
1

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 1

XX. Object DesignXX. Object Design

What is Object Design?
Class Specifications and Interfaces

Cohesion and Coupling
Designing Associations

Integrity Constraints
Referential, Dependency and Domain Integrity

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 2

ObjectObject Design Design

n Within the architectural decisions of systems design, object
design

ü Produces full definitions of classes, associations, algorithms
& interfaces of operations;

ü Adds classes that will be useful during implementation;

ü Defines object interactions and object lifetimes in terms of
interaction and state diagrams;

ü Optimises data structures and algorithms.

2

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 3

Class SpecificationsClass Specifications

n Attribute signature
name: `:´ type-expression `=´ initial-value `{property-string}´

n Operation signature
 Operation name: `(´ parameter-list ´)´ `:´ return-type-expression

n Object Visibility
ü + Public -- The feature is directly accessible by any class;
ü - Private -- The feature may only be used by the class that

includes it;
ü # Protected -- The feature maybe used by either the class that

includes it or by a subclass of that class;

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 4

An ExampleAn Example

3

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 5

ClassClass InterfacesInterfaces

n An interfaceinterface is a group of externally visible (public) operations.
n An interface is like a class, but contains no internal structure,

has no attributes, no associations and no implementation of its
operations.

n The realizes realizes relationship indicates that the target class
supports at least the operations listed in the interface

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 6

ClassClass
InterfaceInterface

4

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 7

Criteria Criteria for for Good Good Design:Design:
Cohesion and CouplingCohesion and Coupling

n Coupling measures the degree of interconnectedness between
design components.

n The degree of coupling is reflected by the number of links an
object has, and by the degree of interaction the object has with
other objects.

n Low coupling is preferrable in a design for many good reasons,
e.g., easier to understand and modify the design.

n Cohesion, on the other hand, measures the degree to which an
element (subsystem, module, or class) contributes to a single
purpose.

n Of course, we want a highly cohesive design.

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 8

n Interaction coupling

ü Measures the number of message types an
object sends to other objects and the
number of parameters passed with these
message types;

ü Should be kept to a minimum in order to
reduce the possibility of changes rippling
through object interfaces;

n Inheritance coupling
ü Degree to which a subclass actually needs

the features (attributes or operations) it
inherits;

ü A subclass with unnecessary attributes or
operations is more complex than it needs to
be and instances of the subclass
unnecessarily use up more memory.

Minimizing CouplingMinimizing Coupling

5

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 9

n Operation cohesion
ü Measure the degree to which an

operation focuses on a single
functional requirement.

ü Good design produces highly
cohesive operations, each of
which deals with a single
functional requirement.

n Class cohesion
ü Degree to which a class is

focused on a single requirement.

Maximizing CohesionMaximizing Cohesion

Good operation cohesion,
…but lousy class cohesion

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 10

n Specialization Cohesion -- addresses
the semantic cohesion of inheritance
hierarchies

Maximizing CohesionMaximizing Cohesion

Good
cohesion,

Terrible
cohesion!

6

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 11

Liskov Liskov Substitution PrincipleSubstitution Principle

n In class hierarchies, it should be possible to treat a specialized object
as if it were a base object.

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 12

More Design PrinciplesMore Design Principles

n Clarity -- A design should be easy to understand.

n Do not over-design -- Developers are tempted to produce designs
that may not only satisfy current requirements but may also be
capable of supporting a wide range of future requirements.

n Inheritance hierarchies -- Neither too deep nor too shallow!
n Keep messages and operations simple: Limit the numbers of

parameters passed in a message; specify operations in no more
than one page.

n Design volatility -- A good design should be stable in response to
change in requirements; enforcing encapsulation is a key factor in
producing stable systems.

n Evaluation by scenario -- Can be done with a role play based on
use cases, using CRC cards.

n Design by delegation: A complex object should be decomposed
into component objects forming a composition or aggregation

7

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 13

Designing AssociationsDesigning Associations

n Each association needs to be analysed to determine whether it
should be a one-way or a two-way association.

n Depending on multiplicities, we may use collection classes (e.g.,
lists).

n Need to ask questions about object visibility:
ü does object A need to know object B's object-id?
ü does it need to communicate to third-party objects the object-

id?

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 14

n Owner needs to send messages to Car but not vice versa.
n Association may be implemented by placing an attribute to hold the

object identifier for the Car class in Owner objects.

Designing AssociationsDesigning Associations
One-to-One, One WayOne-to-One, One Way

8

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 15

n The object
identifiers could be
held in a simple
one-dimensional
array in the
Campaign object,
but program code
would have to be
written to
manipulate the
array.

Designing AssociationsDesigning Associations
One-to-Many, One-Way AssociationsOne-to-Many, One-Way Associations

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 16

CollectionCollection Classes Classes

n Collection classes
are useful for one-to-
many associations

9

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 17

Integrity ConstraintsIntegrity Constraints

n We’ll discuss three types of integrity constraints (...there are
many others….)

n Referential Integrity ensures that an object identifier in an
object actually refers to an object that exists.

n Dependency Integrity ensures that attribute dependencies are
maintained, where one attribute may be calculated from other
attributes.

n Domain Integrity ensures that attributes only hold permissible
values

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 18

Referential IntegrityReferential Integrity

n A Campaign must have a CreativeStaff instance as its
manager.

n What happens if the manager is deleted?
n Referential integrity is maintained by ensuring that the deletion of

a CreativeStaff object that is a campaign manager always
involves allocating a new campaign manager.

Campaign

-actualCost
-datePaid
-Title

CreativeStaff

-Name
-StaffNo
-StaffStartDate
-Qualification

manages
1 *

10

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 19

Dependency ConstraintsDependency Constraints::
Derived AttibutesDerived Attibutes

n The value of a derived attribute may be calculated from other
attributes.

n For example, the total advertising cost can be calculated by
summing the individual advert costs and storing the value in the
attribute totalAdvertCost in the Campaign class or by
calculating every time it is required.

n However, whenever the cost of an advert changes, or an advert
is either added to or removed from a campaign the
totalAdvertCost attribute has to be adjusted.

n This can be done by sending message adjustCost() to the
Campaign object.

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 20

Constraints Constraints BetweenBetween AssociationsAssociations

n Enforced by placing a check in assignChair() to confirm that
the Employee object identifier passed as a parameter is already
in the collection class of committee members.

11

© 2002 Jaelson Castro and John Mylopoulos

CSC340Information Systems Analysis and Design

Object Design -- 21

Designing OperationsDesigning Operations

n Determine the best algorithm for the required function.
n Factors constraining algorithm design:

ü The cost of implementation;
ü Performance constraints;
ü Requirements for accuracy;
ü The capabilities of the chosen platform.

n Factors to be considered when choosing among alternative
algorithm designs
ü The computational complexity of candidate algorithms;

ü Ease of implementation and understandability;
ü Flexibility;

ü Fine-tuning the object model.

