

ACTIVITY CLASS ADMIT CHILD PATIENT
- subclass of ADMIT PATIENT

input p: CHILD,
control n: NURSE,
out~ut pt: CHILDPATIENT,
part find-nurse: FIND NURSE(n,w),

admit: INSERT(P,CHILD PATIENT),
end {ADMIT CHILD PATIENT}

ACTIVITY CLASS ADMIT SURGICAL PATIENT
- - - subclass of ADMIT PATIENT

output pt: SURGICAL PATIENT,
triggered-by al: ARRIVAL(p)

AND SURGERYNEEDED(p),
part blood-typing: PERFORM BLOODTYPING,

end {AI~MIT SURGICAL PATIENT}

ACTIVITY CLASS ADMIT SURGICAL CHILD PATIENT
subclass of ADMIT CHILD PATYENT,

ADMIT SURGICAL PATIENT
part obtain-permission:

OBTAIN PERMISSION(p,p.guardian),
end {ADMIT SURGICAL CHILD PATIENT}

Figure 8

Note that redefinitions of definitional
properties must be consistent with the properties
they replace. For example, the value of the age
property of child, CHILD ACE VALUE, must be a
specialization of ACE VALUE (Figures 5 and 6).
Similarly, the redefinitions of properties such as

229

p and pt in ADMIT CHILD PATIENT are all consistent
with the properties of ADMIT PATIENT they replace
(Figures 2 and 8). An interes[ing application of
this consistency rule involves properties whose
value is an assertion class such as the al property
of ADMIT PATIENT (Figure 2). For ADMIT PATIENT the
value of al is the assertion ARRIVAL(p)? while for
ADMIT SURGICAL PATIENT (Figure 8) the value of al
is The stronger assertion ARRIVAL(p) AND
SURCERYNEEDED(p).

Specialization can also be used to structure
assertion class definitions. The IN HOSPITAL
assertion class, for instance, can be specialized
by specializing its arguments, by adding conjuncts
(parts), or even by redefining some of its parts.
Thus, for child patients, IN HOSPITAL might be
specialized (see Figure 9) t~ check that the
patient is in a ward accompanied by a nurse.

ASSERTION CLASS CHILD IN HOSPITAL
subclass of IN HOSPITAL

argument p: CHILD
part in-ward?: IN WARD(p),

with-nurse?-- WITH_NURSE(p) ,
end {CHILD IN HOSPITAL}

Figure 9

We close th~s section by pointing out that
metaclasses (and metametaclasses) are also
organized into specialization hierarchies, as
suggested in Figure 10.

4. RELATED WORK

In this section we argue the advantages and
utility of the requirements modeling framework. We
justify our choices of specification concepts
(namely, the entity categories, property
categories, and abstraction mechanisms) by
demonstrating that they are based on a consensus
over a wide variety of specification and modeling
experience. Moreover, our framework subsumes the
features of important requirements languages.

4.1 Related requirements languages

The achievement of a highly uniform framework is
a goal partly inspired by Softech's SADT [22]. SADT
offers data and activity concepts and uses the same
graphical box and arrow notation for describing
both. A data concept is defined (decomposed) in a
diagram showing the data subparts as boxes
interconnected by arrows representing activities.
Activity objects are defined by a "dual" kind of
diagram in which activity boxes are interconnected
by data arrows.

RMF's "object" and "activity" correspond to
SADT's data and activity, and RMF adds a third,
complementary specification unit, assertions, to
facilitate the explicit specification of
information which in an SADT model would usually be
specified in accompanying natural language text. In
addition, ~MF makes explicit the use of abstraction
principles, which we believe the modeler tends to

ENTITY

T
CLASS

T
METACLASS

Generalization hierarchy for metametaclasses

ANY CLASS

/ -T "--..
OBJECT CLASS ASSERTION CLASS ACTIVITY CLASS

T
PERSON CLASS

Generalization hierarchy for metaclasses

Figure 10

use implicitly during requirements modeling to
interpret an SADT model.

