
Page ‹#›

 2004 John Mylopoulos Constraint Language -- 1

Information Systems Analysis and Design CSC340

The Constraint Language (CL)The Constraint Language (CL)
Sets and BagsSets and Bags

Selectors and InvariantsSelectors and Invariants
ExamplesExamples

Pre-/Post-ConditionsPre-/Post-Conditions

XIII. A Constraint LanguageXIII. A Constraint Language
for UMLfor UML

 2004 John Mylopoulos Constraint Language -- 2

Information Systems Analysis and Design CSC340

The Constraint LanguageThe Constraint Language

� Some constraints can be adequately expressed
graphically (e.g., multiplicity of an association).

� Some can not. For example, constraints within
operation specifications (pre/post-conditions)

� The Object Constraint Language (OCL)
[Warmer99] is a formal language for specifying
constraints for UML class diagrams.

� We present a syntactic variant of a subset of OCL;
let’s call it Constraint Lang uage (CL, for short.)

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 3

Information Systems Analysis and Design CSC340

Objects, Bags and SetsObjects, Bags and Sets

� Objects are instances of classes, including predefined
classes Integer, Number and String.

� Bags include zero or more objects and/or sets and/or other
bags, possibly with duplicates, and no assumed order
e.g., {tom, maria, tom, sara, maria},{tom,{maria,tom},{}}

� Two bags are equal iff they have the same number of the
same elements:
� {tom, maria, tom, sara, maria} ≠ {tom,maria,sara}

� Sets are bags with no duplicates.

 2004 John Mylopoulos Constraint Language -- 4

Information Systems Analysis and Design CSC340

CL ExpressionsCL Expressions
� CL expressions define constraints (or invar iants) for

classes, which must be try for all their instances
�e.g., “every employee earns less than his CEO”

� CL expressions also define conditions that must be true
before an operation can be executed (preconditions) and
conditions that must be true after (postconditions)
�e.g., “Before withdrawCash(acct,amount), it must be

that acct.balance ≥ amount” (precondition)
�Or, “After withdrawCash(acct,amount) is executed, it

must be that
acct.balance(new) = acct.balance(old) - amount”

 (postcondition)

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 5

Information Systems Analysis and Design CSC340

Contexts for CL ExpressionsContexts for CL Expressions
� Every expression has a context which is the class

within which it is defined.
� The special identifier self refers to an instance of the

class within which it appears.
� The most basic CL expressions are called selectors

and they return an object or a bag.

 2004 John Mylopoulos Constraint Language -- 6

Information Systems Analysis and Design CSC340

 Person
age
income
sex

Selectors in ActionSelectors in Action

0..1employment

�self.addr (or just addr) -- returns addr of a particular company;
�self.employment -- returns the set of all employees;
�self.employee -- returns the set of all employees as well;
�self.president -- returns the singleton set of presidents;
�self.employment -- set of all employers of a person;
�self.employer -- set of all employers of a person.

0..*
employee

 Company
name
addr
sales

employer

Expressions
appearing here

0..11 president

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 7

Information Systems Analysis and Design CSC340

nil and emptynil and empty
� When an attribute attr has no value for object obj, then

obj.attr returns nil (no value).
� When there are no associated objects to an an object obj

through association assoc (or role rl), then obj.assoc and
obj.rl return the empty bag {} or empty.

� Note, nil ≠ {}.
� Moreover, {nil} = {}, {Sara,nil, nil} = {Sara} etc.
� This means that if Sara.age = nil, George.age = nil, then

{Sara.age,George.age} = {}

 2004 John Mylopoulos Constraint Language -- 8

Information Systems Analysis and Design CSC340

Lin:Person
employment

president

Robert:Person
IBM:Company

Jianguo:Person

Sara:Person

CIBC:Company

employment

employment

employment

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 9

Information Systems Analysis and Design CSC340

Associations are Sets of Tuples

� You can think of associations as sets (no duplicates!) of
tuples.
�Sara.employment = {IBM}
�CIBC.employment = {Robert,Lin,Jianguo}
�CIBC.employee = {Robert,Lin,Jianguo}
�CIBC.employer -- syntax error!

