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1 Introduction

Ontology is a discipline of Philosophy whose name dates back hundreds of years and
whose practice dates back to Aristotle. Ontology is the study of the existence and nature
of things, and includes questions such as, “what is a castle?” and “what is a hole?” The
answers to these questions shed light on how we perceive and interact with the world.
There is a subtle distinction between Ontology and Epistemology, which is the study of
knowledge and knowing.

By the early 1980s, researchers in AI and especially in Knowledge Representation
had realized that work in Ontology was relevant to the necessary process of describing
the world for intelligent systems to reason about and act in. This awareness and inte-
gration grew, and spread into other areas until, in the latter half of the final decade of
the 20th century, the term “ontology” actually became a buzzword, as enterprise mod-
eling, e-commerce, emerging XML meta-data standards, and knowledge management,
among others, reached the top of many businesses strategic plans. In addition, an
emphasis on “knowledge sharing” and interchange has placed an emphasis on ontol-
ogy as an application area in and of itself.

In general the accepted industrial meaning of “ontology” makes it synonymous with
“conceptual model” and is completely independent of it’s philosophical antecedents.
In this paper we describe research that has led to a well-founded methodology for
ontological analysis based on the philosophical underpinnings of that field, and an
interesting description-logic based system that can be used to support this methodol-
ogy. Although the methodology is not limited to analyzing taxonomies, we focus on
that aspect of it here.

Most of the methodology described here has been published previously, as will be
noted in specific sections. This paper is an extended version of [15] that presents a
broader view of the overall methodology and an extended discussion of a system to
support it.

2 Background

The notions upon which our methodology is based are subtle, and before describing
them with formal rigor we discuss the basic intuitions behind them and how they are
related to some existing notions in conceptual modeling.

2.1 Taxonomies

Taxonomies are a central part of most conceptual models. Properly structured taxono-
mies help bring substantial order to elements of a model, are particularly useful in pre-
senting limited views of a model for human interpretation, and play a critical role in re-
use and integration tasks. Improperly structured taxonomies have the opposite effect,
making models confusing and difficult to reuse or integrate. 



Clearly, insights into how to properly construct a taxonomy are useful. Many previ-
ous efforts at providing these insights have focused on the semantics of the taxonomic
relationship (also called is-a, class inclusion, subsumption, etc.) [3], on different kinds
of relations (generalization, specialization, subset hierarchy) according to the con-
straints involved in multiple taxonomic relationships (covering, partition, etc.) [28], on
the taxonomic relationship in the more general framework of data abstractions [8], or
on structural similarities between descriptions [2,5]. 

Our approach differs in that we focus on the arguments (i.e. the properties or con-
cepts) involved in the subsumption relationship, rather than on the semantics of the
relationship itself. The latter is taken for granted, as we take the statement “ψ sub-
sumes φ” for arbitrary properties ψ and φ to mean simply:

(1)

Our focus in this chapter will be on verifying the plausibility and the well-founded-
ness of single statements like (1) on the basis of the ontological nature of the two prop-
erties φ and ψ. Where e.g. description logics can determine whether one description
subsumes another, this methodology can help determine whether or not the categories
the descriptions describe actually do. 

2.2 Basic Notions

We begin by introducing the most important philosophical notions: identity, unity, es-
sence, and dependence. The notion of identity adopted here is based on intuitions about
how we, as cognitive agents, in general interact with (and in particular recognize) indi-
vidual entities in the world around us. Despite its fundamental importance in Philoso-
phy, the notion of identity has been slow in making its way into the practice of concep-
tual modeling for information systems, where the goals of analyzing and describing the
world are ostensibly the same.

The first step in understanding the intuitions behind identity requires considering the
distinctions and similarities between identity and unity. These notions are different,
albeit closely related and often confused under a generic notion of identity. Strictly
speaking, identity is related to the problem of distinguishing a specific instance of a
certain class from other instances of that class by means of a characteristic property,
which is unique for it (that whole instance). Unity, on the other hand, is related to the
problem of distinguishing the parts of an instance from the rest of the world by means
of a unifying relation that binds the parts, and only the parts together. For example,
asking, “Is that my dog?” would be a problem of identity, whereas asking, “Is the col-
lar part of my dog?” would be a problem of unity. 

Both notions encounter problems when time is involved. The classical one is that of
identity through change: in order to account for common sense, we need to admit that
an individual may remain the same while exhibiting different properties at different
times. But which properties can change, and which must not? And how can we reiden-
tify an instance of a certain property after some time? The former issue leads to the
notion of an essential property, on which we base the definition of rigidity, discussed
below, while the latter is related to the distinction between synchronic and diachronic
identity. An extensive analysis of these issues in the context of conceptual modeling
has been made elsewhere [13].

The fourth notion, ontological dependence, may involve many different relations
such as those existing between persons and their parents, holes in pieces of cheese and
the cheese, and so on [27]. We focus here on a notion of dependence as applied to

x φ x( ) ψ x( )→∀



properties. We distinguish between extrinsic and intrinsic properties, according to
whether they depend or not on other objects besides their own instances. An intrinsic
property is typically something inherent to an individual, not dependent on other indi-
viduals, such as having a heart or having a fingerprint. Extrinsic properties are not
inherent, and they have a relational nature, like “being a friend of John”. Among these,
there are some that are typically assigned by external agents or agencies, such as hav-
ing a specific social security number, having a specific customer i.d., even having a
specific name.

It is important to note that our ontological assumptions related to these notions ulti-
mately depend on our conceptualization of the world [11]. This means that, while we
shall use examples to clarify the notions central to our analysis, the examples them-
selves will not be the point of this paper. When we say, e.g. that “having the same fin-
gerprint” may be considered an identity criterion for PERSON, we do not mean to
claim this is the universal identity criterion for PERSONs, but that if this were to be
taken as an identity criterion in some conceptualization, what would that mean for the
property, for its instances, and its relationships to other properties?

