Information Systems Analysis and Design CSC340

e

[

XXIII. Class Design

What is Class Design?

Types of Design Classes
Class Specifications and Interfaces
Components, Sub-Systems and Packages
Cohesion and Coupling
Designing Associations
Integrity Constraints
Referential, Dependency and Domain Integrity

N/

I
77 NI
TS
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 1
Information Systems Analysis and Design CSC340

e

[

' Class Design

= Within the context of architectural design, class
design:

v Produces full definitions of classes, associations,
algorithms and interfaces of operations;

v Adds classes that will be useful during
implementation;

v Defines object interactions and object lifetimes in
terms of interaction and state diagrams;

v Optimises data structures and algorithms.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 2

Information Systems Analysis and Design CSC340

®
¥ Input/Output for Class Design

= The input is assumed to consist of:

+ Use cases that describe functional requirements;
also sequence, state/activity diagrams that
describe the use cases in more detalil;

+ Class diagrams that describe the kinds of things
the information system will be managing
information about.

= The outputs of class design are:

+ Class packages which describe the overall

software architecture of the new system,;

~ Supporting sequence, state/activity diagrams that
give additional details about the design.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 3

Information Systems Analysis and Design CSC340
o

W Types of Design Classes

= Most classes defined during requirements analysis
represent objects about which information will be
stored in the system database.

= Assuming a 4-tier layered architecture, we distinguish
four types of classes:

v Persistent database classes (D), correspond to
application classes and describe what will be
stored persistently in the system database;

v Entity classes (E) represent in-memory, run-time
data structures for persistent database classes;

v Boundary classes (B) specify interface functions;

v Control classes (C) specify business logic

functions.
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 4

Information Systems Analysis and Design CSC340

®
V. Class Specifications

= Attribute signature

name: " type-expr =" init-value {property-string}’
= Operation signature

Operation name: (" param-list)" *:” return-type-expr
= Object Visibility

+ + Public -- feature directly accessible by any class;

+ - Private -- feature may only be used by the class
that includes it;

+ # Protected -- feature maybe used by either the
class that includes it or by a subclass of that class;

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 5
Information Systems Analysis and Design CSC340
. ; A n <<database>>
' BankAccount

=nextdccountMumber: Integer

Database -accountMumber:integer

-accountMame:Siring {not null}

Class -balance:Money = 0
-overdraftlimit:Money

+open{accountMame: String):Boolean
+close():Boolean
+creditfamount:Money): Boolean
+debit{amount:Money)-Boolean
+viewBalance({):Money
#getBalance()-Money
-setBalance{newBalance:Money)
#gethccountMame():String
#zetAccountMame{newMame: Siring)

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 6

Information Systems Analysis and Design CSC340

*
¥ An
<<entity>>
Example Customer
. name:String
E”f/ty addr: String
listOfAccts:List
C/&SS create()

Notes: Customer objects are created by accessing the
CustomerDB and BankAccounts part of the database to
build a single Customer object which collects all
account information about a customer.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 7

Information Systems Analysis and Design CSC340
&
¥ An
<<control>>
EXx ampl e TransferAmount
CO” tr O/ transfer(accl, acc2, amount)
Class
An
Exa mp/e Look at examples of view and
B d control classes from the previous
ounaary section.
Class
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 8

Information Systems Analysis and Design

&

= An interface
operations.

Class Interfaces

CSC340

is a group of externally visible (public)

= An interface is like a class, but contains no internal
structure, has no attributes, no associations and no
implementation of its operations.

The realizes

class supports at least the operations listed

interface

© 2004 Jaelson Castro and John Mylopoulos

relationship indicates that the target

in the

Class Design -- 9

Information Systems /

&

Class
Interfaces

HUSas:

Chiant

CreativeStaff

-staffNo

- staffMare
-staffStariDate
-qualfication

+calculaleBonus
+inkToMols

—companyName
-companyAddress
-companyTelephone
-compan yFax
-companyEmail
-contaciiame
-contaciTelaphane
-contactEmail

+assignStafiContact
+changeStaffContact

Achvert

~Hitha

Manageable

-ype
-largetDate
~astimatedCost
-comglationDate

whnterf acen
Manageaable

+gelCost
+satCompletsd
= +view

Viewable

HUSESy

+etCost
+setCompleted
+iew

© 2004 Jaelson Castro and John Mylopoulos

wInterf aces
Wiewahla

+vigw

relaticins hips

Class Design -- 10

Information Systems Analysis and Design CSC340

e

V. Class Design

= S0, a class design consists of a set of packages
which contain classes and other packages, and which
represent components or sub-systems.