Lin:Person
employment

president

Robert:Person
IBM:Company

Jianguo:Person

Sara:Person

CIBC:Company

employment

employment

employment
employment
(Sara,IBM)
(Robert,CIBC)
(Lin,CIBC)
(Jianguo,CIBC)
(Lin,CIBC)

president
(Jianguo,CIBC)

X

 2004 John Mylopoulos Constraint Language -- 10

Information Systems Analysis and Design CSC340

 Person
age
income
sex

Selectors for Symmetric AssociationsSelectors for Symmetric Associations

wife
0..1

0..1
husband

�self.age (or just age) -- returns the age of a particular person;
�self.husband -- returns the set of all husbands;
�self.wife -- returns the set of all wives;
�self.spouse -- returns the set of all husbands and wives;
�self.friend -- returns the set of all friends.

0..*

0..*

friendspouse

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 11

Information Systems Analysis and Design CSC340

Lin:Person

friend

wife

friend

friend

Robert:Person

Maria:PersonJianguo:Person

Sara:Person friend
(Robert,Lin)
(Jianguo,Lin)
(Lin,Maria)

husband

spouse
(Robert,Sara)

�Sara.spouse = {Robert}
�Lin.friend = {Robert,Jianguo,Maria}
�Maria.friend = {Lin}

 2004 John Mylopoulos Constraint Language -- 12

Information Systems Analysis and Design CSC340

Applying Selectors to BagsApplying Selectors to Bags

� bag.attrName = ∪ obj.attrName

� bag.assocName = ∪ obj.assocName

� bag.roleName = ∪ obj.roleName

� For example, suppose
�Sara.friend = {Robert,Lin}
� Jianguo.friend = {Robert,Maria}
� {Sara,Jianguo}.friend = {Robert,Lin,Robert,Maria}
� {Sara,Jianguo,Sara}.friend =

{Robert,Lin,Robert,Maria,Robert,Lin}

obj ∈∈∈∈ bag

obj ∈∈∈∈ bag

obj ∈∈∈∈ bag

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 13

Information Systems Analysis and Design CSC340

Composition of SelectorsComposition of Selectors
� Selectors can be composed:
� self.sel1.sel2 ≡ (self.sel1).sel2 means that we take the

value of self.sel1 (either a single value or a bag) and
we apply to it sel2.

� For example, self.friend.income returns the bag of all
income values of objects in the bag self.friend
e.g., if self.friend = {Tom,Maria,Sara} and their incomes

are respectively $16K, $19K and $16K, then
self.friend.income = {$16K,$19K,$16K}

 2004 John Mylopoulos Constraint Language -- 14

Information Systems Analysis and Design CSC340

 Person
age
income
sex

120 ≥ age ≥ 0
income ≤ $100M

ConstraintsConstraints

wife
0..1

0..1

husband

� But also:
�(not empty(wife)) implies wife.sex = {female}
�not empty(husband) implies husband.sex = {male}

0..*

0..*

friend

� Constraints (or, invariants) describe properties that
must hold true for all the instances of the class.

spouse

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 15

Information Systems Analysis and Design CSC340

More InvariantsMore Invariants
� “If x is the wife of y, then y is the husband of x”

notEmpty(wife) implies {self} = self.wife.husband
or

Forall y[includes(self.wife,y)
implies includes(y.husband, self)]

� “The president of a company is also its employee”
includes(self.employee,self.president)