By way of analogy with SADT's three arrow types
(Input/Control/Output) between data and activity,
we have considered various kinds of relationships
between RMF's three entity categories as candidate
property categories. RMF property categories offer
some explicit interpretations for the relationships
represented by the SADT arrows.

A second language which supports requirements
specifications is PSL (Problem Statement Language)
[26] which was the first automated facility for
storing and managing "problem statements". A
problem statement is a functional specification in
the form of a data-oriented target-system
description. Such a functional specification
differs from a requirements model by making design
decisions that determine system boundaries. "System
structures" are distinguished from internal process
and data structures that are used to capture
characteristics of the target system.

PSL does offer a number of useful relationship
types which support our choice of property
categories. These relationship types fall into
several groups, some of which are roughly as
follows : (i) System Flow -- a process may receive
input data and generate output data; (ii) Data
Derivation -- a process may use data to derive or
update data; (iii) System Dynamics -- events occur
when a condition becomes true/false or upon
inception/termination of a process, and an event

230

may trigger a process. (~st of the words used in
(i)-(iii) above stem from the PSL vocabulary of
keywords.) Many of the RMF property categories
coincide with these useful PSL relationships, and
all PSL statements can be expressed in RMF.
Moreover, by applying the notions of symmetry
inspired by SADT, we discovered other useful
relationships. The resultant symmetry among RMF
relationships is what permits a rather concise
formalization of ~dF.

RSL (the Requirement Statement Language) is part
of perhaps the most comprehensive project to date
to examine and improve the state of the art [2].
The language itself is a functional specification
language oriented to real-time systems such as
command and control systems. It offers a set of
relationships similar to but somewhat more concise
than PSL, with the major differences being due to
its real-time-system orientation. RSL allows
members of an "entity-class" to be members of one
subordinate "entity-type". However, there is no
enforced relationship between data associated with
an entity-class and data associated with its
entity-types. This is a simple form of a kind of
subclass relationship and an example of where RMF
attempts to provide a more general modeling
facility.

RSL also offers a general graphical control flow
specification feature called an Rnet. The Rnets
describe partial ordering among processes, have a
"subnet" notation for suppressing details, and
provide for control flow events to "trigger" other
events. Thus, Rnets provide a formal structure for
specifying information about events and conditions.
• dF uses its assertion objects in several roles
(property categories) to express these kinds of
information.

4.2 Semantic database modeling and
knowledge representation

As illustrated by a recent workshop [9],
researchers in several areas of Computer Science,
notably in Artificial Intelligence (AI) and Data
Base Management, have independently concluded that
real-world modeling is of paramount importance for
building computer systems, albeit each of these
areas has goals and perspectives that differ
somewhat from those of Software Engineering.

One of the central themes of AI is the
Representation of Knowledge [8], which has been
found indispensable for simulating human behavior
(e.g., natural language understanding) and for
building "expert" systems. Semantic Networks (see
[7] for a review) have been used in AI for over a
decade as ways of representing and especially
organizing world knowledge through the notions of
"nodes" (for entities) and "links" of various types
(indicating types of relationships). The
abstraction principles used in RMF are directly
supported by many versions of semantic networks.
Generalization, under the heading of "IS-A
hierarchies", has received considerable attention
in AI. The basic organization of RMF, modulo the
assertion classes, has been directly influenced by
this AI research, especially PSN [15]. The

popularity of semantic networks in AI provides
independent motivation to our work and further
confidence in its appropriateness.

In the field of Data Bases, semantic or
conceptual models (see [17] for an overview) have
gained increasing popularity as ways of describing
database schemata which enhance comprehensibility,
and hence facilitate database design and
maintenance. In fact, the terms "aggregation" and
"generalization" were introduced in [24] in the
context of database design. Semantic data models,
however, concentrate by and large on the
specification of objects (i.e. "data"). Increasing
attention is being given to specification of
constraints on the validity of data, and to a
lesser extent to specification of activities. As
discussed in [18], extending current modeling
capabilities with respect to logical information
and activities is essential to improving on current
semantic models.

