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Abstract

Information modeling is concerned with the construction of computer-based symbol  structures which
capture the meaning of information and organize it in ways that make it understandable and useful to
people.  Given that information is becoming an ubiquitous, abundant  and  precious resource, its modeling
is serving as a core technology  for information systems engineering.

We present a brief history of information modeling techniques in Computer Science and briefly survey such
techniques developed within Knowledge Representation (Artificial Intelligence), Data Modeling,
(Databases),  and Requirements  Analysis (Software Engineering and Information Systems). We then offer a
characterization of information modeling techniques which classifies them according to their ontologies,
i.e., the type of application for which they are intended, the set of abstraction mechanisms (or, structuring
principles) they support, as well as the tools they provide for building, analyzing, and managing application
models. The final component of the paper  uses the proposed characterization to assess particular
information modeling techniques  and draw conclusions about the advances that have been  achieved in the
field.
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language,  ontology, abstraction mechanism, classification, generalization, aggregation, contextualization,
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1. Introduction

"...The entity-relationship model adopts ... the natural view that the real world consists of
entities and relationships... (The entity-relationship model) incorporates some of the
important  semantic information about the real  world..."

                     Peter Chen [43]

We live through the Age of the Information Revolution. Thanks to advances in telecommunications,
computer hardware and software, we are flooded with ever-growing amounts of information. The tremendous
impact of the revolution to  individuals and organizations alike is a daily news topic. One important

                                                
1  This paper is based on a keynote address presented at the Ninth Conference on Advanced Information Systems
Engineering (CAiSE’97) in Barcelona, Catalunya on June 17, 1997; an earlier version of the paper, titled
“Characterizing Information Modeling Techniques for Information Systems Engineering”, is included in Bernus,
P., Mertins, K., and Schmidt, G., (eds.) Handbook on Architectures of Information Systems, Springer-Verlag,
1998 (to appear).
2 Author’s address: Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto,
Canada  M5S 3H5; voice: 416-978-5180, fax: 416-978-1455, email: jm@cs.toronto.edu.
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consequence of the revolution is that unlike ten years ago, most of the information available to us today is
in computer-based  forms, such as files and databases.   The task for computer and information scientists is
then to develop theories, tools and techniques for managing  this information and making it useful.

Not surprisingly, traditional techniques  for building information systems are no longer adequate.  Firstly,
there is relentless demand for new  information services, such as cooperative query processing, browsing,
similarity-based retrieval, data mining, data translation services, knowledge sharing, and the like. Secondly,
there are increased expectations on information management techniques, including bottom up database
schema construction, schema evolution, integration and co-existence of formatted, unformatted and
hyperformatted data -- just to mention a few. Most importantly, information systems engineering needs to
be extended to support new, flexible software architectures which make it possible to construct an
information system from new as well as legacy data and software components.

Information modeling constitutes a cornerstone for any technique that claims to address these growing
demands for more and better information services and management techniques. To  use information, one
needs to represent it, capturing its meaning and inherent structure. Such representations are important for
communicating information between people, but also for building information systems which manage and
exploit this information in the performance of useful tasks.  Information modeling has been practiced
within Computer Science since the first data processing systems in the ‘50s, using record and file structures
to model and organize information. Since then, there has been a proliferation of proposals for information
models, covering many different areas of Computer Science and Information Systems Engineering.

Information modeling  plays a central role during information system development. [94] identifies four
“worlds” that need to be understood and modelled during the development process. The subject world
consists of the subject  matter for an information system, i.e., the world about which information is
maintained by the system. For instance, the subject world for a banking system consists of customers,
accounts, transactions, balances, interests rates and the like. The system world, on the other hand, describes
the information system itself at several layers of implementation detail. These layers  may range from a
specification of functional requirements  for the system, to a conceptual design and an implementation. The
usage world describes the (organizational) environment within which the system is intended to function and
consists of agents, activities, tasks, projects, users, user interfaces (with the system) and the like. Finally,
the development world describes the process that created the information system, the team of systems
analysts and programmers involved, their adopted methodology and schedule, their design decisions  and
rationale. All of this information is relevant during the initial development of the system but also later on
during operation and maintenance.  Consequently, all of this information needs to be represented, somehow,
in any attempt to offer a comprehensive framework for information systems engineering.

