Information Systems Analysis and Design CSC340

XX. Object Design

What is Object Design?
Class Specifications and Interfaces
Cohesion and Coupling
Designing Associations
Integrity Constraints
Referential, Dependency and Domain Integrity
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Object Design

= Within the architectural decisions of systems design, object
design
v Produces full definitions of classes, associations, algorithms
& interfaces of operations;
v Adds classes that will be useful during implementation;

v Defines object interactions and object lifetimes in terms of
interaction and state diagrams;

v Optimises data structures and algorithms.
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Class Specifications

= Attribute signature

name: ;" type-expression "= initial-value “{property-string}’
= Operation signature

Operation name: "(" parameter-list )" *:" return-type-expression
= Object Visibility

+ + Public -- The feature is directly accessible by any class;

v - Private -- The feature may only be used by the class that
includes it;

+ # Protected -- The feature maybe used by either the class that
includes it or by a subclass of that class;

© 2002 Jaelson Castro and John Mylopoulos Object Design -- 3

Information Systems Analysis and Design CSC340

An Example

Bankfcocount

=nextAccounthumber: inteqer
-accountMumber:integer
-accountMame:Siring {not null}
-balance:Money =0
-overdrafilimit:Money

+opan{accountMame: String ):Boolean
+close():Boolean
+oreditfamount:Money)Boolean
+debitlfamount:Money):Boolean
+viewBalance{):Money
#getBalance()-Money
-setBalance{newBalance:Moneay)
#gethccountMNamed ). String
#zetAccountMame(newMame: Siring)
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Class Interfaces

= Aninterface is a group of externally visible (public) operations.

= An interface is like a class, but contains no internal structure,
has no attributes, no associations and no implementation of its
operations.

= The realizes relationship indicates that the target class
supports at least the operations listed in the interface
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Criteria for Good Design:
Cohesion and Coupling

CSC340

= Coupling measures the degree of interconnectedness between

design components.

= The degree of coupling is reflected by the number of links an
object has, and by the degree of interaction the object has with

other objects.

= Low coupling is preferrable in a design for many good reasons,
e.g., easier to understand and modify the design.
= Cohesion, on the other hand, measures the degree to which an
element (subsystem, module, or class) contributes to a single

purpose.
= Of course, we want a highly cohesive design.
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Minimizing Coupling

CSC340

= Interaction coupling

Vighicle

+ Measures the number of message types an
object sends to other objects and the
number of parameters passed with these
message types;

decription
serviceDate
maximumAdltitude
takeOfiSpeed

~ Should be kept to a minimum in order to
reduce the possibility of changes rippling

checkAktitudeal)
fakeOf)

through object interfaces;
= Inheritance coupling

Lll

+ Degree to which a subclass actually needs

LandWehicle

the features (attributes or operations) it
inherits;
+ A subclass with unnecessary attributes or

numberOifdes
registrationDate

operations is more complex than it needs to

register()

be and instances of the subclass
unnecessarily use up more memory.
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Maximizing Cohesion

= Operation cohesion

~ Measure the degree to which an
operation focuses on a single
functional requirement.

+ Good design produces highly
cohesive operations, each of
which deals with a single
functional requirement.

= Class cohesion

~ Degree to which a class is

CSC340

Lecturer

leciurerMame
leciurerAddress
roomMumber

roomlLength
roomWidth

calculateRoomSpace()

focused on a single requirement.
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= Specialization Cohesion -- addresses
the semantic cohesion of inheritance

CSC340
Maximizing Cohesion
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Liskov Substitution Principle

In class hierarchies, it should be possible to treat a specialized object
as if it were a base object.
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More Design Principles

Clarity -- A design should be easy to understand.

Do not over-design -- Developers are tempted to produce designs
that may not only satisfy current requirements but may also be
capable of supporting a wide range of future requirements.
Inheritance hierarchies -- Neither too deep nor too shallow!

Keep messages and operations simple: Limit the numbers of
parameters passed in a message; specify operations in no more
than one page.

Design volatility -- A good design should be stable in response to
change in requirements; enforcing encapsulation is a key factor in
producing stable systems.

Evaluation by scenario -- Can be done with a role play based on
use cases, using CRC cards.

Design by delegation: A complex object should be decomposed
into component objects forming a composition or aggregation
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Designing Associations

= Each association needs to be analysed to determine whether it
should be a one-way or a two-way association.

= Depending on multiplicities, we may use collection classes (e.g.,

lists).

= Need to ask questions about object visibility:

v does object A need to know object B's object-id?
v does it need to communicate to third-party objects the object-

id?
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Designing Associations

One-to-One, One Way

Arrowdhead shows the

Car

registrationMumber
make

model

colour

direction i wiick
Chwner messases coi b sent
L
[
LY
owWns
name b -
address
dateOfLicence 1 1
i umherDlCunwclmns_ ______ carcbjectid
i placed fir the
owner fayy
= Oaner needs to send messages to Car but not vice versa.

= Association may be implemented by placing an attribute to hold the
object identifier for the Car class in Oamner objects.
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Designing Associations

One-to-Many, One-Way Associations

CSC340
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Collection Classes
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Integrity Constraints

CSC340

= We'll discuss three types of integrity constraints (...there are

many others....)

= Referential Integrity ensures that an object identifier in an
object actually refers to an object that exists.
= Dependency Integrity ensures that attribute dependencies are
maintained, where one attribute may be calculated from other

attributes.

= Domain Integrity ensures that attributes only hold permissible

values
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Referential Integrity

CreativeStaff Campaign
-Name manages -Title )
-StaffNo 1 ~| —datePaid
-StaffStartDate -actualCost
-Qualification

= A Canpaign must have a CreativeStaff

manager.

= What happens if the manager is deleted?
= Referential integrity is maintained by ensuring that the deletion of
a CreativeStaff objectthatisacampaign manager always
involves allocating a new campaign manager.
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Dependency Constraints:
Derived Attibutes

= The value of a derived attribute may be calculated from other
attributes.

= For example, the total advertising cost can be calculated by
summing the individual advert costs and storing the value in the
attribute t ot al Advert Cost in the Canpai gn class or by
calculating every time it is required.

= However, whenever the cost of an advert changes, or an advert
is either added to or removed from a campaign the
t ot al Advert Cost attribute has to be adjusted.

= This can be done by sending message adj ust Cost () to the
Canpai gn object.
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Constraints Between Associations

: - izAMemberOf
Committea
Employee
memperColiection[”] {subset of}
comhairld
assignChair()
z - chairs 0.1

= Enforced by placing a check in assi gnChai r () to confirm that
the Enpl oyee object identifier passed as a parameter is already
in the collection class of committee members.
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Designing Operations

= Determine the best algorithm for the required function.
= Factors constraining algorithm design:
+ The cost of implementation;
Performance constraints;
Requirements for accuracy;
The capabilities of the chosen platform.
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= Factors to be considered when choosing among alternative

algorithm designs

+ The computational complexity of candidate algorithms;

+ Ease of implementation and understandability;
+ Flexibility;
+ Fine-tuning the object model.
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