 2004 John Mylopoulos Constraint Language -- 16

Information Systems Analysis and Design CSC340

……MoreMore ……
� “Popular persons have more than 50 friends”
�We define a subclass of Person called PopularP and

associate with it the invariant size(friend) > 50
� “For old rich persons, all their friends who are over 50 earn

at least $100K”
�We define a subclass of Person called OldRichP and

associate with it the invariant
Forall y[(includes(friend,y) and y.age > 50)

implies y.income ≥ $100K]
Or, Forall y[includes(select(friend,age>50),y)

implies y.income ≥ $100K]
Or, empty(select(select(friend,age>50),income<$100K))

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 17

Information Systems Analysis and Design CSC340

Bag OperationsBag Operations
size(bag) - returns the size (cardinality) of the bag
set(bag) - set that includes all elements of bag, no duplicates
sum(bag) - sum of elements in the bag (assumed numbers)
average(bag) - average of the bag
min(bag)/max(bag) - minimum/maximum element of the bag
empty(bag) - true if the bag is empty
includes(bag,object) - true if bag includes object
union(bag,bag) - union of two bags
intersection(bag,bag) - intersection of two bags
select(bag,predicate) - returns the subbag of bag whose

elements satisfy the predicate

 2004 John Mylopoulos Constraint Language -- 18

Information Systems Analysis and Design CSC340

CL ExpressionsCL Expressions
� CL Expressions that define constraints, pre/post-

conditions can now be defined as follows:
�Boolean expressions using bag and object operations

are CL Expressions;
� If A, B are CL Expressions, then so are:
�(A and B);
�(A or B);
�(not A);
�(A implies B);
�(Forall var) A;
�(Exists var) A.

� Nothing else is a CL expression.

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 19

Information Systems Analysis and Design CSC340

Another ExampleAnother Example
� Suppose University class has an association studies to the

Student class, and self refers to a University:
� self.studies is a set of students, no duplicates;
� self.studies.age is a bag -- many students can have the

same age;
�average(self.studies.age) returns the average age of all

the students of a particular university;
� set(self.studies.degree) returns the set of all degrees

studied for in a university -- no duplicates!;

 2004 John Mylopoulos Constraint Language -- 20

Information Systems Analysis and Design CSC340

� Pre-condition and post-condition expressions are
associated to an operation/method and they describe
�What must be true before the operation is executed

(pre-condition);
�What will be true once the operation is executed

(post-condition).
� For example, we may want to say:
 Person::marryWife(p:Person)

 pre: self.wife = empty (not nil!)
 post: self.wife = {p}

Pre- and Post-conditions in CLPre- and Post-conditions in CL

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 21

Information Systems Analysis and Design CSC340

More ExamplesMore Examples
� “When a person is promoted, her income is increased by

at least 10%”:
Person::promote(inc:DollarV)
 pre: true
 post: income ≥ income@pre * 1.1

The value of income before the operation

 2004 John Mylopoulos Constraint Language -- 22

Information Systems Analysis and Design CSC340

Selecting Instances ofSelecting Instances of
Association ClassesAssociation Classes

� Suppose we now want to keep track of a person’s
employments:

 Person
income
hire(c,date)
fire(c,date)

 Company
name0..*

employment
0..*

 Employment
startDate
endDate

Page ‹#›

 2004 John Mylopoulos Constraint Language -- 23

Information Systems Analysis and Design CSC340

Hiring and FiringHiring and Firing
� Person::hire(c:Company,d:Date)

 pre: not includes(c.employment,self)
 post: includes(c.employment,self)

and (self,c).startDate = d
� Person::fire(c:Company,d:Date)

pre: includes(c.employment,self)
and isBefore(startDate,d)

post: (self,c).endDate = d
Selects a particular instance of the Employment

association class

 2004 John Mylopoulos Constraint Language -- 24

Information Systems Analysis and Design CSC340

Additional ReadingsAdditional Readings

� [Warmer99] Warmer, J. Kleppe, A. The Object
Constraint Language: Precise Modeling with UML,
Addison-Wesley 1999.

� http://dec.bournemouth.ac.uk/dec_ind/swebster/UM
L_OCL/index.htm

