
From System Goals to Intruder Anti-Goals:
Attack Generation and Resolution for Security Requirements Engineering

Axel van Lamsweerde, Simon Brohez, Renaud De Landtsheer and David Janssens
Département d’Ingénierie Informatique

Université catholique de Louvain
B-1348 Louvain-la-Neuve (Belgium)

{avl, sbr, rdl, dja}@info.ucl.ac.be

Abstract. Caring for security at requirements
engineering time is a message that has finally received
some attention recently. However, it is not yet very clear
how to achieve this systematically through the various
stages of the requirements engineering process. We
briefly introduce some of the requirements such a process
should meet for high assurance to be provided from the
resulting requirements product. A constructive approach
to security requirements elicitation, modeling and
analysis is then outlined as an attempt to address such
meta-requirements. The approach is based on a
framework we developed before for generating and
resolving obstacles to requirements achievement. Our
framework integrates intentional obstacles (or “anti-
goals”) set up by attackers to break security goals. Attack
trees are derived systematically through anti-goal
refinement until leaf nodes are reached that are software
vulnerabilities observable by the attacker or anti-
requirements implementable by this attacker. New
security requirements are derived by resolution of the
attack trees generated thereby.

1. Introduction
Security has become an increasingly growing concern at
the internet age. The number of security incidents
reported to CERT has been growing exponentially over
the past decade – from about 250 in 1990 to 2,500 in 1995
to 10,000 in 1999 to 22,000 in 2000 to more than 50,000
in 2001 and 80,000 in 2002 [CERT]. Software
applications are more and more ubiquitous,
heterogeneous, mission-critical and vulnerable [Kem03];
attackers are more and more malicious and use more and
more sophisticated attack technology; the consequences
of attacks may become more devastating up to the point
of breaking severe safety-critical concerns. For example,
there has been reports about denial of service on medical
records that prevented urgent surgery from being
undertaken under the right conditions [CERT].
Unsurprisingly, the major source of vulnerability has been

recognized to be poor-quality software [Vie01]. As far as
research is concerned, the state of the art has been fairly
unbalanced so far. As Wing noted, the “strength” of
security guarantee provided by current security
technology is inversely proportional to the “size” of the
software layer at which the technology applies [Win98].
Such contrast between the size of the problem space and
the size of the solution space is summarized in Fig. 1.

secure
software layers

security
guarantee

In this overall context, the MILOS project aims to bring
together researchers in requirements engineering
[Lam00a, Lam00b], programming languages [Har99,
Roy99] and computer security [Joy97, Joy01] to develop
an integrated, vertical set of security engineering
techniques for the application and language layers –from
application-specific security requirements engineering to
secure architecture design to secure programming
platform implementation (MILOS stands for “Méthodes
d’Ingénierie de LOgigicels Sécurisés”).

This paper presents some ongoing work on the security
requirements engineering side of this project. We start by
briefly reviewing in Section 2 some critical (meta-)
requirements on development processes for high
assurance systems (including security-critical ones). Then

Application

Languages & systems

Protocols

Crypto

Crypto

Protocols

Languages & systems

Application

Fig. 1 – Security problem space vs.
 security solution space [Win98]

In Proceedings of the RE’03 Workshop on Requirements for High Assurance Systems (RHAS’03), Monterey (CA), Sept. 2003

we address the problem of specifying security-related
requirements and eliciting them in a goal-oriented
requirements engineering framework (Section 3). The
next section outlines how our analysis techniques for
generating and resolving obstacles to goal achievement
can be extended to integrate intentional obstacles set up
by attackers who want to break security goals; new
security requirements are derived from attack generation
and resolution. Section 5 illustrates our ideas by rational
reconstruction of known attacks and resolutions of web-
based banking services.

2. Problems & Challenges with High
Assurance Systems

High assurance systems are computer systems where
compelling evidence is required that the system delivers
its services in a manner that satisfies certain critical
properties such as safety, security, fault-tolerance and
survivability [Lea95]. Our requirements on an ideal
development process for such systems are derived more
or less trivially from some well-recognized evidence
related to this definition.
Evidence 1: The later defects are found, the more
expensive and critical they are likely to be.

