Information Systems Analysis and Design CSC340

XX. Object Design

What is Object Design?
Class Specifications and Interfaces
Cohesion and Coupling
Designing Associations
Integrity Constraints
Referential, Dependency and Domain Integrity

4 e
‘ ;.\\V// mE
g v
7 ;(ﬁ\ A
, VA
E S
AN
© 2002 Jaelson Castro and John Mylopoulos Object Design -- 1
Information Systems Analysis and Design CSC340

Object Design

= Within the architectural decisions of systems design, object
design
v Produces full definitions of classes, associations, algorithms
& interfaces of operations;
v Adds classes that will be useful during implementation;

v Defines object interactions and object lifetimes in terms of
interaction and state diagrams;

v Optimises data structures and algorithms.

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 2

Information Systems Analysis and Design CSC340

Class Specifications

= Attribute signature

name: ;" type-expression "= initial-value “{property-string}’
= Operation signature

Operation name: "(" parameter-list)" *:" return-type-expression
= Object Visibility

+ + Public -- The feature is directly accessible by any class;

v - Private -- The feature may only be used by the class that
includes it;

+ # Protected -- The feature maybe used by either the class that
includes it or by a subclass of that class;

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 3

Information Systems Analysis and Design CSC340

An Example

Bankfcocount

=nextAccounthumber: inteqer
-accountMumber:integer
-accountMame:Siring {not null}
-balance:Money =0
-overdrafilimit:Money

+opan{accountMame: String):Boolean
+close():Boolean
+oreditfamount:Money)Boolean
+debitlfamount:Money):Boolean
+viewBalance{):Money
#getBalance()-Money
-setBalance{newBalance:Moneay)
#gethccountMNamed). String
#zetAccountMame(newMame: Siring)

© 2002 Jaelson Casti Object Design -- 4

Information Systems Analysis and Design CSC340

Class Interfaces

= Aninterface is a group of externally visible (public) operations.

= An interface is like a class, but contains no internal structure,
has no attributes, no associations and no implementation of its
operations.

= The realizes relationship indicates that the target class
supports at least the operations listed in the interface

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 5
[l =]
[f R AR R -q.:-;:qr'_ul-ﬂhhhlm:u
_— ~imp ey | alsphioree
mLmT ~eETEaEt an
- wlnftbarem el
CIaSS === - alaft S lariiade ﬁm—.ﬂ-‘l.-::.l
e i, GO T e
Interface ot st
S sl el
=l T oo & mARTEn Y ceviom
i = Frvge Skl Ho s A
AN LN | i
L)
H
1
L L
o ___E BEYLE - B
L] E
Iy I
Lt Rt
|~ el Tl e _'__:I
Pollm i e e oMt i WVimwnbie
L
b et L oyl
" o=y o]
< i o l l k!
Foliowrs rec] i RS v I -\:-Iu-::.‘:"
. ’ - i, M-
gl et -d"'_:}.i e - o
T — . T "L.-'? ki
R Aardizai

LT B T

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 6

Information Systems Analysis and Design

Criteria for Good Design:
Cohesion and Coupling

CSC340

= Coupling measures the degree of interconnectedness between

design components.

= The degree of coupling is reflected by the number of links an
object has, and by the degree of interaction the object has with

other objects.

= Low coupling is preferrable in a design for many good reasons,
e.g., easier to understand and modify the design.
= Cohesion, on the other hand, measures the degree to which an
element (subsystem, module, or class) contributes to a single

purpose.
= Of course, we want a highly cohesive design.

© 2002 Jaelson Castro and John Mylopoulos

Object Design -- 7

Information Systems Analysis and Design

Minimizing Coupling

CSC340

= Interaction coupling

Vighicle

+ Measures the number of message types an
object sends to other objects and the
number of parameters passed with these
message types;

decription
serviceDate
maximumAdltitude
takeOfiSpeed

~ Should be kept to a minimum in order to
reduce the possibility of changes rippling

checkAktitudeal)
fakeOf)

through object interfaces;
= Inheritance coupling

Lll

+ Degree to which a subclass actually needs

LandWehicle

the features (attributes or operations) it
inherits;
+ A subclass with unnecessary attributes or

numberOifdes
registrationDate

operations is more complex than it needs to

register()

be and instances of the subclass
unnecessarily use up more memory.

