
Information Systems Analysis and Design CSC340

© 2001 Jaelson Castro and John Mylopoulos Class Diagrams -- 1

III. Class and Object DiagramsIII. Class and Object Diagrams

Classes, Attributes and Operations
Objects and Multi-objects

Generalization and Inheritance
Associations and Multiplicity

Aggregation and Composition
How to Use Class Diagrams

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 2

ClassesClasses
� A class describes a group of objects with

� similar properties (attributes),
� common behaviour (operations),
� common relationships to other objects,
� and common meaning (“semantics”).

� For example, “employee: has a name, employee# and
department; an employee is hired, and fired; an employee
works in one or more projects”

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 3

Finding ClassesFinding Classes
� Finding classes in use case, or in text descriptions:

� Look for nouns and noun phrases in the description of a use
case or a problem statement;

� These are only included in the model if they explain the nature
or structure of information in the application.

� Don’t create classes for concepts which:
� Are beyond the scope of the system;
� Refer to the system as a whole;
� Duplicate other classes;
� Are too vague or too specific (few instances);

� Finding classes in other sources:
� Reviewing background information;
� Users and other stakeholders;
� Analysis patterns;
� CRC (Class Responsibility Collaboration) cards.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 4

StaffMemberStaffMember Class for Agate Class for Agate

� For example, we may want to represent the concept of a staff
member for a company such as Agate in terms of the class
StaffMember.

StaffMember

staffName

CalculateBonus()

ChangeGrade()

Name (mandatory)

Attributes
 (optional)

Operations
 (optional)

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 5

NamesNames
� Every class must have a unique name

� Each class has instances that represent particular individuals
that have the properties of the class.

� For example, George, Nazim, Yijun,… may be instances of
StaffMember.

� Classes can be used to describe a part of the real world, or
part of the system under design.

Client Campaign StaffMember

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 6

AttributesAttributes
� Each class can have attributesattributes w hich represent useful

information about instances of a class.
� Each attribute has a typetype .
� For example, Campaign has attributes title and datePaid.

Campaign

title: String

datePaid: Date

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 7

Objects and Their Attribute ValuesObjects and Their Attribute Values

� The instances of a class are called objects .
� Objects are represented as shown below.
� Two different objects may have identical attribute values (like

two people with identical name and address)
� Make sure that attributes are associated with the right class; for

example, you don’t want to have both managerName,
managerEmp# as attributes of Campaign! (...Why??)

SaveTheKids:Campaign

title: “Save the kids”

datePaid: 28/01/02

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 8

Object DiagramsObject Diagrams
� Model the instances of things described by a class.
� Each object diagram shows a set of objects and their inter-

relationships at a point in time.
� Used to model a snapshot of the application.
� Each object has an optional name and set of classes it is an

instance of, also values for attributes of these classes.

courseNo: csc340"
description: “OOAD"

:Course

:Student

BillClinton

Monica:Student
someone:

Jaelson:Instructor

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 9

MultiobjectsMultiobjects
A mu lt iobject is a set of objects, with an undefined number of

elements

p2:Instructor

c1:Course

c2:Course

c3:Course

:Student :Student

Multiobjects

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 10

OperationsOperations

� Often derived from action verbs in use case descriptions or
problem statements.

� Operations describe what can be done with the instances of a
class.

� For example, For the class Stone, we may want to associate
operations Throw(), Kick() and WriteOn().

� Some operations will carry out processes to change or do
calculations with the attributes of an object.

� For example, the directors of Agate might want to know the
difference between the estimated cost and the actual cost of a
campaign
� Campaign would need an operation CostDifference()

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 11

� Each operation
has a signaturesignature ,
which specifies
the types of its
parameters and
the type of the
value it returns
(if any).

Campaign

Title:String
CampaignStartDate:Date
CampaignFinishDate:Date
EstimatedCost:Money
ActualCost:Money
CompletionDate:Date
DatePaid:Date

Completed(CompletionDate:Date,
ActualCost:Money)

SetFinishDate(FinishDate:Date)
RecordPayment(DatePaid:Date)
CostDifference():Money

OperationsOperations

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 12

VisibilityVisibility
� As with Java, attributes and operations can be declared with

different visibility modes:
+ publicpublic : any class can use the feature (attribute or operation);
protectedprotected : any descendant of the class can use the feature;
- privateprivate : only the class itself can use the feature.

Staff

name : String
passwd : String
dateofB : Date

ChangePasswd()
Include()

public

private

protected

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 13

RelationshipsRelationships
� Classes and objects do not exist in isolation from one another
� A relationship represents a connection among things.
� In UML, there are different types of relationships:

� Generalization
� Association

� Aggregation
� Composition

� …more…

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 14

Generalization RelationshipGeneralization Relationship
� Generalization relates two classes when the concept

represented by one class is more general than that
represented by the other.