= The grouping of classes into packages may be done
from several different points of view:

~ By architectural tier -- Boundary, Control, Entity,
Database;

+ By functional relationship -- MVC;
~ By authorship -- who designed what;

Yoo

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 11
Information Systems Analysis and Design CSC340
o
V. Cohesion and Coupling
Criteria for good sub-system/package design:
» Coupling measures the degree of
interconnectedness between design

classes/components/sub-systems/packages.

= The degree of coupling is reflected by the number of
links a class has, and by the degree of interaction the
class has with other classes.

= Low coupling is preferrable in a design for many good
reasons, e.g., easier to understand and modify the
design.

= Cohesion, on the other hand, measures the degree
to which an element (class/component/sub-
system/package) contributes to a single purpose.

= Of course, we want a highly cohesive design.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 12

Information Systems Analysis and Design

&

= Interaction coupling

+ Measures number of message types
and the number of parameters
passed with these message types;

+ Should be kept to a minimum in
order to reduce the possibility of
changes rippling through interfaces;

= Inheritance coupling

+ Degree to which a subclass actually
needs the features it inherits;

~ A subclass with unnecessary
attributes or operations is more
complex than it needs to be.

© 2004 Jaelson Castro and John Mylopoulos

Minimizing Coupling

CSC340

Vehicle

decripticn
serviceDate

maximumAltitude
fakeOfiSpeed

takeOff()

checkAlitude)

L‘L

LandVehicle

numberOfides
registrationDate

register()

Class Design -- 13

Information Systems Analysis and Design

&

= Operation cohesion

Maximizing Cohesion

CSC340

+ Measures degree to which an
operation focuses on a single

Lecturer

functional requirement.

+ Good design produces highly
cohesive operations, each of
which deals with a single

leciurerMame
leciurerAddress
roomMumber
roomLangth
roomWidth

functional requirement.

calculateRoomSpace()

s Class cohesion

+ Degree to which a class is
focused on a single

Good operation cohesion,

requirement.

...but lousy class cohesion

© 2004 Jaelson Castro and John Mylopoulos

Class Design -- 14

Information Systems Analysis and Design

&

F §

lives at

Person

personMame

CSC340
Maximizing Cohesion
R . . Address
= Specialization Cohesion --
. . number
addresses the semantic cohesion | sireet
of inheritance hierarchies oo
postCode
Address LF
|
Zﬁglﬂﬁr Person . Company
| Terrible
town personame - . companyName
county age COheSIonl annuallnw!'ne
Dnuntry gendar - annualProfit
posiCode
is based at
Company
Good
— . companyMNamea
cohesion annuallncome

age
gender

annualProfit

Class Design -- 15

Information Systems Analysis and Design

&

Liskov Substitution Principle

= In class hierarchies, it should be possible to treat a

specialized object as if it were a base object.

CSC340

© 200+«

Cheguefccount

accountName
balance

credit
debit

Morigagefccount

interestRate

calculatelnterast
- debit

Y Account
.......... d \ accountMame
!- ! balance
1 Restructuring »
| to
i satisfyLsP credit
F
b e i
1f
if
4
MortgageAccount Chequefccount
interestRate
debit debit

'sign -- 16

Information Systems Analysis and Design CSC340

&
e} More Design Principles

m Clarity -- A design should be easy to understand.

= Do not over-design -- Developers are tempted to
produce designs that may not only satisfy current
requirements but may also be capable of supporting a
wide range of future requirements.

» Inheritance hierarchies -- Not too deep nor too shallow!

m Keep messages and operations simple : Limit number
of parameters; specify operations in one page.

» Design volatility -- A good design should be stable in
response to change in requirements; enforcing
encapsulation is a key factor in producing stable systems.

» Design by delegation : A complex object should be
decomposed into component objects forming a
composition or aggregation

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 17

Information Systems Analysis and Design CSC340
o

' Designing Associations

= Each association needs to be analysed to determine
whether it should be a one-way or a two-way
association.

= Depending on multiplicities, we may use collection
classes (e.g., lists).

= Need to ask questions about object visibility:
v does object A need to know object B's object-id?

v does it need to communicate to third-party objects
the object-id?

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 18

Information Systems Analysis and Design CSC340

e

v Designing Associations
One-to-One, One Way

Arrewchead shows the

direction i which
Eﬂl'l'rlﬂr FJ'FI'-.'H'.'.'H;{E:‘.H’ £ I.H':' Kenl ':Er
L)
[
LY
oWns . .
name > . registrationMumber
address make
dateOfLicence 1 1 | model
numberDlEunmchuns_ ______ carobjectId colour
iy placed i the
owner ¢l

= Owner needs to send messages to Car, not vice versa.

