

XVII. System Design

What is System Design?
The Outputs of System Design
The (Global) System Architecture
Classification of Applications
State of the Market

©2004 John Mylopoulos

System Design -- 1

CSC340

Information Systems Analysis and Design

Major Tasks of System Design

- Identify major hardware and software subsystems and components.
- Identify (usage, control or data) dependencies among subsystems.
- Decide on a hardware and software platform for the new system.
- Design the information system software, database, and user interfaces.

©2004 John Mylopoulos

Other Elements of System Design

(... Not discussed in this course....)

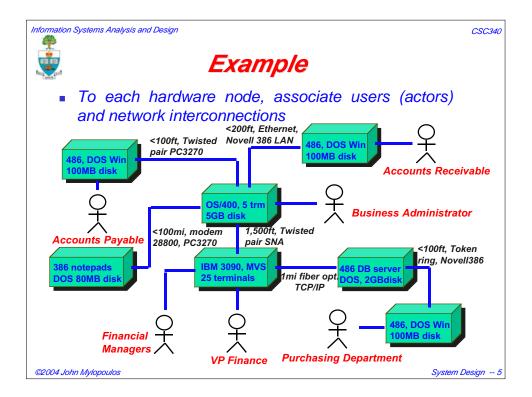
- Plan control aspects of the application.
- Test plans.
- Code development standards.
- Priorities for design trade-offs.
- Implementation requirements (e.g., data conversion)

©2004 John Mylopoulos

System Design -- 3

CSC340

Information Systems Analysis and Design



System Architecture

- System refers to both hardware and software.
- The system architecture describes the collection of inter-connected hardware nodes on which the software will eventually run.
- A system architecture consists of:
 - Hardware nodes, e.g., 486, 2MB RAM, 100MB disk OS: DOS Windows.
 - ✓ The connectivity among nodes, e.g., length: <100ft, type: fiber optic, product: Novell 386 LAN, PC3270
 </p>
 - The location of users, inputs and outputs;

Key concern: Minimize data communication

©2004 John Mylopoulos

Information Systems Analysis and Design

Distribution Issues: How Are Data Processed?

- **Batch mode** -- e.g., incoming/outgoing surface mail (purchase orders, invoices, cheques...
- On-line mode -- can save data entry time, particularly if end user can do the input, clearly the way of the future.
- Remote batch -- data are input on-line on remote machines, then fed in batch to centralized database.

©2004 John Mylopoulos

New Technologies for I/O and New Standards for Data Interchange

- Keyless data entry -- bar coding, optical character recognition, special keyboards.
- Pen input -- several products in the market.
- Electronic data interchange (EDI) -- data are transferred through telephone lines from one location to another; e.g., credit card charging
- Image and Document Interchange -- like electronic data interchange, e.g., law enforcement, banking.
- HTML/XML/SGML -- markup languages for documents;
 SGML is a general markup languages for documents.

©2004 John Mylopoulos

System Design -- 7

CSC340

Information Systems Analysis and Design

Choosing a System Architecture

Here is a series of issues that need to be addressed:

- Establish batch and on-line computer processes; e.g., on-site conference registration.
- Determine process cycles, i.e., when does each process need to run, e.g., end-of-month, end-of-project.
- Establish processing locations -- identify user locations (and numbers).
- Distribute data to locations.
- Distribute software subsystems to locations.
- Assign technology -- what hardware, software is going to run where?

©2004 John Mylopoulos

CSC340

Classification of Applications

Span Type	Operational Support	Decision Support (browsing+analysis)	Real Time
Group/Dept	E.g., regional inventory control	E.g., regional marketing info system	E.g., video conferencing within group
Enterprise	E.g., enterprise- wide cash mgt	E.g., corporate data warehouse	E.g., enterpr- wide video- conference
Inter- Enterprise	E.g., B2B Ecommerce	E.g., DBs for communities of interest	E.g., distributed multimedia over the internet

©2004 John Mylopoulos

System Design -- 9

CSC340

Information Systems Analysis and Design

State of the Market

Span Type	Operational Support	Decision Support (browsing+analysis)	Real Time
Group/Dept	PC, Windows, OLTP, OO products	COTS (mainly SQL-based	Multimedia technology maturing
Enterprise	ERPs, OLTP over private intranets	ERPs, Web- based products	ERPs, Web- based technologies
Inter- Enterprise	Ecommerce technologies	Web-based technologies	Web-based technologies

•OLTP -- On-Line Transaction Processing

•ERPs -- Enterprise Resource Planning systems

•COTS -- Components Off-The Shelf

©2004 John Mylopoulos

Data Management Issues

- Identify amount and type of data persistence needed:
 - ✓ Is simple file I/O sufficient?
 - ✓ Is a Database Management System (DBMS) required?
- A DBMS is typically needed when:
 - ✓ Data is accessed at a fine level of detail,
 - ✓ Sophisticated indexing is required,
 - ✓ There is a need to port data across multiple platforms,
 - ✓ Data needs to be accessible from multiple platforms.

Isolate persistence mechanisms from application!

©2004 John Mylopoulos