� For example, Person is a generalization of Student, and
conversely, Student is a specialization of Person.

� The more general class participating in a generalization
relationship is also called the superclass or parent , while the
more specialized class is called subclass or chil d.

� The child always inherits the structure and behavior of the
parent. However, the child may also add new structure and
behavior, or may modify the behavior of the parent..

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 15

� It may be that in a system like Agate’s we
need to distinguish between different types
of staff:
� creative staff and administrative staff;
� and to store different data about them.

� For example,
� Administrative staff cannot be assigned

to work on or manage a campaign;
� Creative staff have qualifications which

we need to store;
� Creative staff are paid a bonus based

on the work they have done;
� Administrative staff are paid a bonus

based on a percentage of salary.

GeneralizationGeneralization

 StaffMember
staff#:Integer
name:String
startDate:Date
Hire()
ChangeGrade()

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 16

GeneralizationGeneralization

 CreativeStaff
qualifications
Hire()
CalculateBonus()

The triangle linking the
classes shows inheritance;
the connecting line between
AdminStaff and
CreativeStaff indicates
that they are mutually
exclusive. However, all
instances of AdminStaff
and CreativeStaff will
have a staff#,name,
startDate, while
CreativeStaff will also
have a qualifications
attribute.

 StaffMember
staff#:Integer
name:String
startDate:Date
grade
Hire()
ChangeGrade()
CalculateBonus()

 AdminStaff
Hire()
CalculateBonus()

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 17

� Similarly, the operation CalculateBonus() is declared in
StaffMember, but is overri dden in each of its sub-classes.

� For AdminStaff, the method uses data from StaffGrade to
find out the salary rate and calculate the bonus.

� In the case of CreativeStaff, it uses data from the campaigns
that the member of staff has worked on to calculate the bonus.

� When the same operation is defined differently in different
classes, each class is said to have its own method of defining
the operation.

GeneralizationGeneralization

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 18

Finding InheritanceFinding Inheritance
� Sometimes inheritance is discovered top-down: we have a

class, and we realize that we need to break it down into
subclasses which have different attributes and operations.

� Here is a quote from a director of Agate:
“Most of our work is on advertising for the press, that’s
newspapers and magazines, also for advertising hoardings,
as well as for videos.”

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 19

Advert

Hoarding Advert Press Advert Video Advert

Newspaper Advert Magazine Advert

*

*Billboard

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 20

Finding InheritanceFinding Inheritance
� Sometimes we find inheritance bottom-up: we have several

classes and we realize that they have attributes and operations
in common, so we group those attributes and operations
together in a common super-class.

� Define a suitable generalization of these classes and redraw the
diagram

 Book
title
author
publisher
ISBN
DeweyCode
acquisition#
Loan()
Return()

 RecordCD
title
catalogue#
publisher
artist
acquisition#
Loan()
Return()

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 21

...The...The
Solution...Solution...

 LoanItem
title
acquisition#
Loan()
Return()

 Book
Author
DeweyCode
publisher
ISBN

 Record
artist
catalogue#
recordCo

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 22

Generalization NotationGeneralization Notation
Possibly overlapping Mutually exclusive
e.g., Maria is both Lecturer I.e., a lecturer can’t be
and Student a student and vice versa

PersonPerson

Student Lecturer Student Lecturer

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 23

Multiple and Dynamic ClassificationMultiple and Dynamic Classification

� Classification refers to the relationship between an object and the
classes it is an instance of.

� Traditional object models (e.g., Smalltalk, C++,…) assume that
classification is sing lesingle and staticstatic . This means that an object is an
instance of a single class (and its superclasses) and this instance
relationship can’t change during the object’s lifetime.

� Multiple classification allows an object to be an instance of several
classes that are not is-a related to each other; for example, Maria
may be an instance of GradStudent and Employee.

� If you allow multiple classification, you want to be able to specify
which combinations of instantiations are allowed. This is done
through discriminatorsdiscriminators .

�� DynamicDynamic classification allows an object to change its type during its
lifetime.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 24

Multiple ClassificationMultiple Classification

Person

TA

Professor

Staff

Male

Female

Student

student

sex
<<mandatory>>

role
<<dynamic>>

� Mandatory means that every instance of Person must be an
instance of Male or Female.
� Dynamic means that an object can cease to be a TA and may
become a Professor.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 25

Association RelationshipAssociation Relationship
� An association is a structural relationship which represents

a binary relationship between objects..
� For example, a person is the child of another person, a car

is owned by a person, or, a staff member manages a
campaign.