To see how these intuitive notions can be used, consider a famous philosophical
problem regarding the nature of a bunch of bricks. The bricks are made and sit in a pile
for a while, and are then used to build a castle. The castle, over time, crumbles back
into a pile of bricks. How would we describe the lifetime of this bunch of bricks in
terms of properties, entities, and relations? Do we represent castles and bunches of
bricks as two different properties? If so, do we have a single entity which is always
subsumed by the “bunch of bricks” property, but which “moves” in and then out of the
“castle” property, or do we have two entities, one subsumed by castle and the other by
bunch of bricks with a relationship between them? Our analysis helps with these
choices by exposing certain assumptions underlying them. For example, many would
agree that a bunch of bricks is identified by the bricks themselves - if we remove or
replace a few bricks then we have a different bunch. A castle, on the other hand, does
not seem to have this property – we can remove or add bricks to the castle and still con-
sider that it is the same castle. Our framework is designed to show the logical conse-
quences of decisions like this.

These decisions are ultimately the result of our sensory system, our culture, etc. and
again the aim of this methodology is to clarify the formal tools that can both make such
assumptions explicit, and reveal the logical consequences of them. 

2.3 Related Notions

Identity has many analogies in conceptual modeling for databases, knowledge bases,
object-oriented, and classical information systems, however none of them completely
captures the notion we present here. We discuss some of these cases below.

Membership conditions. In description logics, conceptual models usually focus on
the sufficient and necessary criteria for class membership, that is, recognizing
instances of certain classes [4]. This is not identity, however, as it does not describe
how instances of the same class are to be told apart. This is a common confusion that is
important to keep clear: membership conditions determine when an entity is an
instance of a class, i.e. they can be used to answer the question, “Is that a dog?” but
not, “Is that my dog?”

Globally Unique IDs. In object-oriented systems, uniquely identifying an object



(as a collection of data) is critical, in particular when data is persistent or can be dis-
tributed [33]. In databases, globally unique id’s have been introduced into most com-
mercial systems to address this issue. These solutions provide a notion of identity for
the descriptions, for the units of data (individuals, objects or records), but not for the
entities they describe. It still leaves open the possibility that two (or more) descriptions
may refer to the same entity, and it is this entity that our notion of identity is concerned
with. In other words, globally unique IDs can be used to answer, “Is this the same
description of a dog?” but not, “Is this my dog.” 

Primary Keys. Some object-oriented languages provide a facility for overloading or
locally defining the equality predicate for a class. In standard database analysis, intro-
ducing new tables requires finding unique keys either as single fields or combinations
of fields in a record. These two similar notions very closely approach our notion of
identity as they do offer evidence towards determining when two descriptions refer to
the same entity. There is a very subtle difference, however, which we will attempt to
briefly describe here and which should become more clear with the examples at the
end of the chapter.

Primary (and candidate) keys and overloaded equality operators are typically based
on extrinsic properties (see Section 2.2) that are required by a system to be unique. In
many cases, information systems designers add these extrinsic properties simply as an
escape from solving (often very difficult) identity problems. Our notion of identity is
based mainly on intrinsic properties—we are interested in analyzing the inherent
nature of entities and believe this is important for understanding a domain. 

This is not to say that the former type of analysis never uses intrinsic properties, nor
that the latter never uses extrinsic ones – it is merely a question of emphasis. Further-
more, our analysis is often based on information which may not be represented in the
implemented system, whereas the primary key notion can never use such information.
For example, we may claim as part of our analysis that people are uniquely identified
by their brain, but brains and their possession may not appear in the final system we
are designing. Our notion of identity and the notion of primary keys are not incompati-
ble, nor are they disjoint, and in practice conceptual modelers will often need both.

3 The Formal Tools of Ontological Analysis

In this section we shall present a formal analysis of the basic notions discussed above,
and we shall introduce a set of meta-properties that represent the behaviour of a prop-
erty with respect to these notions. Our goal is to show how these meta-properties im-
pose some constraints on the way subsumption is used to model a domain, and to
present a description logic system for checking these constraints.

3.1 Preliminaries

Let’s assume we have a first-order language L0 (the modeling language) whose
intended domain is the world to be modeled, and another first order language L1 (the
meta-language) whose constant symbols are the predicates of L0. Our meta-properties
will be represented by predicate symbols of L1. Primitive meta-properties will corre-
spond to axiom schemes of L0. When a certain axiom scheme holds in L0 for a certain
property, then the corresponding meta-property holds in L1. This correspondence can
be seen as a system of reflection rules between L0 and L1, which allow us to define a



particular meta-property in our meta-language, avoiding a second-order logical defini-
tion. Meta-properties will be used as analysis tools to characterize the ontological
nature of properties in L0, and will always be defined with respect to a given conceptu-
alization. In section 5 we present an representation of L0.

We denote primitive meta-properties by bolded letters preceded by the sign “+”, “-”
or “~” corresponding to carrying the meta-property, not carrying the meta-property,
and anti the meta-property. The latter will be used to denote special restrictions that are
stronger than the simple negation, and will be described in more detail, when relevant,
for each meta-property. We use the notation φM to indicate that the property φ has the
meta-property M.

In our analysis, we adopt a first order logic with identity. This will be occasionally
extended to a simple temporal logic, where all predicates are temporally indexed by
means of an extra argument. If the time argument is omitted for a certain predicate φ,
then the predicate is assumed to be time invariant, that is . Note
that the identity relation will be assumed as time invariant: if two things are identical,
they are identical forever. This means that Leibniz’s rule holds with no exceptions.

Our domain of quantification will be that of possibilia. That is, the extension of
predicates will not be limited to what exists in the actual world, but to what exists in
any possible world [23]. For example, a predicate like “Unicorn” will not be empty in
our world, although no instance has actual existence there. Actual existence is there-
fore different from existential quantification (“logical existence”), and will be repre-
sented by the temporally indexed predicate E(x,t), meaning that x has actual existence
at time t [18].

Finally, in order to avoid trivial cases in our meta-property definitions, we shall
implicitly assume the property variables as restricted to discriminating properties [10],
i.e. properties P such that . 

3.2 Rigidity
The notion of rigidity was defined previously in [10] as follows:

Definition 1 A rigid property is a property that is essential to all its instances, i.e. a
property φ such that: .

Definition 2 A non-rigid property  is a property that is not essential to some of its
instances, i.e. .