© 2002 Jaelson Castro and John Mylopoulos

Object Design -- 8

Information Systems Analysis and Design

Maximizing Cohesion

= Operation cohesion

~ Measure the degree to which an
operation focuses on a single
functional requirement.

+ Good design produces highly
cohesive operations, each of
which deals with a single
functional requirement.

= Class cohesion

~ Degree to which a class is

CSC340

Lecturer

leciurerMame
leciurerAddress
roomMumber

roomlLength
roomWidth

calculateRoomSpace()

focused on a single requirement.

© 2002 Jaelson Castro and John Mylopoulos

Good operation cohesion,

...but lousy class cohesion

Object Design -- 9

Information Systems Analysis and Design

= Specialization Cohesion -- addresses
the semantic cohesion of inheritance

CSC340
Maximizing Cohesion
e it
riEmibag
wirani
Fral
Loy
ATy
P o
B 12
Faasen i gy
I parscrhae craTpeRTAhETE
i o g el D
il amEsFmi
e Terrible
Congany cohesion!
rampantHams
annualincome
annuaPrale

hierarchies
Good Artremn
cohesion
nummE
siree
Hparl
Do in Iy
coanliry
i poeC o
fuas gl
Pisrssin
e R 5
el
gender

Object Design -- 10

Information Systems Analysis and Design CSC340

Liskov Substitution Principle

In class hierarchies, it should be possible to treat a specialized object
as if it were a base object.

i~ for
Cheguesficoound ! A I
1
ih
:C“Ln::.lmap'c r----------n: AT i M e
balanoe
Restruciuring
o i 1
|-1|'\'||i'.l solisfy LSP a’ ngdif
111111111 '-| !
/f Zf
]
; |
Morigayedon ol
g i Morigagaincoani o e LA i nd
inferea|fain
B
calaslaieiniem st .
- kil ot Al ke dediil
© 2002 Jaelson Castro and John Mylopoulos Object Design -- 11
Information Systems Analysis and Design CSC340

More Design Principles

Clarity -- A design should be easy to understand.

Do not over-design -- Developers are tempted to produce designs
that may not only satisfy current requirements but may also be
capable of supporting a wide range of future requirements.
Inheritance hierarchies -- Neither too deep nor too shallow!

Keep messages and operations simple: Limit the numbers of
parameters passed in a message; specify operations in no more
than one page.

Design volatility -- A good design should be stable in response to
change in requirements; enforcing encapsulation is a key factor in
producing stable systems.

Evaluation by scenario -- Can be done with a role play based on
use cases, using CRC cards.

Design by delegation: A complex object should be decomposed
into component objects forming a composition or aggregation

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 12

Information Systems Analysis and Design

CSC340

Designing Associations

= Each association needs to be analysed to determine whether it
should be a one-way or a two-way association.

= Depending on multiplicities, we may use collection classes (e.g.,

lists).

= Need to ask questions about object visibility:

v does object A need to know object B's object-id?
v does it need to communicate to third-party objects the object-

id?

© 2002 Jaelson Castro and John Mylopoulos

Object Design -- 13

Information Systems Analysis and Design

CSC340

Designing Associations

One-to-One, One Way

Arrowdhead shows the

Car

registrationMumber
make

model

colour

direction i wiick
Chwner messases coi b sent
L
[
LY
owWns
name b -
address
dateOfLicence 1 1
i umherDlCunwclmns_ ______ carcbjectid
i placed fir the
owner fayy
= Oaner needs to send messages to Car but not vice versa.

= Association may be implemented by placing an attribute to hold the
object identifier for the Car class in Oamner objects.