Req 1: High assurance concerns should already be
carefully considered at requirements engineeering time so
that all required properties related to safety, security,
fault-tolerance and survivability (SSFS) are made precise,
inter-related for analysis of positive/negative interactions,
and preserved at every transition to downstream or
companion products.
Evidence 2: A posteriori detection/resolution of defects
may endlessly generate other defects.

Req 2: A constructive approach should be adopted where
SSFS properties are by construction guaranteed
seamlessly throughout system development.
Evidence 3: High assurance requires a much stronger
level of guarantee.

Req 3: The elaboration process should be made formal
wherever possible and supported by formal analysis tools
so that compelling evidence can be provided.
Req 4: The formalism required by Requirement 3 should
be lightweight so as to be usable as early as possible in
the requirements engineering process.
Evidence 4: The general objectives of safety, security,
fault tolerance and survivability must be refined in a
complete and consistent set of application-specific
requirements entailing them.

Requirements 5-8: The requirements elaboration process
should be:

• goal-oriented so that SSFS objectives can be
guaranteed to be met by lower-level, operational
requirements,

• incremental so that (a) partial models can be
analyzed early and stepwise with respect to the
higher-level SSFS objectives, and (b) higher-
assurance alternatives can be considered,

• relying on rich, multiple models so that all facets of a
complex system can be captured and analyzed
against SSFS objectives,

• open to smooth, roundtrip transitions from informal
to semi-formal to formal, and from requirements to
architecture so that risks of SSFS leaks during such
transitions are minimized.

Evidence 5: Positive/negative interactions among
functional requirements and SSFS-related requirements
are more easily analyzed when the requirements
specification keeps them separate [Rob03].

Req 9: The requirements specification should be
structured in a way that keeps functional, safety and
security requirements separate from each other.

3. Some Bits of Goal-Oriented Requirements
Engineering

We briefly recall some of the concepts and techniques
involved in a requirements engineering method we have
developed to address those requirements [Lam00a,
Lam01] before discussing how such concepts and
techniques can be extended to engineer security
requirements in a more specific way.
A goal is a prescriptive statement of intent about some
system (existing or to-be) whose satisfaction in general
requires the cooperation of some of the agents forming
that system. Agents are active components such as
humans, devices, legacy software or software-to-be
components that play some role towards goal satisfaction.
Some agents thus define the software whereas the others
define its environment. Goals may refer to services to be
provided (functional goals) or to quality of service (non-
functional goals). Unlike goals, domain properties are
descriptive statements about the environment –e.g.,
physical laws, organizational norms, etc.

Goals are organized into AND/OR refinement-abstraction
structures where higher-level goals are in general
strategic, coarse-grained and involve multiple agents
whereas lower-level goals are in general technical, fine-
grained and involve less agents [Dar93, Dar96]. In such
structures, AND-refinement links relate a goal to a set of
subgoals (called refinement) possibly conjoined with
domain properties; this means that satisfying all subgoals

in the refinement is a sufficient condition in the domain
for satisfying the goal. OR-refinement links relate a goal
to an alternative set of refinements; this means that
satisfying one of the refinements is a sufficient condition
in the domain for satisfying the goal.
Goal refinement ends when every subgoal is realizable by
some individual agent assigned to it, that is, expressible in
terms of conditions that are monitorable and controllable
by the agent [Let02a]. A requirement is a terminal goal
under responsibility of an agent in the software-to-be; an
expectation is a terminal goal under responsibility of an
agent in the environment (unlike requirements,
expectations cannot be enforced by the software-to-be).

Goals prescribe intended behaviors; they can be
formalized in a real-time temporal logic [Dar93]. Semi-
formal keywords such as Achieve, Avoid, Maintain are
provided to name goals according to the temporal
behavior pattern they prescribe, without going into
temporal logic details. Softgoals prescribe preferred
behaviors; they can be used for selecting preferred
alternatives in an AND/OR goal refinement graph
[Chu00].