The Taxis model [19] is one of the few semantic
data models that extends the use of abstraction
facilities beyond data. In fact, Taxis uses
aggregration, generalization, and classification
for organizing relations, transactions, exceptions,
and "scripts" for user interfaces [5]. Our current
work on requirements modeling has been carried out
within the framework of Taxis, with the purpose of
providing a higher-level specification language
that would be appropriate for expressing, as a
special case of requirements specification,
Corporate Requirements, the need for which is
described in [16]. We expect, as well', that the use
of the same abstraction principles in the RMF aS in
Taxis will enhance the utility of the RMF for
information system design using Taxis.

Our approach is consistent with views in [29]
that strongly advocate the use of semantic modeling
in Software Engineering. Among other semantic
modeling work relevant to requirements modeling, we
note the work reported in [10],[23], and [25],
which similarly emphasize the importance of
modeling real-world phenomena as a system analysis
approach. [23] presents a conceptual modeling
approach based on semantic networks and uses an
IS-A hierarchy for organizing concepts. Another
language similar in spirit to RMF is presented in
[27]; it is based on variations of the same
abstraction principles provided by P44F.

We point out that although PuMF has its roots in
previous work in AI and Data Bases, it provides
novel capabilities. These include assertions as
another category of entities, property categories
for defining (abbreviating) pertinent information
types, and the uniform application of the
abstraction principles to all object categories.

Of course, any descriptive framework based on
classes must acknowledge Simula as a precursor. We
also acknowledge Smalltalk (see Byte magazine,
August 1981) as having influenced our basic
framework; both RMF and Smalltalk are
"object-oriented" (this is a different sense of the
word "object" than used elsewhere in this paper) in
that each specification unit encapsulates the

231

description of some conceptual entity. Just how the
ideas of these (as well as of certain other)
programming languages compare to our framework is
quite interesting, but such a discussion is beyond
the scope of this paper.

5. AN ASSESSMENT OF RMF

5.1 Concerning methodology

At the heart of many software development
methodologies lies one or more abstraction
mechanisms, which allow us to ignore details at
some level, plus a refinement principle which
provides for the guided and gradual reintroduction
of details across the abstraction dimension. The
aggregation abstraction forms the core of software
design methodologies such as "stepwise refinement"
(e.g., [28]). Similarly, the "implementation"
dimension is the basis for the abstract machine and
abstract data type related methodologies (e.g.,
[20]). The generalization abstraction has not been
exploited in Software Engineering as have the other
dimensions. Yet, it is our contention that it is an
invaluable organizational tool for system
description in general, and for requirements
modeling in particular.

The main idea of specification guided by
generalization is that a model can be constructed
by modeling first the most general classes, and
then proceeding to more specialized classes. For
example, in modeling a hospital world, one might
consider first the concepts of patient, doctor,
admission, treatment, etc. Later, the modeler can
differentiate between child patients, heart
patients, internists and surgeons, surgical and
medical treatments, etc. At each step, only the
information (properties) appropriate to that level
are specified. (We do not rule out the need to
iterate, i.e. to go back to revise previous level.)

Ceneralization is the appropriate principle to
exploit when the difficulty of modeling is due to a
large number of details rather than due to the
complexity of the system/world; a hierarchy of
classes organized along this dimension provides a
convenient structure for distributing information
(expressed uniformly as properties in RMF) and
associating it where it most naturally belongs.
Such stepwise refinement by specialization [6] is
orthogonal and complementary to the more usual
"stepwise refinement by aggregation", whose main
effect is to decompose complex situations into a
number of less complex ones. Both kinds of
refinement are orthogonal and complementary to a
third dimension, the progression from
"world-oriented" specifications to specifications
of a more and more completely implemented system.