Definition 3 An anti-rigid property is a property that is not essential to all its
instances, i.e. .

For example, we normally think of PERSON as rigid; if x is an instance of PERSON,
it must be an instance of PERSON in every possible world. The STUDENT property,
on the other hand, is normally not rigid; we can easily imagine an entity moving in and
out of the STUDENT property while being the same individual. 

Anti-rigidity was added as a further restriction to non-rigidity. The former constrains
all instances of a property and the latter, as the simple negation of rigidity, constrains at
least one instance. Anti-rigidity attempts to capture the intuition that all instances of
certain properties must possibly not be instances of that property. Consider the prop-
erty STUDENT, for example: in its normal usage, every instance of STUDENT is not
necessarily so.

Rigid properties are marked with the meta-property +R, non-rigid properties are

tφ x t,( ) t φ x t,( )∀→∃

xP x( )∃} x P¬ x( )∃}∧

x φ x( ) φ x( )→∀

x φ x( ) φ x( )¬∧∃

x φ x( ) φ x( )¬→∀



marked with -R, and anti-rigid properties with ~R. Note that rigidity as a meta-prop-
erty is not “inherited” by sub-properties of properties that carry it, e.g. if we have PER-
SON+R and  then we know that all instances of
STUDENT are necessarily instances of PERSON, but not necessarily (in the modal
sense) instances of STUDENT. In some cases, we may even wish to assert STUDENT~R

to indicate that an instance of STUDENT can cease to be a student, however it may not
cease to be a person. 

Rigidity is intuitively tied to existence; when a person dies, they cease to be a per-
son, and in order for the property to be rigid ceasing to be a person must imply ceasing
to be. Ultimately all ontological questions become questions of existence.

3.3 Identity
In the philosophical literature, an identity condition (IC) for an arbitrary property φ is
usually defined as a suitable relation ρ satisfying the following formula:

(2)

For example, the property PERSON can be seen as carrying an IC if relations like hav-
ing-the-same-SSN or having-the-same-fingerprints are assumed to satisfy (2).

As discussed in more detail elsewhere [13,17], the above formulation has some
problems, in our opinion. The first problem is related to the need for distinguishing
between supplying an IC and simply carrying an IC: it seems that non-rigid properties
like STUDENT can only carry their ICs, inheriting those supplied by their subsuming
rigid properties like PERSON. The intuition behind this is that, since the same person
can be a student at different times in different schools, an IC allegedly supplied by
STUDENT (say, having the same registration number) may be only local, within a cer-
tain studenthood experience. This leads to the notion of local identity conditions,
which we have discussed only briefly in [17] and [16], and requires further work.

The second problem regards the nature of the ρ relation: what makes it an IC, and
how can we index it with respect to time to account for the difference between syn-
chronic and diachronic identity?

Finally, deciding whether a property carries an IC may be difficult, since finding a ρ
that is both necessary and sufficient for identity is often hard, especially for natural
kinds and artifacts.

For these reasons, we have refined (2) as follows:

Definition 4 An identity condition is a sameness formula Σ that satisfies either (3) or
(4) below, excluding trivial cases [13] and assuming the predicate E discussed in sec-
tion 3.1:

E(x,t) ∧ φ(x,t) ∧ E(y,t') ∧  φ(y,t’) ∧ x=y → Σ(x,y,t,t') (3)
E(x,t) ∧ φ(x,t) ∧ E(y,t') ∧ φ(y,t’) ∧ Σ(x,y,t,t') → x=y (4)

An IC is necessary if it satisfies (3) and sufficient if it satisfies (4). Based on this, we
define two meta-properties:

Definition 5 Any property carries an IC iff it is subsumed by a property supplying that
IC (including the case where it supplies the IC itself).

Definition 6 A property φ supplies an IC iff i) it is rigid; ii) there is a necessary or suf-
ficient IC for it; and iii) The same IC is not carried by all the properties subsuming φ.
This means that, if φ inherits different (but compatible) ICs from multiple properties, it

xSTUDENT x( ) PERSON x( )→∀

φ x( ) φ y( )∧ ρ x y,( )( x↔→ y= )



still counts as supplying an IC.

Definition 7 Any property carrying an IC is called a sortal [30]. 

Any property carrying an IC is marked with the meta-property +I (-I otherwise).
Any property supplying an IC is marked with the meta-property +O (-O otherwise).
The letter “O” is a mnemonic for “own identity”. From the above definitions, it is obvi-
ous that +O implies +I and +R. For example, both PERSON and STUDENT do carry
identity (they are therefore +I), but only the former supplies it (+O). 

3.4 Unity

In previous work we have extensively discussed and formalized the notion of unity,
which is itself based upon the notion of part [13]. This formalization is based on the in-
tuition that a whole is something all of whose parts are connected in such a way that
each part of the whole is connected to all the other parts of that whole and nothing else.
We assume here that the axiomatization of the part relation is as shown in Table 1,
where P(x,y,t) means that x is a (proper or improper) part of y at time t. 

Briefly, we define:

Definition 8 An object x is a whole under ω iff ω is an equivalence relation such that
all the parts of x are linked by ω, and nothing else is linked by ω.

Definition 9 A property φ carries a unity condition iff there exists a single equivalence
relation ω such that each instance of φ is a whole under ω.

Depending on the ontological nature of the ω relation, which can be understood as a
“generalized connection”, we may distinguish three main kinds of unity for concrete
entities (i.e., those having a spatio-temporal location). Briefly, these are:

• Topological unity: based on some kind of topological or physical connection,
such as the relationship between the parts of a piece of coal or an apple.

• Morphological unity: based on some combination of topological unity and shape,
such as a ball, or a morphological relation between wholes such as for a constel-
lation. 

• Functional unity: based on a combination of other kinds of unity with some no-
tion of purpose as with artifacts such as hammers, or a functional relation between
wholes as with artifacts such as a bikini.

As the examples show, nothing prevents a whole from having parts that are themselves
wholes (with a different UC). This can be the foundation of a theory of pluralities,
which is however out of this paper’s scope. 