Goals are operationalized into specifications of operations
to achieve them [Dar93, Let02b]; in the specifcation of an
operation, a distinction is made between domain pre- and
postconditions that capture what any application of the
operation means in the application domain, and required
pre-, trigger, and postconditions that capture requirements
on the operations that are necessary for achieving the
underlying goals.
Goals concern objects (entities, associations, events,
agents) which can be incrementally derived from their
formulation to produce a structural model of the system
(represented by UML class diagrams).

Agents are related together via their interface made of
object attributes they monitor and control, respectively
[Par95].

Obstacles were first introduced in [Pot95] as a way to
guide further elicitation through identification of
scenarios that could lead to goal violation. In declarative
terms, an obstacle to some goal is a condition whose
satisfaction may prevent the goal from being achieved.
More precisely, an obstacle O is said to obstruct a goal G
in a domain characterized by a set of domain properties
Dom iff

{O, Dom} |= ¬ G obstruction

Dom |≠ ¬ O domain consistency

Obstacle analysis consists in taking a pessimistic view at
the goals, requirements and expectations elicited in a first
stage. The principle is to identify as many ways of

breaking them as possible in order to resolve each such
situation when critical and likely so as to produce more
complete requirements for more robust systems. Formal
techniques for generation and AND/OR refinement of
obstacles are available [Lam00b]. The basic technique
amounts to a precondition calculus that regresses goal
negations ¬ G backwards through known domain
properties Dom. Formal obstruction patterns may be used
as a cheaper alternative to shorcut formal derivations.
Both techniques allow domain properties involved in
obstructions to be incrementally elicited as well.
Obstacles need to be resolved once they have been
generated. Resolution tactics are available for generating
resolutions, notably, goal substitution , agent substitution,
goal weakening, goal restoration, obstacle prevention and
obstacle mitigation [Lam00b]. Which resolution to select
depends on the obstacle criticality, its likelihood of
occurrence and on high-priority softgoals that may impact
on the selection. The selected resolution may then be
deployed at specification time, resulting in specification
transformation [Lam00b], or at runtime through
specification monitoring that detects or anticipates
obstacle occurrences [Fea98].
Obstacle analysis is a recursive process; it may produce
new goals for which new obstacles may need to be
generated and resolved.

4. Preliminary Elicitation of Security Goals
The preliminary elicitation of security-related goals is
driven by generic specification patterns associated with
each specialization of this goal class, namely,
confidentiality, integrity, availability and privacy goals.
The patterns are expressed in terms of abstractions from
the language meta-model and security-specific language
constructs. For each subclass, the instantiation of the
corresponding specification pattern to “sensitive” objects
found in the object model yields corresponding candidates
for application-specific security goals (to be refined if
necessary).
For example, the specification pattern for Confidentiality
goals refers to meta-model elements such as Agent and
Object (the latter having a generic attribute Info) to
capture the definition of confidentiality [Kem03]:

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
FormalSpec ∀ ag: Agent, ob: Object

 ¬ Authorized (ag, ob.Info) ⇒ ¬ KnowsVag (ob.Info)

In this pattern, the Authorized predicate is generic and has
to be instantiated through an application-specific domain
definition; e.g., for web-based banking services we would
certainly consider the instantiation Object / Account while
browsing the object model and might introduce the

following instantiating definition:
∀ ag: Agent, acc: Account

 Authorized (ag, acc) ≡
 Owns (ag, acc) ∨ Proxy (ag, acc) ∨ Manages (ag, acc)

In the pattern above, the epistemic operator KnowsVag is a
security-specific construct defined by

KnowsVag (v) ≡ ∃x: KnowsVag (x = v) (“knows value”)

Knowsag (P) ≡ Beliefag (P) ∧ P (“knows property”)

where the operational semantics of Beliefag(P) is “P is
among the properties stored in the local memory of agent
ag”. An agent thus knows a property if that property is
found in its local memory and it is indeed the case that the
property holds.