5.2 An underlying model for RMF

Since descriptive languages are notoriously
ambiguous, we are working on a detailed formal
definition of a language based on RMF. We limit our
discussion to an outline of the underlying
formalism and the advantages of such a definition.
(For a detailed presentation, see [13].)

The underlying model is based on a logic
involving time, in which we can make assertions
about the properties that any entity has with
respect to special time entities called
"situations". At any moment in time (i.e., in any
situation), the "world" being described is
characterized essentially by knowledge of what
entities are instances of what classes
(metaclasses,etc). Object classes have as instances
those entities that are deemed to exist (i.e. to be
relevant) at that time; an activity class has as
instances activities that are occurring, or active,
at that time; an assertion class is considered to
have as instances assertions that are true at that
moment.

Each period when an entity belongs to a class is
characterized by an initial (insertion) time and a
final (removal) time. During this period, the
object is expected to have the factual properties
induced by the definitional properties of the
class. Thus, a description can, in fact, be
expressed in the form of axioms defining the
meaning of the "instance-of" and "subclass-of"
relations.

Property categories can now be explained as
designating axiom schemata, which provide templates
for the axioms that represent properties in the
respective property categories. For example, an
initial condition for an object class expresses a
condition that is true for each object that enters
the class at its time of entry. This is captured in
our logic by an axiom defining the property
category initially as a predicate over properties
of objects, involving the object, an assertion, and
the insertion time (situation).

The axiom schemata give precise meaning to
property categories, so that property categories
can now be seen as abbreviations for commonly
encountered restrictions on properties. The way is
open for users of RMF to extend the list of
property categories as dictated by the exigencies
of special domains of discourse.

Such an underlying model relates an RMF
description to formal semantics which will be
useful for developing theoretical and pragmatic
tools supporting the consistency of descriptions.

The big advantage of descriptions based on logic
with time is that the descriptions are quite
declarative. One has a view of the entire time-line
(more precisely, over all relevant situations).
Information that is typically represented by
control flow specifications in other models is
subsumed here by logical formulae involving
situations plus information about the relationships
between situations, which impose a partial (time)
ordering on situations.

5.3 Uniformity

There are several senses in which the framework
exhibits high uniformity. Given the "instance-of"
relation and inltial/final situations, it is
straight-forward to define primitive insert/remove
actions which add and delete entities from classes.

232

These actions are intuitive for objects. Applying
the same ideas to assertions and activities, we
model activation/termination of activities, and
becoming true/false for assertions as the
insertion/removal of entities of the respective
categories.

The imposition of generalization hierarchies on
each object category results in an interesting
perspective as well. For objects, one can view an
entity as starting out in a particular class and
moving around on the hierarchy throughout its
lifetime. For example, a person could become a
child patient, later (by virtue of growing older)
an adult patient, and so on. An activity's behavior
can be viewed at several levels of generalization
depending on what aspects of its participants
(inputs, outputs, controls) its effects
(preconditions, postconditions, and conditions it
maintains), and components (parts) are associated
at each level. For assertions, the imposition of a
generalization hierarchy is particularly novel and
interesting. Assertions viewed as entities are
propositions whose (semantic) interpretation (i.e.
specification of under what circumstances they are
true) depends on the classes in which they reside.
Clearly, in RMF, one assertion class is a
specialization of another only if the former
logically implies the latter. Property inheritance
ensures consistency between assertion classes.
Thus, the generalization abstraction organizes
assertions according to both their arguments and
their assertional import.

Concerning property categories, it turns out
that most of those we have found useful can be
defined in terms of a small number of items of
information. There are many forms of uniformity
(symmetry, duality) present. Many of the axiom
schemata for the property categories are virtually
identical except for, e.g., the entity category of
the property subject or value, whether the insert
vs. remove time is mentioned, the order of binding
through quantifiers over classes and time, etc. As
a simple example, initially, precondition, and
inserted-by property categories all assert
something about the insert time of the property
subject, while postcondition and removed-by
property categories all assert something about the
remove time of the property subject. Parts and
constraints are examples of property categories of
objects that pertain to the entire instance
interval and, in fact, their schemata are identical
except for the fact that a part associates an
object while a constraint associates an assertion.