As with rigidity, in some situations it may be important to distinguish properties that

PP(x,y,t) =def P(x,y,t) ∧ ¬x=y (proper part)

O(x,y,t) =def ∃z(P(z,x,t) ∧ P(z,y,t)) (overlap)

P(x,y,t) → E(x,t) ∧ E(y,t) (actual existence of parts)

P(x,y,t) ∧ P(y,x,t) → x=y (antisymmetry)

P(x,y,t) ∧ P(y,z,t) → P(x,z,t) (transitivity)

PP(x,y,t) → ∃z(PP(z,y,t) ∧ ¬O(z,x,t)) (weak supplementation)

Table 1. Axiomatization of the part relation, adapted from Simons [27].



do not carry a common UC for all their instances, from properties all of whose
instances are not wholes. As we shall see, an example of the former kind may be
LEGAL AGENT, all of whose instances are wholes, although with different UCs (some
legal agents may be people, some companies). AMOUNT OF MATTER is usually an
example of the latter kind, since none of its instances can be wholes. Therefore we
define:

Definition 10 A property has anti-unity if every instance of the property is not a whole.

Any property carrying a UC is marked with the meta-property +U (-U otherwise).
Any property that has anti-unity is marked with the meta-property ~U, and of course
~U implies -U.

3.5 Dependence

The final meta-property we employ as a formal ontological tool is based on the notion
of dependence. As mentioned in Section 2.2, we focus here on ontological dependence
as applied to properties. The formalization below is based on Simons’ definition of no-
tional dependence [27]. We are aware that this is only an approximation of the more
general notion of extrinsic (or relational) property, and that further work is needed (see
for instance [20]).

Definition 11 A property φ is externally dependent on a property ψ if, for all its
instances x, necessarily some instance of ψ must exist, which is not a part nor a constit-
uent of x:

(5)

The part relation P was discussed in Section 3.4. The relation C(x,y) is used to
denote constitution. Constitution differs subtly from part, in that it refers to the sub-
stance of which an entity is made. A castle is made of bricks, a statue from (perhaps)
marble. Constitution usually relates concrete entities to mereologically essential
wholes (i.e. collections or masses). Constitution is an important notion to grasp,
because it is commonly confused with subsumption. We discuss constitution with
more rigor in [13], and give further examples of it in Section 6.

Clearly if we do not discount parts and constituents in (5), nearly all properties
denoting classes of concrete entities would be dependent, since all non-atomic con-
crete entities have parts and are constituted of some material. In addition to excluding
parts and constituents, a more rigorous definition must exclude qualities (such as col-
ors), things which necessarily exist (such as the universe), and cases where ψ is sub-
sumed by φ (since this would make φ dependent on itself). Intuitively, we say that, for
example, PARENT is externally dependent on CHILD (one can not be a parent without
having a child), but PERSON is not externally dependent on heart nor on body
(because any person has a heart as a part and is constituted of a body).

An externally dependent property is marked with the meta-property +D (-D other-
wise).

3.6 Constraints and Assumptions

Our meta-properties impose several constraints on taxonomic relationships, and to
these we add several methodological points that help to reveal modeling problems in
taxonomies.

A first observation descending immediately from our definitions regards some sub-

x φ x( ) y ψ ẏ( ) P y x,( ) C y x,( ))¬∧¬∧∃→(∀



sumption constraints. If φ and ψ are two properties then the following constraints hold:

φ~R can't subsume ψ+R (6)
φ+I can’t subsume ψ-I (7)
φ+U can't subsume ψ-U (8)
φ~U can't subsume ψ+U (9)
φ+D can't subsume ψ-D (10)

Properties with incompatible ICs/UCs are disjoint. (11)

Constraints (6-10) follow directly from our meta-property definitions (see [14] for
more discussion and examples), and (11) should be obvious from the above discussion
of identity and unity, but it is largely overlooked in many practical cases [17,14]. See
Section 6 for an example that shows the practical use of these constraints.

Finally, we make the following assumptions regarding identity (adapted from Lowe
[24]):

• Sortal Individuation. Every domain element must instantiate some property car-
rying an IC (+I). In this way we satisfy Quine’s dicto “No entity without identity”
[26].

• Sortal Expandability. If two entities (instances of different properties) are the
same, they must be instances of a property carrying a condition for their identity.

4 Methodology

We are developing a methodology for conceptual analysis whose specific goal is to
make modeling assumptions clear. One of the most important ways the methodology is
used is in analyzing taxonomies to form well-founded taxonomies.

The methodology is made up of a number of formal analysis tools that can be
grouped into four distinct layers, such that the notions and techniques within each
layer are based on the notions and techniques in the layers below. In Figure 1, the
methodology is depicted as four layers that support a process in which a person’s or
group’s conceptualization evolves into a concrete conceptual model. In this section, we
very briefly outline the purpose of each layer and the tools in it, followed by a brief dis-
cussion of a system to support the methodology.

4.1 First Layer: Foundations

In the lowest, foundational, layer of the methodology are the meta-properties described
in Section 3. As discussed there, the meta-properties correspond to axiom schemes in
the modeling language and properties in the meta-language. Properties in the modeling
language correspond to constant symbols in the meta-language. This proves important
for our support system, which implements only the meta-language.

4.2 Second Layer: Useful Property Kinds

The second layer in the methodology contains an ontology of useful property kinds.
This is an extension of the formal ontology of basic property kinds presented in [14],
which includes further specializations of sortal properties (Def. 7), each one corre-
sponding to an identity or unity condition commonly found in practice. This ontology
can be seen as a library of reference cases useful to characterize the meta-properties of
a given property, and to check for constraint violations. 



The formal ontology of properties discussed in [14] distinguishes eight different
kinds of properties based on the valid and most useful combinations of the meta-prop-
erties discussed in Section 3. These are shown in Table 2 and in Figure 2. These prop-
erty kinds enrich a modeler’s ability to specify the meaning of properties in an
ontology, since the definition of each property kind includes an intuitive and domain-

Figure 1: Overview of the methodology.

Figure 2: Taxonomy of properties.



independent description of how that kind of property should be used in an ontology.