For web-based banking services, the “sensitive”
information about accounts would be the pair of objects
(Acc#, PIN), both partOf the aggregation Account, and
linked in the object model through the Match association;
the instantiation then yields the following confidentiality
goal as candidate for inclusion in the goal graph:

Goal Avoid [PaymentMediumKnownBy3rdParty]
FormalSpec ∀ p: Person, acc: Account

¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))

 ⇒ ¬ [KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)])

The same principle can be applied to elicit instantiations
from the generic patterns for Privacy, Integrity and
Availability goals, namely:

Maintain [PrivateInfoKnownOnlyIfPermittedByOwner]

Maintain [ObjectInfoChangeOnlyIfCorrectAndByAuthorizedAgent]
Achieve [ObjectInfoUsableWhenNeededByAuthorizedAgent]

In the context of security it may be worth recalling that
“sensitive” objects found in the object model can be either
passive (entities, associations, events) or active (agents).

5. Obstacle Analysis Revisited: Attack
Generation and Resolution

As noted in [Lam00b], obstacle refinement trees for
security goals correspond to the popular hazard trees
(sometimes called threat trees or attack trees) used
frequently for modeling or documenting known hazards
or potential attacks [Amo94, Lev95, Sch99, Moo01,
Hel02]. There are two important differences, however.

• Obstacle trees are goal-anchored; the analyst thus
knows exactly where to start the analysis from -- it
is often much easier to concentrate first on what is
desired rather than on what is not desired.

• Obstacle refinements are formalized in our real-time
temporal logic and can therefore be generated
systematically from goal assertions and domain

properties using regression techniques or formal
refinement patterns [Lam00b].

While obstacle refinement trees may appear sufficient for
modeling and resolving accidental, non-intentional
obstacles to security goals they appear too limited for
modeling and resolving malicious, intentional obstacles.
In the latter case the active attacker should be modelled as
well together with his own goals, capabilities, the
software vulnerabilities he can monitor or control, etc.
Let us call anti-models such richer models and anti-goals
the intentional obstacles to security goals (we want of
course to distinguish them clearly from the goals the
system under consideration should satisfy). Anti-models
should lead to the generation of more subtle attacks, the
discarding of non-realizable or unlikely ones, and the
derivation of more effective, “customized” resolutions.

Anti-models can be built systematically as follows.
1. Root anti-goals are obtained just by negation of

Confidentiality, Privacy, Integrity and Availability goals
instantiated to sensitive objects from the object
model as suggested in the previous section.

2. For each anti-goal, potential attacker agents are
elicited from questions such as “WHO can benefit
from this anti-goal?” (Known attacker taxonomies
may help answering such questions.)

3. For each anti-goal and corresponding attacker
class(es) identified, the attacker’s higher-level anti-
goals are elicited from questions such as “WHY
would instances of this attacker class want to achieve
this anti-goal?”

4. From the resulting anti-goal graph fragments a dual
AND/OR refinement/abstraction process can start
with the aim of reaching terminal anti-goals that are
realizable by the attacker agents identified or by
attackee software agents. The former are anti-
requirements assigned to the attacker whereas the
latter are vulnerabilities assigned to the attackee.
(This rightly fits the Common Criteria definition of
vulnerability, namely, “a condition of an agent that,
in conjunction with a threat, can lead to security
requirement violation” [CC99]). The AND/OR
refinement/abstraction process can be guided by the
following techniques:

- asking “HOW?” and “WHY?” questions about the
anti-goals already available,

- regressing anti-goal assertions further through
domain properties available [Lam00b],

- applying formal refinement patterns – notably, the
milestone and decomposition-by-case pattern
[Dar96], the resolve lack of monitorability and

resolve lack of controllability patterns [Let02a] and
the obstruction patterns found in [Lam00b].