� An association has a name , and may be specified along
with zero, one or two roles

 StaffMemder
name
staff#
startDate
qualification

 Campaign
title
startDate
estimatedCost

manages

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 26

� Can a campaign exist without a member of staff to manage it?
� If yes, then the association is optional at the Staff end - zero or

one
� If a campaign cannot exist without a member of staff to manage it

� then it is not optional
� if it must be managed by one and only one member of staff

then we show it like this - exactly one
� What about the other end of the association?
� Does every member of staff have to manage exactly one

campaign?
� No. So the correct multiplicity is zero or more.

� Kerry Dent, a more junior member of staff, doesn’t manage any
campaigns…

� Pete Bywater manages two…

Association MultiplicityAssociation Multiplicity

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 27

Campaign

estimatedCost

startDate

title

StaffMember

name
staff#
startDate
qualification

manages

1 0..*

Associations with MultiplicityAssociations with Multiplicity

 “A staff member can manage
zero or more campaigns” “A campaign is managed by

exactly one staff member”

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 28

MultiplicityMultiplicity
� Some examples of specifying multiplicity:

Optional (0 or 1) 0..1
Exactly one 1 = 1..1
Zero or more 0..* = *
One or more 1..*
A range of values 1..6
A set of ranges 1..3,7..10,15,19..*

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 29

Direction of an AssociationDirection of an Association
� You can specify explicitly the direction in which an association

is to be read. For example,

Campaign

estimatedCost

startDate

title

StaffMember

name
staff#
startDate
qualification

manages

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 30

Association NavigationAssociation Navigation
� Sometimes we want to model explicitly the fact that an

association is uni-directional.
� For example, given a person’s full name, you can get the

person’s telephone number, but not the other way around.

PersonName Telephone#

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 31

� We can name explicitly the role a class in an association.
� The same class can play the same or different roles in other

associations.

Company Person1..***
employer

hires

1
*

worker

supervisor
*

1

Association and RoleAssociation and Role

employee

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 32

Association ClassesAssociation Classes
� Sometimes we want to treat an association between two

classes, as a class in its own right, with its own attributes and
operations.

Company Person1..**
employer

Job

description

salary

employee
hires

Can’t have the
same person

work for the
same company

more than once!

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 33

Aggregation RelationshipAggregation Relationship
� This is the Has-a or Whole/part relationship, where one

object is the “whole”, and the other (one of) the “part(s)”.

AdvertCampaign

*1
contains

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 34

Composition RelationshipComposition Relationship
� It is a special case of the aggregation relationship.
� A composition relationship implies strong ownership of the

part by the whole. Also implies that if the whole is removed
from the model, so is the part.

� For example, the relationship between a person and her head
is a composition relationship, and so is the relationship
between a car and its engine.

� In a composition relationship, the whole is responsible for the
disposition of its parts, i.e. the composite must manage the
creation and destruction of its parts.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 35

AnAn
ExampleExample +Confirm()

+Cancel()
-Total():Currency

-code: Integer
-date: Date

-total: Currency

Order

-quantity: Integer
-price: Currency

OrderItem

Product

*

*

1

1

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 36

Another ExampleAnother Example

Engine

Person

Car Train
1..1

0..1
0..1

1..*

driver
driver

1..1

1..1

0..1

1..1

composition

aggregation

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 37

Object Diagrams, AgainObject Diagrams, Again
� These are like class diagrams, except now we model objects, i.e.,

instances of the classes defined in class diagrams.

IBM:Company

name:IBM Canada
addr:235 Eglinton

Jack:
Person

Jeff:
Person

hires

hires

hires

Xerox:Company

name:Xerox Canada
addr:2 Bloor

Not
allowed!

Company Person1..*1
employer employee

hires

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 38

Business RulesBusiness Rules
� Business rules are used to describe the properties of an

application, e.g., the fact that an employee cannot earn more than
his or her manager.

� A business rule can be:

� the description of a concept relevant to the application (also
known as a busin ess object),

� an integrity constraint on the data of the application,

� a derivation rule , whereby information can be derived from
other information within a class diagram.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 39

Documentation TechniquesDocumentation Techniques

� Descriptive business rules can be organized into a data dictionary .
This is made up of two tables: the first describes the classes of the
diagram, the other describes the associations.

� Business rules that describe constraints can be expressed in the
following form:

<concept> must/must not <expression on concepts>
� Business rules that describe derivations can be expressed in the

following form:
<concept> is obtained by <operations on concepts>

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 40

Example of a Data DictionaryExample of a Data Dictionary
i Description Attributes Identifier

EMPLOYEE Employee working in the
company.

Code, Surname,
Salary, Age

Code

PROJECT Company project on which
employees are working.

Name, Budget,
ReleaseDate

Name

....

Description Entities involved Attributes
MANAGEMENT Associate a manager with

a department.
Employee (0,1),
Department (1,1)

MEMBERSHIP Associate an employee
with a department.

Employee (0,1)
Department (1,N) StartDate

....