The purpose of this paper is to characterize information modeling practice and point to some directions for
further research. Section 2 of the paper introduces basic definitions and  fundamental premises underlying
the field. Section 3 presents a brief (and admittedly biased) history of the field, and proposes  a
characterization of information models  along three dimensions. Sections 4 to 6 discuss the space of
alternatives for each  dimension, while section 7 assesses particular information modeling techniques.
Finally, section 8 summarizes the basic thesis of the paper  and  suggests directions for further research.

2. Preliminaries

Information modeling is concerned with the construction of computer-based symbol structures which model
some part of the real world. We will refer to such symbol structures as information bases, generalizing the
term from related terms in Computer Science, such as database and knowledge base. Moreover, we shall
refer to the part of a real world being modeled by  an information base as its application.  The atoms out of
which one constructs the information base are assumed to be terms which denote particular individuals in
the application (Maria, George, 7, ...), or generic concepts under which the individual descriptions are
classified (Student, Employee,...).  Likewise, the associations within the information base denote  real



- 3 -

world relationships, such as physical proximity, social interaction, etc. The information base is queried and
updated through special-purpose languages, analogously to the way databases are accessed and updated
through query and data manipulation languages.

It should be noted  that, in general, an information base will be developed over a long time period,
accumulating details about the application, or changing to remain a faithful model of a changing
application.  In this regard, it should be thought of as a repository  that contains accumulated, disseminated,
structured  information, much like human long-term memory, or databases, knowledge bases, etc.
Assuming that information is entered through  statements expressed in some language, the above
considerations suggest  that the contents of these statements need to be extracted and organized according to
their subject  matter. In other words, the organization of an information base should reflect  its contents,
not its history.

This implies some form of a locality principle [38, 125],  which calls for information to be organized
according to its subject  matter. Encouragement  for such a principle may come from the tools provided for
building and updating an information base, but also from the methodology  adopted for  its use. For
example, insertion operations which expect  object descriptions (i.e., an object's name, attributes,
superclasses etc.) do encourage this grouping. Insertion operations, on the other hand, which accept
arbitrary  statements about  the application,  for example "Maria wants to play with the computer  or
George  is outside",  clearly do not.

What kinds of symbol structures does  one use to build up an information base? Analogously to databases,
these symbol structures need to adhere to the rules of some information model. The concept of an
information model is a direct  adaptation of the concept of a data model. So is the following definition.

An information model3 consists of a collection of symbol structure types, whose instances are used to
describe an application,  a collection of operations which can be applied to any valid symbol structure,  and
a collection of general integrity rules which define the set of consistent symbol structure states, or changes
of states. The relational model  for databases [47]   is an excellent example of an information model. Its
basic symbol structure types include  table, tuple, and domain. Its associated operations include add,
remove, update  operations for  tuples,  and/or union, intersection, join, etc. operations for
tables. The relational model supports a single integrity rule: No two tuples  within a table can have the
same key.

Given this definition, one can define more precisely  an information base as a symbol structure which is
based on an information model and describes a particular application.

Is an information model the same thing as a language, or a notation? For our purposes, it is not. The
information model offers symbol structures for representing information. This information may be
communicated to different users  of an information base (human or otherwise)  through one or more
languages. For example, there are several different  query  languages  associated with the relational model,
of which SQL is the most widely used. In a similar spirit, we see notations as  (usually graphical) partial
descriptions of the contents of an information base. Again, there may be several notations associated with
the same information model. e.g., the graphical notations used for data flow diagrams.

The information models proposed and used over the years have been classified into three different categories.
These, roughly speaking, reflect a historical advance of the state-of-the-art on information modeling away
from machine-oriented representations and towards human-oriented models which are more expressive and
can cope with more complex  application modeling tasks.

Physical information models.  Such models employed conventional data structures and other
programming constructs to model an application in terms of records, strings, arrays, lists, variable names,
                                                
3 Adopted from Ted Codd’s classic account of data models and databases [50].
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B-trees, and the like. The main drawback of such models  is that they force on the programmer/modeler two
sets of conflicting concerns, one related to computational efficiency, and the other to the quality of the
application model.  For example, if one chooses to model persons in the application in terms of 8-character
strings and structure an information base in terms  a B-tree, these choices are driven by efficiency
considerations and have nothing to do with the application.