5. During anti-goal refinement/abstraction the
corresponding object and agent anti-models are
derived from anti-goal formulations; the boundary
and monitoring/control interfaces between the anti-
machine (under the attacker’s control) and the anti-
environment (which includes the software attackee)
are thereby derived.

6. Finally, the anti-requirements are AND/OR
operationalized in terms of the capabilities of the
corresponding attacker agent – which may include
blind or intelligent searching, eavesdropping,
deciphering, spoofing, etc.)

The above steps result in a multi-component anti-model
relating the attackers, their anti-goals, referenced objects
and anti-operations to achieve their anti-goals, to the
attackees, their goals, objects, operations and
vulnerabilities. If goals are formalized in our real-time
temporal logic, the logical models of anti-goals are sets of
attack scenarios. Bounded SAT solvers can then be used
to generate such scenarios automatically.

Once rich attack models have been derived systematically
in this way, the last (but not least) step is to exploit them
to explore alternative resolutions for each derived anti-
requirement. A preferred resolution is then selected based
on the criticality and likelihood of the corresponding anti-
requirement, to produce new security requirements.

A new cycle of anti-goal analysis may then need to be
applied to these new requirements. Although we believe
that our obstacle resolution operators may be used to
generate resolutions, we have not been very far yet in this
direction to support that belief. From limited experience
on a few small case studies, our feeling is that the
obstacle prevention operator, resulting in new security
goals of form

Avoid [AntiGoal],

frequently yields the most appropriate candidate goals for
further refinement.

Other, specific operators can be considered as well such
as, e.g.,
• “make vulnerability condition unmonitorable by

attacker”,
• “make anti-requirement condition uncontrollable by

attacker”.
For anti-goals that are not too critical, resolutions may be
deferred from specification time to run time using
intrusion detection technology. We did some experiments
recently on this by generating event expressions as input
to the ASAX intrusion detection system from anti-goal

assertions in temporal logic [Bro02].

6. Example: Web-Based Banking Services
We illustrate the critical steps (1) and (4) of the above
procedure for web-based banking services and then
illustrate what the resolutions might be.
As a result of step (1) we obtain the following anti-goal
by negation of the confidentiality goal Avoid
[PaymentMediumKnownBy3rdParty] obtained by instantiation
in Section 3:

AntiGoal Achieve [PaymentMediumKnownBy3rdParty]
FormalSpec ◊ ∃ p: Person, acc: Account

¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))

 ∧ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

By asking “what are sufficient conditions for someone
unauthorized to know the number and PIN of an account
simultaneously?” and using the symmetry and [1:1, 1:N]
multiplicity of the Match association between account
numbers and PINs in the object model we elicit domain
properties such as:

∀ p: Person, acc: Account
¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))
∧ KnowsVp (acc.Acc#)
∧ (∃ x: PIN) (Finds (p, x) ∧ Match (x, acc.Acc#)

⇒ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))

∧ KnowsVp (acc.PIN)
∧ (∃ y: Acc#) (Finds (p, y) ∧ Match (acc.PIN, y)

⇒ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

Regressing the above anti-goal backwards through these
domain properties (see [Lam00b]) we obtain an OR-
refinement of that anti-goal into two alternative anti-
subgoals:

AntiGoal Achieve [PaymentMediumKnownBy3rdParty
 FromPinSearching]

FormalSpec ◊ ∃ p: Person, acc: Account
¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))

∧ KnowsVp (acc.Acc#)
∧ (∃ x: PIN) [Finds (p, x) ∧ Match (x, acc.Acc#)]

AntiGoal Achieve [PaymentMediumKnownBy3rdParty
 FromAccountNumberSearching]

FormalSpec ◊ ∃ p: Person, acc: Account
¬ (Owns (p, acc) ∨ Proxy (p, acc) ∨ Manages (p, acc))

∧ KnowsVp (acc.PIN)
∧ (∃ y: Acc#) [Finds (p, y) ∧ Match (acc.PIN, y)]

The standard way of resolving the first, well-known anti-
goal is to limit the number of PIN entries (e.g., to three
attempts). The second anti-goal is more subtle and
corresponds to a sophisticated, real attack reported
recently [San00]. Resolution through the obstacle

prevention operator would produce the new requirement
that the possibility of exhaustive search for account
numbers matching some fixed PIN number should be
avoided.