5.4 Conclusion

We do not claim to have invented the abstraction
mechanisms combined in the framework; rather, we
have argued that they are independently motivated
by several modeling endeavors. What we HAVE done is
to combine them in a simple, constructive way, and
we have explained some principles of interaction
and their appropriateness for requirements
specification.

When we say RMF "captures more world knowledge"
than other specification techniques, we are

referring to the semantic information that is
conveyed by the three concept types, the kinds of
relationships provided, and the use of assertions
in roles where English is used in other techniques.
More specifically, we mean that RMF captures world
knowledge more formally (in the same sense that
Predicate Calculus is more formal than English),
and without resorting to more implementation
oriented concepts.

We wish to stress that successful modeling
depends not just on how one represents knowledge
but on how one structures or organizes it. For
example, Predicate Calculus would be adequate, from
the point of view of expressibility, for
representing knowledge; however, it does not
provide good structuring facilities. We have argued
in this paper that structuring/organizing a model
should be based on useful abstraction mechanisms
such as those offered by RMF.

In this paper we have bypassed discussing the
important task of how the relevant terms of the
domain of discourse are initially identified and
recorded. We propose that this task should be done
separately and thoroughly prior to RMF modeling. We
intend to use an SADT-Iike technique to set up an
initial (ustruetured") lexicon of the terms whose
semantic relationships are of importance to the
model. Our current research [13] investigates the
connection between such a lexicon and the RMF
model: how to proceed from the former to the latter
and how to maintain consistency between them.

A common problem with using abstractions is that
humans often over-abstract in an effort to
establish regularity in their environment; thus,
although at first sight all patients admitted to
the hospital must have blood-pressure taken, some
subclasses such as AMPUTEE may not, and even the
most heartless hospital will not reject a patient
because he doesn't know his health insurance
number. One aspect of our current research concerns
appropriate responses to such exceptional
situations and how exception specifications serve
as yet another abstraction principle in organizing
large, detailed descriptions [4].

We also believe (calendar, clock) time to be
essential to requirements modeling, since many
requirements involve expressing things about time.
The time model proposed in [10] would be
appropriate and fits directly into our framework as
object modeling; we would extend it to activity and
assertion entities within RMF.

Finally, within the Taxis Project at the
University of Toronto, we are applying the same
general principles to different phases of Software
Engineering, and we believe they will be a key
factor in developing a unified approach to Software
Engineering.

Acknowledgments: The authors wish to thank Brian
Nixon for technical assistance during preparation
of the manuscript, Theresa Miao for typing help,
and, finally, the members of the Taxis ~oup for
their constant support.

233

6. REFERENCES

[I] Bell, T. E., and T. A. Thayer, "software
Requirements: Are They Really a Problem?",
Proceedings of the Second International
Conference on Software Engineering, San
Francisco, October 1976, pp. 61-68.

[2] Bell, T. E., D. C. Bixler, and M.E. Dyer,
"An Extendible Approach to Computer-Aided
Software Requirements Engineering," in [21],
pp. 49-60.

[3] Boehm, B., "Software Engineering: R&D Trends
and Defense Needs," in Wegner, P. (editor),
Research Directions in Software Technology,
MIT Press, 1979.

[4] Borgida, A., "Flexible handling of exceptions:
a prospectus for research," Dept. of Computer
Science, Rutgers Univ., Feb. 1982.

[5] Borgida, A., J. Mylopoulos, J., and H. K. T.
Wong, "Methodological and Computer Aids for
Interactive Information System Design," in
Automated Tools for Information System
Design,, H.-J. Schneider and A. Wasserman
(editors), IFIP, North-Holland, 1982.