In addition to these eight property kinds, we have identified several other specializa-
tions of sortal property that are useful in practice, and often particularly helpful in
determining the basic meta-properties when their determination is not immediately
clear. For each, we provide the meta-property symbol used to denote it:

CO. Countable Properties. This is an important specialization of sortals. In many cases,
besides carrying identity (+I), countable properties also carry unity (+U). All subsumed
properties must also be countable. Note that we appeal to a strict definition of count-
ability provided in [13], which may not be immediately intuitive in the case of collec-
tions, such as a group of people. One can count possible groups of people in a combi-
natorial sense, but by our current definition of countability, a group of people is not
countable because it does not have unity.

ME. Properties carrying a mereologically extensional IC. Certain properties, as dis-
cussed in Section 3.5, concerning masses or plural entities have as a necessary identity
condition that the parts of their instances must be the same (instances cannot change
their parts). For example LUMP-OF-CLAY or GROUP-OF-PEOPLE, if the people
change, it is a different group. These properties cannot subsume properties with -ME.

UT. Properties carrying topological unity. See Section 3.4. Properties with +UT have
unity (+U), and can not subsume properties with -UT.

UM. Properties carrying morphological unity. See Section 3.4. Properties with +UM
have unity (+U), and can not subsume properties with -UM.

+O +I +R
+D

Type
-D

-O +I +R
+D

Quasi-type
-D

-O +I ~R +D Material role
-O +I ~R -D Phased sortal

-O +I ¬R
+D

Mixin
-D

-O -I +R
+D

Category
-D

-O -I ~R +D Formal Role

-O -I
~R -D

Attribution
¬R

+D
-D

+O
-I

incoherent
+I

~R
-R

Table 2: All possible combinations of the meta-properties.



UF. Properties carrying functional unity. See Section 3.4. Properties with +UF have
unity (+U), and can not subsume properties with -UF.

4.3 Third Layer: Ontology-Based Modeling Principles
The third layer in the
methodology contains
the notions of back-
bone property and
stratification.

The backbone
taxonomy. One of the
principal roles of tax-
onomies is to impart
structure on an ontolo-
gy, to facilitate human
understanding, and to
enable integration. We
have found that a natu-
ral result of our analy-
sis is the identification
of special properties in
a taxonomy that best
fill this role. We call
these properties backbone properties, which constitute the backbone taxonomy [14]. 

The backbone taxonomy consists only of rigid properties, which are divided into
three kinds (as discussed above): categories, types, and quasi-types. Categories can not
be subsumed by any other kinds of properties, and therefore represent the highest level
(most general) properties in a taxonomy. They are usually taken as primitive properties
because defining them is too difficult (e.g. entity or thing).

Types are critical in our analysis because according to the assumptions presented in
Section 3.6, every instance instantiates at least one of these properties. Therefore con-
sidering only the elements of the backbone gives someone a survey of the entire uni-
verse of possible instances.

These notions give rise to an idealized view of how ontologies should be structured
taxonomically, shown in Figure 3. While strict adherence to this idealized structure
may not always be possible, we believe that following it to the degree possible will
grow to be an important design principle for conceptual modeling, with payoffs in
understandability and ease of integration.

Stratification. A very important result of our analysis is the recognition of multiple
entities, based on different identity or unity criteria, where usually only one entity is
conceived. The classical example is the statue and the clay it is made of, which count as
different objects in our analysis. As discussed further in [12] as well as [16], this view
results in a stratified ontology, where entities belong to different levels, depending on
their identity and unity assumptions: we may distinguish for instance the physical level,
the functional level, the intentional level, the social level. Entities at the higher levels
are constituted (and co-located with) entities at the lower levels. The advantage of this
view is a better semantic account of the taxonomic relation, a better account of the hid-

Phased Sortals

Backbone Taxonomy

Categories

Top Types

Types &
Quasi-Types

Formal
Roles

Material 
Roles

Attributions

Mixins

Non-sortals

Sortals

Figure 3: Ideal taxonomy structure.



den ontological assumptions, and in general better ontologies. The costs are a moderate
proliferation (by a constant factor corresponding to the number of levels) of the number
of entities in the domain, and the necessity to take into account different relations be-
sides is-a, such as dependence, spatio-temporal colocalization, and constitution.

4.4 Fourth Layer: Top Level Ontology

The highest layer of our methodology is a top-level ontology designed using the notions
and techniques of the layers below. This layer of the methodology is not yet complete,
however first steps towards this have been discussed in [12], and more recently in the
context of the IEEE Standard Upper Ontology effort [7]. 

4.5 Question/answer system

Finally, we are capturing the notions and techniques from these four layers in a knowl-
edge-based system that guides conceptual modelers through the analysis process. This
approach is similar to that of [29], and is described more fully in Section 5. The system
implements only the meta-language, providing some consistency checking of the con-
straints outlined in Section 3.6.

5 Knowledge Based Support

The methodology based on these techniques requires that the assignment of meta-prop-
erties to properties in an ontology be performed by hand. This analysis in all cases re-
quires that the modeler be very clear about what each property means. We have devel-
oped a support system that can help modelers with this analysis in two important ways.
First of all, it is an artifact capable of capturing and checking the consistency of the use-
ful property kinds (see Section 4.2). For example, it is sometimes difficult to determine
whether a property carries identity, however countability is something that is usually
more clear. The system captures information such as “all countable properties have
identity and unity,” and can infer one from the other. As we add new meta-properties to
the methodology, they are captured in the system and tested.

Second, it can verify the consistency of the taxonomy based on the constraints
described in Section 3.6. A modeler enters information about properties to be used in a
conceptual modal, and the proposed taxonomic structure. Meta-properties are
assigned, and the consistency of the taxonomy is then checked automatically. 

In this section we describe aspects of the system and in the next section walk
through a simple example using the system.

5.1 Overview

The system implements all the constraints and all the inferences described in previous
sections for the meta-language. It has two basic modes of operation: a Q/A mode and a
batch mode. It is our intention to make both modes of the system available on line.

In Q/A mode, the system is designed to assist a modeler in choosing the appropriate
meta-properties for their properties by asking a series of questions. More general ques-
tions are asked first, such as “Does the property carry identity?” and the modeler may
respond yes, no, or unsure. If unsure about a meta-property, more specific questions
can be asked such as, “Are instances of the property countable?” It is always possible
to leave answers unknown, of course in those cases the system can not verify the cor-
rectness of those properties.