No vulnerability anti-goal assigned to the attackee
appeared here as conjunct needed to achieve the higher-
level anti-goal. In a similar derivation from a
confidentiality requirement about orders and personal
information in a web-based CD sales system, we derived
the vulnerability found in reported attacks on a well-
known CD sales company, namely, that order numbers
appear on the page URL shown from the order tracking
service.

7. Related work
A few proposals have been made recently for extending
existing modeling notations to capture attacker features at
requirements engineering time -- notably, through misuse
cases that complement UML use cases [Sin00, Sin01,
Ale03] or abuse frames that complement problem frames
[Lin03] to define the scope and boundary of anti-
requirements on the attacker.
Other extensions of existing frameworks to security
requirements analysis include the work by the Toronto
group; they propose a methodology based on the i*
framework [Yu93] to identify attackers, analyze and
propagate vulnerabilities through agent dependency links
and suggest counter-measures [Liu03].
The principle of building a catalogue of known threat tree
patterns for documentation and reuse through instantiation
is nicely illustrated in [Moo01].
Sheyner et al use model checking technology to generate
and analyze attack graphs. Given a state machine model N
of the network under attack, a model A of the attacker’s
capabilities and a desired security property S, their tools
produce all possible counterexample scenarios found
when trying to verify

N, A | S
Our work may be seen as an “upstream” complement to
their approach; it can be applied sooner in the process to
point out earlier security problems at the requirements
level by generating attacks from declarative goal/anti-goal
models (as opposed to operational state machine models
that need to be appropriately built up to reflect such
declarative specifications adequately).

8. Conclusion

We presented a requirements engineering approach for
modeling and specifying security goals and anti-goals,

and for deriving attack trees systematically through anti-
goal refinement until leaf nodes are reached that are either
attackee vulnerabilities observable by the attacker or anti-
requirements implementable by this attacker. Anti-goals
were seen to be intentional obstacles that obstruct security
goals. New security requirements are then derived by
resolution of the generated attack trees.

This approach extends our KAOS framework for goal-
oriented requirements elaboration by (a) extending the
specification language with epistemic constructs for
reasoning about the attacker’s knowledge, (b) providing a
pattern-based approach for the preliminary formal
elicitation of security requirements from generic
specifications over security-related meta-variables, (c)
introducing dual modeling concepts for richer modeling
of the attacker’s universe, and (d) adapting our goal-
oriented method to the elaboration of dual anti-models
from which more robust security requirements can be
derived. In such dual models, goals, requirements,
expectations about the environment and software
operations now become intentional obstacles to security
requirements, implementable anti-requirements, software
vulnerabilities and attack primitives, respectively.

Our approach to attack tree generation is goal-directed; it
requires some preliminary elicitation of application-
specific security goals, e.g., through instantiation of
generic security requirement specifications to application-
specific “sensitive” objects. This appears to us the most
natural way of coping with security issues at the
application level – which is the primary concern of our
work.

There are many research issues raised at this point, e.g.,

• Can we apply the same sort of attack tree derivation
from conflict conditions among multiple goals
[Lam98] that can be exploted by attackers?

• What would a rich, comprehensive meta-model for
security requirements and anti-requirements look like?

• How do we model trusted agents and incorporate trust
models in our framework?

• Can we build rich, reusable libraries of attack patterns
[Fon02] and resolution patterns?

• How do we propagate consequences of security leaks
in our models?

• How do we incorporate probabilistic reasoning
frameworks to reason about partial satisfaction of
goals/anti-goals and determine the likelihood of anti-
goal occurrences?

These are issues we plan to work on.

Acknowledgement. The work reported herein was
partially supported by the Belgian “Fond National de la
Recherche Scientifique” (FNRS) and the Regional
Government of Wallonia (MILOS project, RW Conv.
114856).

