
© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 1

XXIII. Class DesignXXIII. Class Design

What is Class Design?
Types of Design Classes

Class Specifications and Interfaces
Components, Sub-Systems and Packages

Cohesion and Coupling
Designing Associations

Integrity Constraints
Referential, Dependency and Domain Integrity

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 2

Class DesignClass Design

� Within the context of architectural design, class
design:
� Produces full definitions of classes, associations,

algorithms and interfaces of operations;
� Adds classes that will be useful during

implementation;
� Defines object interactions and object lifetimes in

terms of interaction and state diagrams;
� Optimises data structures and algorithms.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 3

Input/Output for Class DesignInput/Output for Class Design
� The input is assumed to consist of:

� Use cases that describe functional requirements;
also sequence, state/activity diagrams that
describe the use cases in more detail;

� Class diagrams that describe the kinds of things
the information system will be managing
information about.

� The outputs of class design are:
� Class packages which describe the overall

software architecture of the new system;
� Supporting sequence, state/activity diagrams that

give additional details about the design.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 4

Types of Design ClassesTypes of Design Classes
� Most classes defined during requirements analysis

represent objects about which information will be
stored in the system database.

� Assuming a 4-tier layered architecture, we distinguish
four types of classes:
� Persistent database classes (D), correspond to

application classes and describe what will be
stored persistently in the system database;

� Entity classes (E) represent in-memory, run-time
data structures for persistent database classes;

� Boundary classes (B) specify interface functions;
� Control c lasses (C) specify business logic

functions.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 5

Class SpecificationsClass Specifications

� Attribute signature
name: `:´ type-expr `=´ init-value `{property-string}´

� Operation signature
 Operation name: `(´ param-list ´)´ `:´ return-type-expr

� Object Visibility
� + Public -- feature directly accessible by any class;
� - Private -- feature may only be used by the class

that includes it;
� # Protected -- feature maybe used by either the

class that includes it or by a subclass of that class;

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 6

AnAn
ExampleExample
DatabaseDatabase

ClassClass

<<database>>

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 7

AnAn
ExampleExample

EntityEntity
ClassClass

 <<entity>>
 Customer
name:String
addr: String
listOfAccts:List
create()

Notes: Customer objects are created by accessing the
CustomerDB and BankAccounts part of the database to
build a single Customer object which collects all
account information about a customer.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 8

AnAn
ExampleExample
ControlControl
ClassClass

 <<control>>
TransferAmount

transfer(acc1, acc2, amount)

AnAn
ExampleExample

BoundaryBoundary
ClassClass

Look at examples of view and
control classes from the previous
section.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 9

Class InterfacesClass Interfaces
� An interfaceinterface is a group of externally visible (public)

operations.
� An interface is like a class, but contains no internal

structure, has no attributes, no associations and no
implementation of its operations.

� The realizes realizes relationship indicates that the target
class supports at least the operations listed in the
interface

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 10

ClassClass
InterfacesInterfaces

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 11

Class DesignClass Design

� So, a class design consists of a set of packages
which contain classes and other packages, and which
represent components or sub-systems.

� The grouping of classes into packages may be done
from several different points of view:
� By architectural tier -- Boundary, Control, Entity,

Database;
� By functional relationship -- MVC;
� By authorship -- who designed what;
� …

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 12

Cohesion and CouplingCohesion and Coupling
Criteria for good sub-system/package design:
� Coup ling measures the degree of

interconnectedness between design
classes/components/sub-systems/packages.

� The degree of coupling is reflected by the number of
links a class has, and by the degree of interaction the
class has with other classes.

� Low coupling is preferrable in a design for many good
reasons, e.g., easier to understand and modify the
design.

� Cohesion , on the other hand, measures the degree
to which an element (class/component/sub-
system/package) contributes to a single purpose.

� Of course, we want a highly cohesive design.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 13

� Interaction coupling
� Measures number of message types

and the number of parameters
passed with these message types;

� Should be kept to a minimum in
order to reduce the possibility of
changes rippling through interfaces;

� Inheritance coupling
� Degree to which a subclass actually

needs the features it inherits;
� A subclass with unnecessary

attributes or operations is more
complex than it needs to be.

Minimizing CouplingMinimizing Coupling

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 14

� Operation cohesion
� Measures degree to which an

operation focuses on a single
functional requirement.