As the properties are being entered, the information presented so far is checked for
consistency, and any inferences are made. For example, if a modeler answers “yes” to
the question that assigns the ~R meta-property, the system will infer that the property
is also -R. If a modeler assigns +R to a property and also asserts that it is subsumed by
a property with ~R, the system will immediately raise an appropriate error.

The system is implemented in CLASSIC, a description logic system developed at
AT&T Bell Labs in 1990 [4]. CLASSIC was chosen mainly because of its familiarity
to the implementors, however there are some good rationale for this choice. All the rea-
soning required of the meta-language is provided, almost no code other than I/O was
needed. CLASSIC is the only description logic with a full explanation system imple-
mented and included, making it possible to generate explanations for constraint viola-
tions (as opposed to simply saying there was a violation). 

The total system without the meta-property definitions is under 14K of LISP code.
The system works by first loading in the definitions, allowing us to add and modify
them. Then the modeler may invoke the Q/A system or simply load a batch file consist-
ing of properties and their meta-property tags (+R, +I, etc.).An example of how the

meta-properties are defined is given in Figure 4, as well as an example property speci-
fication for batch mode.

5.2 Reasoning

The reasoning required of the system is fairly rudimentary for a description logic. In ad-
dition to the obvious implications of the property kind taxonomy shown in Figure 2 (i.e.
a Type is a Sortal and a Rigid Sortal), the system is designed so that no redundant in-
formation need be specified, making the job of the modeler a bit easier.

The system uses the open world assumption regarding the meta-properties of the
properties the modeler enters. A property is not assumed to have any meta-properties
until they are asserted by the modeler. To accomplish this within the description logic
framework, as well as provide for the possibility of “unknown” answers in a binary
truth valued logic, each possible meta-property assignment is represented as a concept.
For example, there is a concept corresponding to the Rigid meta-property, as well as
concepts for non-rigid and anti-rigid, i.e. three concepts as shown in Figure 4. Oppo-
site meta-properties are handled by making their corresponding concepts disjoint, thus
when you assert a property is e.g. rigid, the system knows that it can not be non-rigid.
Anti-rigid is asserted to be subsumed by non-rigid, thus when a property is assigned
~R it is known to be -R as well. To leave a meta-property as unknown, the modeler
must basically answer “no” to two questions, e.g. “Is the property Rigid?” and “Is the
property non-rigid?”

It is important to keep in mind that since the properties of the modeler’s ontology are
actually constant symbols in the meta-language, the modelers properties are repre-

(define-meta-prop rigid-property nil
  :disjoint rigid
  :tag "+R"
  :classify-message "The property ~a is rigid"
  :question "Is this property rigid?")

(define-meta-prop non-rigid-property nil
  :tag "-R"
  :classify-message "The property ~a is non-rigid"
  :question "Is this property non-rigid?"
  :disjoint rigid)

(define-meta-prop anti-rigid-property
  non-rigid-property
  :tag "~R"
  :disjoint anti-rigid 
  :classify-message "The property ~a is anti-rigid"
  :question "Is this property anti-rigid?")

(define-property 'red-apple :ask? nil
  :tags "+I-O+U-D~R"
  :rvs '((subsumed-by apple red)))

Figure 4: Example meta-property definitions.



sented as individuals in the system, and are instantiated when the modeler enters their
names. They are allowed to have two relations: the generalization/specialization-of
relation and the name of a characteristic relation. For each relation, the modeler is
asked if there are values for it. 

Since the modeler’s properties are individuals, the description logic does not provide
any special reasoning services for subsumption between them. Classic provides auto-
matic relation inverses, so asserting that one property is a specialization of another
causes the generalization inverse to be asserted as well. In addition, the generalization/
specialization relations between the individuals are defined to be transitive, as
expected. This requires some special machinery since Classic does not support transi-
tivity, but can easily be accomplished in the standard way with a primitive (non-transi-
tive) version of the relation and the transitive version, as with the parent/ancestor
relations in Prolog.

All the constraints (other than the obvious ones provided by disjointness) are
expressed as necessary conditions on the concepts representing the meta-properties.
For example, constraint (6) in Section 3.6 is represented as a necessary condition on
anti-rigid properties: ∀generalization-of . NON-RIGID-PROPERTY (i.e. an anti-rigid
property can only be the generalization of non-rigid properties).

All inference and constraint checking is done as soon as the information is made
available by the modeler. The explanation system provided by Classic is therefore par-
ticularly important in batch mode, as the modeler can not benefit from the context of
having just answered a question to know why an inconsistency was generated.

5.3 Evaluation

While the system was not designed to be particularly usable, we have evaluated it along
two dimensions: effectiveness of the questions and scalability.

5.3.1 Scalability

We have tested the system on randomly generated hierarchies up to 20,000 nodes in
batch mode. The reasoning the system performs is trivial and experimental results indi-
cate two dimensions of complexity: number of properties and number of parents. In
each dimension, complexity was observed to be linear, with the system performing all
reasoning as fast as the batch files would load. Combining the two dimensions (i.e. large
datasets with much multiple inheritance) resulted in polynomial increases. 

We are not concerned with the latter result as the artificial data was difficult to gen-
erate, and based on our experiences does not seem to correspond to real systems. In
fact, we believe an important result of our methodology is a drastic reduction in multi-
ple inheritance links between properties [14].

5.3.2 Effectiveness of Questions

We have found that among people who have done a lot of conceptual modeling, many
aspects of our methodology make sense. The main difficulty in applying it, however, is
understanding when and what identity and unity conditions apply to properties in a do-
main.

We have attempted to gather together a few examples of common identity and unity
criteria, and are in the process of collecting and analyzing them. The system is
designed to incorporate this additional information as further sub-concepts of the exist-
ing meta-property definitions.



When a modeler is unsure about a particular meta-property, and therefore answers
“no” to the questions for the two disjoint concepts that represent it, the system moves
further down the hierarchy of concepts. If a modeler is sure about a meta-property and
therefore answers “yes” to a question, the Q/A system does not ask any more questions
about it.