References
[Ale03] I. Alexander, “Misuse Cases: Use Cases with Hostile

Intent”, IEEE Software, Jan/Feb 2003, 58-66.
[Amo94] E.J. Amoroso, Fundamentals of Computer Security.

Prentice Hall, 1994.
[Bro02] S. Brohez and Y. Grégoire, Obstacle Monitoring: an

Implementation based on the ASAX Intrusion Detection
System. M.S. Thesis, University of Namur, July 2002.

[CC99] Common Criteria for Information Technology Security
Evaluation, Version 2.1, Aug. 1999,
http:www.commoncriteria.org/

[CERT] http://www.cert.org/stats/cert_stats.html

[Chu00] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-
functional requirements in software engineering. Kluwer
Academic, Boston, 2000.

 [Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas,
“Goal-Directed Requirements Acquisition”, Science of
Computer Programming, Vol. 20, 1993, 3-50.

[Dar96] R. Darimont and A. van Lamsweerde, “Formal Refine-
ment Patterns for Goal-Driven Requirements Elaboration”,
Proc. FSE’4 - Fourth ACM SIGSOFT Symp. on the Founda-
tions of Software Engineering, San Francisco, October 1996,
179-190.

[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C.
Ponsard, “Reconciling System Requirements and Runtime
Behaviour”, Proc. IWSSD’98 - 9th International Workshop
on Software Specification and Design, Isobe, IEEE CS
Press, April 1998.

[Fon02] P.J. Fontaine, Goal-Oriented Elaboration of Security
Requirements. M.S. Thesis, Dept. Computing Science,
University of Louvain, June 2001.

[Har99] S. Haridi, P. Van Roy, P. Brand, M. Mehl, R.
Scheidhauer, and G. Smolka, “Efficient logic variables for
distributed computing”, ACM Transactions on
Programming Languages and Systems, 21(3), May 1999.

[Hel02] G. Helmer, J. Wong, M. Slagell, V. Honavar , L. Miller
and R. Lutz, “A Software Fault Tree Approach to
Requirements Analysis of an Intrusion Detection System”,
Requirements Engineering Journal Vol. 7 No. 4, 2002, 177-
220.

[Joy97] M. Joye and J.J. Quisquater, “On the importance of
securing your bins: The garbage-man-in-the-middle attack”,
in T. Matsumoto, ed., 4th ACM Conference on Computer
and Communications Security, ACM Press, 1997, pp. 135-
141.

[Joy01] M. Joye, J.J. Quisquater and Y. Moti, “On the power of
misbehaving adversaries and security analysis of EPOC”, in

Progress in Cryptology - CT-RSA 2001, Lectures Notes in
Computer Science, Vol. 2020, April 2001.

[Kem03] R.A. Kemmerer, “Cybersecurity”, Invited Mini-
Tutorial, Proc. ICSE’03: 25th Intl. Conf. on Software
Engineering, Portland, IEEE Computer Society Press, May
2003, 705-715.

[Lam98] A. van Lamsweerde, R. Darimont, E. Letier,
”Managing Conflicts in Goal-Driven Requirements
Engineering”, IEEE Transactions on Software Engineering,
Special Issue on Managing Inconsistency in Software
Development, November 1998.

[Lam00a] A. van Lamsweerde, “Requirements Engineering in
the Year 00: A Research Perspective”, Keynote paper, Proc.
ICSE’2000 - 22nd International Conference on Software
Engineering, ACM Press, 2000.

[Lam00b] A. van Lamsweerde and E. Letier, “Handling
Obstacles in Goal-Oriented Requirements Engineering”,
IEEE Transactions on Software Engineering, Special Issue
on Exception Handling, October 2000.

[Lam01] A. van Lamsweerde , “Goal-Oriented Requirements
Engineering: A Guided Tour”, Invited Minitutorial, Proc.
RE’01 - 5th Intl. Symp. Requirements Engineering, Toronto,
August 2001, pp. 249-263.