� Good design produces highly
cohesive operations, each of
which deals with a single
functional requirement.

� Class cohesion
� Degree to which a class is

focused on a single
requirement.

Maximizing CohesionMaximizing Cohesion

Good operation cohesion,
…but lousy class cohesion

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 15

� Specialization Cohesion --
addresses the semantic cohesion
of inheritance hierarchies

Maximizing CohesionMaximizing Cohesion

Good
cohesion,

Terrible
cohesion!

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 16

Liskov Liskov Substitution PrincipleSubstitution Principle
� In class hierarchies, it should be possible to treat a

specialized object as if it were a base object.

debit

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 17

More Design PrinciplesMore Design Principles

� Clarity -- A design should be easy to understand.
� Do not over-design -- Developers are tempted to

produce designs that may not only satisfy current
requirements but may also be capable of supporting a
wide range of future requirements.

� Inheritance hierarchies -- Not too deep nor too shallow!
� Keep messages and operations simple : Limit number

of parameters; specify operations in one page.
� Design volatility -- A good design should be stable in

response to change in requirements; enforcing
encapsulation is a key factor in producing stable systems.

� Design by delegation : A complex object should be
decomposed into component objects forming a
composition or aggregation

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 18

Designing AssociationsDesigning Associations

� Each association needs to be analysed to determine
whether it should be a one-way or a two-way
association.

� Depending on multiplicities, we may use collection
classes (e.g., lists).

� Need to ask questions about object visibility:
� does object A need to know object B's object-id?
� does it need to communicate to third-party objects

the object-id?

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 19

� Owner needs to send messages to Car, not vice versa.
� Association may be implemented by placing an attribute

to hold the identifier for the Car class in Owner objects.

Designing AssociationsDesigning Associations
One-to-One, One WayOne-to-One, One Way

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 20

� The Advert object
identifiers could
be held in a
simple one-
dimensional array
in the Campaign
object, but
program code
would have to be
written to
manipulate the
array.

Designing Associations:Designing Associations:
One-to-Many, One-WayOne-to-Many, One-Way

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 21

CollectionCollection
ClassesClasses

� These are
classes whose
instances are
lists, bags, or
sets. Collection
classes are
useful for one-to-
many
associations

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 22

Integrity ConstraintsIntegrity Constraints

� We’ll discuss three types of integrity constraints
(...there are many others,….)

� Referential Integrity ensures that an object identifier
mentioned in one object actually refers to an object
that exists.

� Dependency Int egrity ensures that attribute
dependencies are maintained, where one attribute
may be calculated from other attributes.

� Domain Integrity ensures that attributes only hold
permissible values.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 23

Referential IntegrityReferential Integrity

� A Campaign must have a CreativeStaff instance
as its manager.

� What happens if the manager is deleted?
� Referential integrity is maintained by ensuring that the

deletion of a CreativeStaff object that is a
campaign manager always involves allocating a new
campaign manager.

Campaign

-actualCost
-datePaid
-Title

CreativeStaff

-Name
-StaffNo
-StaffStartDate
-Qualification

manages

1 *

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 24

Dependency Constraints:Dependency Constraints:
Derived AttibutesDerived Attibutes

� The value of a derived attribute may be calculated
from other attributes.

� For example, total advertising cost can be calculated
by summing individual advert costs and storing value
in the attribute totalAdvertCost in the Campaign class
or by re-calculating every time it is required.

� However, whenever the cost of an advert changes, or
an advert is added to/removed from a campaign the
totalAdvertCost attribute has to be adjusted.

� This can be done by sending message adjustCost()
to the Campaign object.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 25

Constraints Between AssociationsConstraints Between Associations

� Enforced by placing a check in assignChair() to
confirm that the Employee object identifier passed as
a parameter is already in the collection class of
committee members.

© 2004 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Class Design -- 26

Designing OperationsDesigning Operations
� Determine the best algorithm for the required function.
� Factors constraining algorithm design:

� The cost of implementation;
� Performance constraints;
� Requirements for accuracy;
� The capabilities of the chosen platform.

� Factors to be considered when choosing among
alternative algorithm designs
� The computational complexity of candidates;
� Ease of implementation and understandability;
� Flexibility;
� Fine-tuning the object model.