[6] Borgida, A., J. Mylopoulos, and H. K. T. Wong,
"Taxonomic Software Specifications," in M.
Brodie, J. Mylopoulos, and J. Schmidt (Eds.),
Perspectives on Conceptual Modelling,
Springer-Verlag, 1982.

[7] Brachman, R. J., "On the Epistemological
Status of Semantic Networks," in [12].

[8] Brachman, R. and B. Smith (editors), Special
Issue on Knowledge Representation, SICART No.
50, February 1980.

[9] Brodie, M. L., and S. N. Zilles (eds.),
Proceedings of th__~e Workshop on Data
Abstraction, Databases and Conceptual
Modelling, Pingree Park, CO, 23-26 June 1980,
SIGPLAN Notices, Volume 16, No. I, Jan.1981.

[10] Bubenko, J. A., "Information Modeling in the
Context of System Development," IFIP 80.

[11] Dijkstra, E. W., "Notes on Structured
Programming," Structured Programming, Academic
Press, 1972.

[12] Findler, N. (Editor), Associative Networks,
Academic Press, 1979.

[13] Greenspan, S. J., Ph. D. Thesis on
Requirements Modeling, Dept. of Computer
Science, University of Toronto (forthcoming).

[14] Hoare, C. A. R., "Notes on Data Structuring,"
in Structured Programming, Academic Press,
1972.

[15] Levesque, H. J., and J. Mylopoulos, "A
Procedural Approach to Semantic Networks," in
[12], pp. 93-120.

[16] Lum, V., et al., 1978 New Orleans Data Base
Design Workshop Report, IBM Research Report
RJ2554, San Jose, July 1979.

[17] McLeod, D. and R. King, "Semantic Database
Models," in Principles of Database Design, S.
B. Yao (editor), Prentice Hall, 1981.

[18] McLeod, D., and J. Smith, "Abstraction in
Databases," in [9].

[19] Mylopoulos, M., P. A. Bernstein, and H. K. T.
Wong, "A Language Facility for Designing
Interactive Database-Intensive Application,"
ACM Transactions on Database Systems, VolL~ne
5, Number 2, June 1980, pp. 185-207.

[20] Parnas, D., "On the Criteria to be Used in
Decomposing Systems Into r~dules," Comm. ACM,
Vol 15, No. 12, December 1972, pp. 1053-1058.

[21] Ross, D. T. (guest editor) Special Issue on
Requirements Analysis," IEEE Transactions on
Software Engineering, Vol. SE-3, No. I,
January 1977.

[22] Ross, D. T., "Structured Analysis(SA): A
Language for Communicating Ideas," in [21],
pp. 16-34.

[23] Roussopoulos, N., "CSDL: A Conceptual Schema
Definition Language for the Design of Data
Base Applications," IEEE Transactions on
Software Engineering, Vol~e SE-5, Number 5,
September 1979, pp. 48i-496.

[24] Smith, J., and D. Smith, "Database
Abstractions: Aggregation and Generalization,"
TODS, Vol. 2, No. 2, 1977, pp. I05-133.

[25] Solvberg, A., "A Contribution to the
Definition of Concepts for Expressing Users'
Information Systems Requirements," Proc.
International Conf. on EntityxRelati0nshi p
Approach to Systems Analysis and Design,
December 10-12,1979, pp. 359-380.

[26] Teichroew, D. and E. Hershey, III, "PSL/PSA: A
Computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems," in [21], pp.41-48.

[27] Wilson, M., "A Semantics-Based Approach to
Requirements Analysis and System Design,"
Proc. COMPSAC 79, Nov. 1979, pp. IO7-112.

[28] Wirth, N., "Program Development by Stepwise
Refinement," Comm ACM, April 1971.

[29] Yeh, R. et al., "Software Requirement
Engineering: A Perspective," Dept. of Computer
Science, Univ. of Texas, Austin, 1979.

234