We have made some informal attempts to test the effectiveness of this approach in
leading modelers to the correct decisions about the meta-property assignments, how-
ever we have nothing concrete to report. The methodology is only useful for concep-
tual modelers with a certain amount of training, and access to these people for this kind
of testing is not widely available. Testing on readily available student subjects has been
entirely inconclusive, as their experience with conceptual modeling in general is sus-
pect. 

6 Example

In this section we provide a brief example of the way our analysis can be used. A com-
plete version of this example is available [16]. 

We begin with a set
of properties arranged
in a taxonomy, as
shown in Figure 5. In
Table 3 we provide
some basic explana-
tions of the intended
meaning of these
properties. The taxon-
omy we have chosen
makes intuitive sense
prima facie, and in
most cases the taxo-
nomic pairs were
taken from existing
ontologies such as
Wordnet [25], Pan-
gloss [21], and CYC
[22]. See [12] for
more similar examples of intuitive taxonomic orderings in existing ontologies that fail
our analysis.

Property  Meta-
properties Kind Notes

Entity -I-U-D+R Category Everything is an entity.

Location +O~U-D+R Type
A generalized region of space. Locations supply +ME (mereo-
logical extensional IC), no UC, there is no way to isolate a 
location.

Amount-of-
matter

+O~U-D+R Type
Mass sortal: unstructured or scattered stuff, as lumps of clay or 
some bricks. +ME, no UC.

Table 3: Basic descriptions of the example properties.

Entity-I-U-D+R

Physical
object

Amount of matter
Group

Organization

Location

Living being

Person

Animal
Social entity

Agent

Apple

Fruit Food

Country

Legal agent

Group of people

Red apple

Red

Vertebrate

Caterpillar

Butterfly

Figure 5: A messy taxonomy.



The modeler, after making these initial decisions about the meta-properties and tax-
onomy, starts the system. For brevity, we assume the modeler enters the first four prop-
erties in batch mode, and the system responds as shown in Figure 6.

The final error indicates to the modeler that something is wrong with having
AMOUNT-OF-MATTER subsume LIVING-BEING; the more general concept is mere-
ologically extensional and has no unity, and a living being has biological unity. This is
one of the most common modeling mistakes our methodology can reveal: living beings
are not amounts of matter, they are constituted of matter. Constitution is not subsump-
tion. The correction is to make LIVING-BEING subsumed directly by ENTITY.

Red -I-U-D-R
Formal 

Attribution
Really Red-Thing. Generally a bad property to represent.

Agent -I-U+D~R
Formal 
Role

An entity playing a part in some event. Agents have no univer-
sal IC/UC, i.e. one condition that holds for all its instances.

Group +O~U-D+R Type An unstructured collection of wholes. +ME.

Physical 
Object

+O+U-D+R Type
Isolated material objects. IC: same-spatial-location, topologi-
cal UC.

Living 
Being

+O+U-D+R Type IC: same-DNA (necessary), biological UC.

Group of 
People

+I-O~U-D+R Quasi-type
A group whose elements are people. Like a group, IC is ME, 
when the people change it is a different group.

Social Entity -I+U-D+R Category
A group of people brought together for some social reason. 
UC: social connection.

Fruit +O+U-D+R Type
A whole piece of fruit. IC: same-plant and same-shape (neces-
sary), topological UC.

Food +I-O~U+D~R
Material 

Role
An amount of edible stuff. Dependent on something that eats 
it, nothing is food necessarily.

Animal +O+U-D+R Type IC: same-brain, biological UC.

Legal Agent +I-U+D~R
Material 

Role
A legally recognized entity. Local IC, no universal unity, 
dependent on the legal body that recognizes it.

Apple +O+U-D+R Type
IC: same shape, color, skin pattern (necessary). Topological 
UC.

Country +I+U-D~R
Phased 
Sortal

A place, recognized by convention. IC: government, regions. 
Countries are countable, so some UC. A place can stop being 
country and still exist (e.g. Prussia).

Red Apple +I-O-D~R Mixin Inherits IC and UC from Apple. No apple is necessarily red.

Caterpillar +I+U-D~R
Phased 
sortal

IC: legs, spots, cocoon. Biological UC, but the same entity can 
be something else, so anti-rigid.

Butterfly +I+U-D~R
Phased 
sortal

IC: wing pattern, Biological UC, but the same entity can be 
something else, so anti-rigid.

Vertebrate +I-O+U-D+R Quasi-type
Really vertebrate animal. Biological classification, adds mem-
bership conditions but no IC/UC.

Organization +O+U-D+R Type
A group of people together for some reason, with roles that 
define some structure. IC: same-mission (necessary), and func-
tional UC.

Person +O+U-D+R Type IC could be same-fingerprint (sufficient), biological UC.

Property  Meta-
properties Kind Notes

Table 3: Basic descriptions of the example properties.



The modeler makes this correction and proceeds. For the next property, RED, we
show an interaction with the Q/A system in Figure 7. In this interaction, we can see
that the modeler is unsure about whether or not the property carries an IC, answering
no to both questions. The system then asks a question regarding countability, which is
an indicator for identity and unity. The modeler indicates that not all instances of red
can be counted (consider the number of red patches in a red carpet), and the system
concludes that the property does not carry unity or identity.

This gives a flavor for how the systems works. We now skip to the next problem
property in the ontology. When the modeler enters the information for PHYSICAL-
OBJECT, the system raises an error:

Trying to combine disjoint primitives: UC-PROP and NON-UC-PROP.
*EXPLANATION*: ~U (AMOUNT-OF-MATTER) cannot subsume +U (PHYSICAL-OBJECT).