Associations

Classes

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 41

Examples of Business RulesExamples of Business Rules

Constraints
(BR1) The manager of a department must belong to that department.
(BR2) An employee must not have a salary greater than that of the manager
of the department to which he or she belongs.
(BR3) A department of the Rome branch must be managed by an employee
with more than 10 years’ employment with the company.
(BR4) An employee who does not belong to a particular department must not
participate in any project.
....

Derivations

(BR5) The budget for a project is obtained by multiplying the sum of the
salaries of the employees who are working on it by 3.
....

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 42

Communication and CollaborationCommunication and Collaboration
Between ObjectsBetween Objects

� Communication and collaboration among objects is a
fundamental concept for object-orientated software.

� We want to decide which objects are responsible for what
(within or without the system).

� In addition, we want to know how external users and external
systems (“actors”) interact with each other and the system.

� As well, it is often convenient to model interactions between
actors; for example, the interactions between actors carrying
out a business process.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 43

Object Interaction and CollaborationObject Interaction and Collaboration
� Objects “own” information and behaviour, defined by operations;

system objects contain data and methods which are relevant to
their own respon sibilities . They don’t “know” about other objects’
information, but can ask for it.

� To carry out business processes, objects (system or otherwise)
have to work together, I.e., collaborate.

� Objects collaborate by sending messages to one another thereby
calling operations of the other object.

� Objects can only send messages to one another if they “know”
each other, I.e., there is an association between them.

� A responsibility is high level description of something instances
of a class can do. A responsibility reflects the knowledge or
information that is available to that class, either stored within its
own attribute or requested via collaboration with other classes.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 44

VIN -- Very Important NoteVIN -- Very Important Note

� During requirements, the system is modelled in terms of a
small number of coarse-grain classes and objects which
describe how the system interacts with its environment.

� During design, the system is modelled in greater detail in
terms of many fine-grain classes and objects.

� To keep things clear, we will use icons to represent external
objects and actors, and boxes to represent system objects.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 45

ResponsibilitiesResponsibilities
� It makes sense to distribute responsibility evenly among classes.
� For external classes, this means simpler, more robust classes to

define and understand
� For system classes, this means:

� No class is unduly complex;
� Easier to develop, to test and maintain classes;
� Resilient to change in the requirements of a class;
� A class that it relatively small and self-contained has much

greater potential for reuse.
� A nice way to capture class (object) responsibilities is in terms of

Class-Responsibility-Collaboration (CRC) cards.
� CRC cards can be used in several different phases of software

development.
� For now, we use them to capture interactions between objects

and actors.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 46

Role Play with CRC CardsRole Play with CRC Cards

� During requirements analysis we can spend time role playing
with CRC cards to try to sort out the responsibilities of objects
and actors and to determine which are the other objects they
need to collaborate with in order to carry out those
responsibilities.

� Often the responsibilities start out being vague and not as
precise as the operations which may only become clear as we
move into design.

� Sometimes we need to role play the objects in the system and
test out the interactions between them.

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 47

II’’m a Campaignm a Campaign
“I’m a Campaign. I know my title, start date, finish date and how
much I am estimated to cost. “
“When I’ve been completed, I know how much I actually cost and
when I was completed. I can calculate the difference between my
actual and estimated costs.”
“When I’ve been paid for, I know when the payment was made.”
“I can calculate the contribution made to me by each member of
staff who worked on me.”

This could be an external object
 (call it “ campaign project ”)

or a system object!

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 48

II’’m a m a CreativeStaffCreativeStaff
“I’m a CreativeStaff. I know my staff no, name, start date and
qualification.”
“I can calculate how much bonus I am entitled to at the end of
the year.”

Does it make sense to include
“I can calculate the contribution made to each campaign I have
worked on by each member of staff who worked on it.”
,or does that belong in Campaign?

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 49

Class:

Responsibilities: Collaborating Classes

Campaign

Title

StartDate

FinishDate

EstimatedCost

ActualCost

CompletionDate

DatePaid

RecordPayment

Completed

GetCampaignContribution

CostDifference

AssignManager CreativeStaff

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 50

Class:

Responsibilities: Collaborating Classes

CreativeStaff

StaffNo

StaffName

StaffStartDate

Qualification

CalculateBonus Campaign

ChangeGrade

Grade

StaffGrade

©2003 John Mylopoulos

CSC340Information Systems Analysis and Design

Class Diagrams -- 51

Additional ReadingsAdditional Readings
� [Booch99] Booch, G. et al. The Unified Modeling Language

User Guide, Addison-Wesley, 1999. (Chapters 4, 5, 8, 9, 10.)
� [Fowler97] Fowler, M. Analysis Patterns: Reusable Object

Models, Addison-Wesley, 1997.
� [Bellin97] Bellin, D et al. The CRC Card Book. Addison-

Wesley, 1997.