© 2002 Jaelson Castro and John Mylopoulos

Object Design -- 14

Information Systems Analysis and Design

Designing Associations

One-to-Many, One-Way Associations

CSC340

—=il I g Lo n CimafveSal
¥
= The object '
. e . s iatiMn
identifiers could be wir bCin ammigs T
held in a simple Y ia ﬁﬂ*—:‘gﬂgf
one-dimensional) L
array in the b e v Bk Takicly
Canpai gn object, : .
i .
but program code i i avefutm
would have to be ccampagnFisnlae | -
. i =" AT P
written to eatimalefCos ~]
- R e] E
manipulate the i bePaal Al
array. e
it aget — i
+ e K F kg el oo pelae
i it eshmatndnet
reoimgbsied =ora Tl i llane
+petnaraion
+ et T b o e
Bk TaMots -tlnl'ﬁ.\Tﬂuﬁl
e] i
g 0o Ay e
© 2002 Jaelson Castro and John Mylopsaios UujcuL Loyt - 1o
Information Systems Analysis and Design CSC340
Collection Classes
Collection classes Lampog
are useful for one-to- -::mﬂn‘l““ ——
many associations -G pagnF nishDae - -
AR Cod ! M - ——
-1 L T al oy
- dmlm Sl
wetualCost E‘:‘”rf::;‘l'l"
- B ST A
e i I g i TacwA e
Sagsign St
L T T H 1
scteEkSRa i
scompstad ki
svpiT Wt a
s Tpamemb o
wlnk Taksln Sl
ikl wErt
srpond Papennt -tlia
s
=targei Do
-a=tiraisd Coat
o imabedi n Dk
+
i K ST
PNy

© 2002 Jaelson Castro and John Mylopoulos

Opject Design -- 16

Information Systems Analysis and Design

Integrity Constraints

CSC340

= We'll discuss three types of integrity constraints (...there are

many others....)

= Referential Integrity ensures that an object identifier in an
object actually refers to an object that exists.
= Dependency Integrity ensures that attribute dependencies are
maintained, where one attribute may be calculated from other

attributes.

= Domain Integrity ensures that attributes only hold permissible

values

© 2002 Jaelson Castro and John Mylopoulos

Object Design -- 17

Information Systems Analysis and Design

Referential Integrity

CreativeStaff Campaign
-Name manages -Title)
-StaffNo 1 ~| —datePaid
-StaffStartDate -actualCost
-Qualification

= A Canpaign must have a CreativeStaff

manager.

= What happens if the manager is deleted?
= Referential integrity is maintained by ensuring that the deletion of
a CreativeStaff objectthatisacampaign manager always
involves allocating a new campaign manager.

© 2002 Jaelson Castro and John Mylopoulos

CSC340

instance as its

Object Design -- 18

Information Systems Analysis and Design CSC340

Dependency Constraints:
Derived Attibutes

= The value of a derived attribute may be calculated from other
attributes.

= For example, the total advertising cost can be calculated by
summing the individual advert costs and storing the value in the
attribute t ot al Advert Cost in the Canpai gn class or by
calculating every time it is required.

= However, whenever the cost of an advert changes, or an advert
is either added to or removed from a campaign the
t ot al Advert Cost attribute has to be adjusted.

= This can be done by sending message adj ust Cost () to the
Canpai gn object.

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 19

Information Systems Analysis and Design CSC340

Constraints Between Associations

: - izAMemberOf
Committea
Employee
memperColiection[”] {subset of}
comhairld
assignChair()
z - chairs 0.1

= Enforced by placing a check in assi gnChai r () to confirm that
the Enpl oyee object identifier passed as a parameter is already
in the collection class of committee members.

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 20

10

Information Systems Analysis and Design
Designing Operations

= Determine the best algorithm for the required function.
= Factors constraining algorithm design:
+ The cost of implementation;
Performance constraints;
Requirements for accuracy;
The capabilities of the chosen platform.

AN

AN

<

CSC340

= Factors to be considered when choosing among alternative

algorithm designs

+ The computational complexity of candidate algorithms;

+ Ease of implementation and understandability;
+ Flexibility;
+ Fine-tuning the object model.

© 2002 Jaelson Castro and John Mylopoulos

Object Design --

21

11