This is yet another example of constitution being confused with subsumption. Phys-
ical objects are not themselves amounts of matter, they are constituted of matter. The

---The property ENTITY does not carry unity
---Property ENTITY is a category.
---The property ENTITY does not carry identity and 
is a non-sortal
---The property ENTITY is rigid
---The property ENTITY is independent
---The property ENTITY does not carry its own iden-
tity

Initial Classification of ENTITY: +CA +R -D -U -I -
O 

---The property LOCATION does not carry unity
---Property LOCATION is a type.
---The property LOCATION is rigid
---The property LOCATION carries identity and is a 
sortal
---The property LOCATION carries its own identity
---The property LOCATION is independent

Initial Classification of LOCATION: +I +R -D -U +O 
+TP 

---The property AMOUNT-OF-MATTER carries anti-
unity.
---The property AMOUNT-OF-MATTER does not carry 
unity

---Property AMOUNT-OF-MATTER is a type.
---The property AMOUNT-OF-MATTER is rigid
---The property AMOUNT-OF-MATTER carries identity 
and is a sortal
---The property AMOUNT-OF-MATTER carries its own 
identity
---The property AMOUNT-OF-MATTER is independent

Initial Classification of AMOUNT-OF-MATTER: +I +O 
~U -D +R -U +TP 

---The property LIVING-BEING carries unity.
---Property LIVING-BEING is a type.
---The property LIVING-BEING is rigid
---The property LIVING-BEING carries identity and 
is a sortal
---The property LIVING-BEING carries its own iden-
tity
---The property LIVING-BEING is independent
*CLASSIC ERROR* while processing:
  Trying to combine disjoint primitives: 
    @tc{UC-PROP} and @tc{NON-UC-PROP}.
*EXPLANATION*: ~U (AMOUNT-OF-MATTER) cannot sub-
sume +U (LIVING-BEING).

Figure 6: Sample output for first four properties in batch mode.

? (define-property 'red)
Is this property subsumed by any others? (y or n)  y
What is it (list for multiple values): entity
Are instances of this property identified by a characteristic relation? (y or n)  n
Is this property anti-rigid? (y or n)  n
Does the property carry its own identity? (y or n)  n
Is this property rigid? (y or n)  n
Is this property non-rigid? (y or n)  y
Are instances of this property dependent on instances of another property? (y or n)  n
Are instances of this property independent? (y or n)  y
Does the property carry an identity criterion (answer no if unknown)? (y or n)  n
Are instances of this property unindentifiable from each other? (y or n)  n
Are all instances of this property countable? (y or n) n
Are there instances of this property that are not countable? (y or n) y
---The property RED does not carry unity
---Property RED is a non-sortal
---Property RED is an attribution

Initial Classification of RED: -I -U -D -R -O +AT 

Figure 7: Sample output for RED in Q/A mode.



solution is to make PHYSICAL-OBJECT subsumed directly by ENTITY.
The next problem occurs with the property animal, which was declared to be sub-

sumed by agent:

Trying to combine disjoint primitives: INDEPENDENT-PROP and DEPENDENT-PROP.
*EXPLANATION*: +D (AGENT) cannot subsume -D (ANIMAL).

This is a different kind of problem in which subsumption is being used to represent
a type restriction. The modeler intends to mean, not that all animals are agents, but that
animals can be agents. This is a very common misuse of subsumption, often used by
object-oriented programmers. The correct way to represent this kind of relationship is
with a covering, i.e. ∀x AGENT(x) → SOCIAL-ENTITY(x) ∨ ANIMAL(x). Clearly this
is a different notion than subsumption. The solution is to remove the subsumption link
between ANIMAL and AGENT, and represent this information elsewhere.

The system then finds two problems with the property COUNTRY. It is subsumed by
LOCATION~U, which creates a conflict since we have COUNTRY+U, and it is subsumed
by LEGAL-AGENT+D, which creates a conflict since we have COUNTRY-D. Closer
inspection reveals another common misuse of subsumption: collapsing multiple mean-
ings into a single concept. In this case, the modeler was thinking of a country as both a
geographic region and a political entity. The methodology shows that, since these two
meanings of country have different meta-properties, they can not be represented as one
property. The solution is to break the concept into two, COUNTRY and GEOGRAPHI-
CAL-REGION.

The modeler proceeds,
fixing problems like
these until finished. The
final corrected taxonomy
is shown in Figure 8.
More detailed descrip-
tions of all the errors in
the initial taxonomy and
the solutions can be
found in [16].

In addition to checking
constraints and perform-
ing simple inference, the
system also supports the
methodology with sev-
eral simple procedures
for displaying useful
slices of the ontology,
such as the backbone tax-
onomy, the role taxonomy, phased sortals, etc. 

Phased sortals are themselves cause for special consideration. Some attempt at
describing them was made in [14] based on the work of Wiggins [34], however further
analysis and clarification is needed. This remains an open issue. Real phased sortals
seem to appear rarely in our experience, and therefore isolating them and checking that
they are correct is a useful practice. 

Figure 8: The final taxonomy with highlighted backbone.



7 Conclusion

We have discussed several notions of Formal Ontology used for ontological analysis in
Philosophy: identity, unity, essence, and dependence. We have formalized these no-
tions in a way that makes them useful for conceptual modeling, and introduced a meth-
odology for ontological analysis founded on these formalizations.

Our methodology is supported by a system that helps the conceptual modeler study
the deep ontological issues surrounding the representation of properties in a conceptual
model, and we have shown how this methodology can be used to analyze individual
taxonomic links and make the taxonomy more understandable. In particular, we have
also shown how to identify the backbone taxonomy, which represents the most impor-
tant properties in an ontology that subsume every instance.

Unlike previous efforts to clarify taxonomies, our methodology differs in that:

• It focuses on the nature of the properties involved in subsumption relationships,
not on the nature of the subsumption relation itself (which we take for granted).

• It is founded on formal notions drawn from Ontology (a discipline centuries older
than database design), and augmented with practical conceptual design experi-
ence, as opposed to being founded solely on the former or latter.

• It focuses on the validation of single subsumption relationships based on the in-
tended meaning of their arguments in terms of the meta-properties defined here,
as opposed to focusing on structural similarities between property descriptions.

Finally, it is important to note again that in the examples we have given, we are pro-
viding a way to make the meaning of properties in a certain conceptualization clear.
We do not, for example, mean to claim that “Person is-a Legal-Agent” is wrong. We
are trying to point out that in a particular conceptualization where LEGAL-AGENT
has certain meta-properties (such as being anti-rigid) and PERSON certain others (such
as being rigid), it is inconsistent to have person subsumed by legal-agent.
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