= Association may be implemented by placing an attribute
to hold the identifier for the Car class in Owner objects.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 19

Information Systems Analysis and Design CSC340

;3 Designing Associations:
o One-to-Many, One-Way

. -8 manageCampaign CreativeStafi
= The Advert object R e
identifiers could worOnCamPAn) -stafiName
be held in a . :) 1% | -qualification
simple one- +calculateBonuz
. . Campaign " +linkToNote
dimensional array f~
- . -title: WE-Way
inthe Campaign | & aignstanoate 1 assaciation
ObJeCt, but -catljnpaa:ggginis'hDahe owns = i
de :Ezrl:l“pletei.on[?:te R4
would have to be | St /e
-actualCost
written to +assignManager 0 . -fitle
. +assignStaff neway -type
man|pu|ate the +checkBudget assaviation -tar?etaFJtaLEC .
array scheckStaft “complationDate
. +comple
:3:#:;11i€'1nembers +getCost
+linkToNote +setCompleted
+listAdverts +vigw
+recordPaym ant

© 2004 Jaelson Castro and John Mylopoaics wiass Leaiyrn -

PR

Information Systems Analysis and Design CSC340
=¥ Collection p—
-title
C/asses -carn|:|-a?gnIS:_ta_rTEI;hEt AdvertCollection
-c:ar_npalgn mnisi ate 1 has -l
-estimatedCaost
These are “completionDate advertid '
-datePaid .
classes whose “actualCost ndFrsi(
. -advertCollectionld getNext()
Instances are addAdvert
. +assignManager removeAdvert()
lists, bags, or sassgstaf]
. +CNECKDU gEl
sets. Collection *checkStal & owne
+com (=]
classes are +getr$irmii‘r;_n) .
+gelleam ars
useful for one-to- +?nk;’;Nme Advert
+lizstAdwverts
many +recordPayment -ﬂ;
associations targetDate
-estimatedCost
-completionDate
+getCost
+setCompleted
+yigw

© 2004 Jaelson Castro and John Mylopoulos

Class Design -- 21

Information Systems Analysis and Design

e

\ 2 Integrity Constraints

CSC340

© 2004 Jaelson Castro and John Mylopoulos

We’ll discuss three types of integrity constraints
(...there are many others,....)

Referential Integrity ensures that an object identifier
mentioned in one object actually refers to an object
that exists.

Dependency Int egrity ensures that attribute
dependencies are maintained, where one attribute
may be calculated from other attributes.

Domain Integrity ensures that attributes only hold
permissible values.

Class Design -- 22

Information Systems Analysis and Design CSC340

&8

L Referential Integrity
CreativeStaff Campaign
~Name manages | _Iitle
-StaffNo 1 . -datePaid
-StaffStartDate —actualCost
-Qualification

= A Canpai gn must have a CreativeStaff instance
as its manager.

= What happens if the manager is deleted?

= Referential integrity is maintained by ensuring that the
deletion of a CreativeStaff object that is a
campaign manager always involves allocating a new
campaign manager.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 23
Information Systems Analysis and Design CSC340
®
v Dependency Constraints:
Derived Attibutes

= The value of a derived attribute may be calculated
from other attributes.

= For example, total advertising cost can be calculated
by summing individual advert costs and storing value
in the attribute totalAdvertCost in the Campaign class
or by re-calculating every time it is required.

= However, whenever the cost of an advert changes, or
an advert is added to/removed from a campaign the
totalAdvertCost attribute has to be adjusted.

= This can be done by sending message adjustCost()
to the Campaign object.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 24

Information Systems Analysis and Design

&
¥ Constraints Between Associations

CSC340

- -l isAMemberOf
Committee
Employes
memberColection[*] {subset of}
comizhairld
assignChairr)
. - chairs 0.1

= Enforced by placing a check in assignChair() to
confirm that the Employee object identifier passed as
a parameter is already in the collection class of
committee members.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 25

Information Systems Analysis and Design

&
\ 2 Designing Operations

= Determine the best algorithm for the required function.
= Factors constraining algorithm design:

+ The cost of implementation;

+ Performance constraints;

+ Requirements for accuracy;

+ The capabilities of the chosen platform.

= Factors to be considered when choosing among
alternative algorithm designs

+ The computational complexity of candidates;

+ Ease of implementation and understandability;
+ Flexibility;

+ Fine-tuning the object model.

CSC340

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 26