[Lea95] J. McLean and C. Heitmeyer, “High Assurance
Computer Systems: A Research Agenda”, America in the
Age of Information, National Science and Technology
Council Committee on Information and Communications
Forum, Bethesda, 1995.

[Let02a] E. Letier and A. van Lamsweerde, “Agent-Based
Tactics for Goal-Oriented Requirements Elaboration”, Proc.
ICSE’02: 24th Intl. Conf. on Software Engineering, Orlando,
IEEE Computer Society Press, May 2002.

[Let02b] E. Letier and A. van Lamsweerde, “Deriving
Operational Software Specifications from System Goals”,
Proc. FSE’10: 10th ACM SIGSOFT Symp. on the
Foundations of Software Engineering, Charleston,
November 2002.

[Lev95] N. Leveson, Safeware - System Safety and Computers.
Addison-Wesley, 1995.

[Lin03] L. Lin, B. Nuseibeh, D. Ince, M. Jackson and J. Moffett,
“Introducing Abuse Frames for Analyzing Security
Requirements”, Open University, 2003.

[Liu03] L. Liu, E. Yu and J. Mylopoulos, “Security and Privacy
Requirements Analysis with a Social Settinfg”, Proc. RE’03
- International Conference on Requirements Engineering,
Monterey, California, September 2003.

[Moo01] AP. Moore, R.J. Ellison and R.C. Linger, “Attack
Modeling for Information Security and Survivability”,
Technical Note CMU/SEI-2001-TN-001, March 2001.

[Par95]D.L. Parnas and J. Madey, “Functional Documents for
Computer Systems”, Science of Computer Programming,
Vol. 25, 1995, pp. 41-61.

[Pot95] C. Potts, “Using Schematic Scenarios to Understand
User Needs”, Proc. DIS’95 - ACM Symposium on Designing
interactive Systems: Processes, Practices and Techniques ,

University of Michigan, August 1995.
[Rob03] W. N. Robinson, “Requirements Interaction

Management”, ACM Computing Surveys , June 2003.
[Roy99] P. Van Roy, P. Brand, S. Haridi, and R. Collet, “A

lightweight reliable object migration protocol”, Lecture
Notes in Computer Science, vol. 1686, Springer-Verlag,
October 1999.

[San00] A. dos Santos, G. Vigna, and R. Kemmerer, “Security
Testing of the Online Banking Service of a Large
International Bank”, Proceedings of the First Workshop on
Security and Privacy in E-Commerce, November 2000.

[Sch99] B. Schneier, “Attack Trees: Modeling Security
Threats”, Dr. Dobb’s Journal, December 1999.

[Sch00] B. Schneier, Secrets and Lies: Digital Security in a
Networked World. Wiley, 2000.

[She02] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Winf,
“Automated Generation and Analysis of Attack Graphs”,
Proc. IEEE Symp. on Security and Privacy, Oakland (CA),
May 2002.

[Sin00] G. Sindre and A.L. Opdahl, “Eliciting Security
Requirements by Misuse Cases, Proc. TOOLS Pacific’2000,
Conf. on Techniques of Object-Oriented Languages and
Systems, 2000, 120-131.

[Sin01] G. Sindre and A.L. Opdahl, “Templates for Misuse
Case Description”, Proc. REFSQ’01 – Intl. Workshop on
Requirements Engineering: Foundations for Software
Quality, 2001.

[Vie01] J. Viega and G. McGraw, Building Secure Software:
How to Avoid Security Problems the Right Way. Pearson
Education, 2001.

[Yu93] E.S.K. Yu, "Modelling Organizations for Information
Systems Requirements Engineering", Proc. RE'93 - 1st Intl
Symp. on Requirements Engineering, IEEE, 1993, 34-41.

[Win98] J. Wing, "A Symbiotic Relationship Between Formal
Methods and Security", Proc. NSF Workshop on Computer
Security, Fault Tolerance, and Software Assurance: From
Needs to Solution. December 1998.