It is interesting to note that the so-called “Year 2000 problem” has been caused precisely by this tension
within physical information models between computational and representational concerns. In particular, for
decades programmers abbreviated year dates with two digits, e.g., 1987 was abbreviated as 87, with the
implicit assumption (spread throughout application software) that the missing digits are 19. All such
software has the potential of malfunctioning when dealing with dates whose year component is in the next
millennium.

Logical information models.  The early ‘70s saw several proposals for logical data models which
offered abstract mathematical symbol structures (e.g., sets, arrays, relations) for modeling purposes, hiding
the implementation details from the user. The relational and network models for databases  are good
examples  of logical models. Such models free the modeler from implementation concerns, so that she can
focus on modeling ones. For instance, once the modeler  has chosen the relational model, she can go ahead
and use tables to build an information base, without any regard to how these tables are physically
implemented. Unfortunately, logical symbol structures are flat and unintuitive as to how they should be
used for modeling purposes.

Conceptual  information models.  Soon after logical information models were proposed, and even
before relational technology conquered the database industry, there were new proposals for information
models  which offered more expressive facilities for modeling applications and structuring information
bases. These models (hereafter,  conceptual  models) offer semantic terms  for modeling an application, such
as Entity, Activity, Agent and Goal. Moreover, they offer means for organizing information in
terms of abstraction mechanisms which are often inspired by Cognitive Science [52], such as
generalization, aggregation and classification. Such models are supposed to model an application more
directly and naturally [82]. In the sequel, we focus the discussion on conceptual  models, since they
constitute the state-of-the-art  in the field for more than two decades.

Most of the conceptual models discussed in this paper adopt  some form of the locality principle alluded to
earlier. There are several good reasons for this. Firstly, the principle appears to be consistent with accepted
theories of human memory organization [4]. In addition, such conceptual models have been generally  found
to be more perspicuous and usable. Finally, such models offer  the promise of efficient implementations
because of their commitment to clustered  information according to its subject matter. In short, conceptual
models adopting such a locality principle have advantages  both on psychological and engineering grounds.

Information modeling touches on deep and long-standing philosophical issues, notably the nature of generic
terms included in an information base, such as Person, Student, and Employee. Do these terms
represent  abstract  things in the application, in the same way Maria or Myrto  represent  concrete ones?
Or are these representations of concepts  in the mind of the modeler?  Philosophers as far back as Plato have
taken stands on the problem.  Plato, in particular, adopted  a naive realism, where  objective reality includes
abstract ideas, such as the concepts of student or employee,  and everything is out there to be discovered.
Others, including Aristotle, Locke and Hume adopted various forms of conceptualism, according to which
concepts are cognitive devices created through  cognitive processes. For a down to earth discussion of the
range of stands on this issue within Philosophy, and how these affect the nature of information modeling,
see [7].

As well, information modeling touches on fundamental methodological issues  that relate to Social
Sciences [138]. In particular, all the techniques discussed here adopt  an abstractionist stance,  founded on
the notion of a model abstracted from an application, which captures the essence of an application, ignores
bothersome details and  is intended for analysis or question answering. Natural scientists and engineers use
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methods. Alternatively, contextualism places emphasis precisely on the details and idiosyncrasies  of each
individual application, as well as the modeling process itself. These define a context  and constitute the
unique identity of each particular modeling task. Ignoring them can lead to models that are inaccurate and
misleading, as they simply miss the essence of each case. Contextualism has been largely developed  within
the Social Sciences.  There are obvious pros and cons for either school of thought. It remains to be seen
how can one blend them in a way that retains their strengths while at the same time alleviates their
respective weaknesses.

3. Brief History

Over the years, there have been thousands of proposals for conceptual models, most defined and used once,
within a single project. We  note in this section some of the earliest models that launched fruitful lines of
research and influenced the state-of-practice. Interestingly enough, these models were launched independently
of each other and  in different research areas within Computer Science.

Ross Quillian [140] proposed in his PhD thesis semantic networks,  a form of directed, labeled graphs, as a
convenient device for modeling  the structure of human memory (1966) Nodes of his semantic network
proposal represented concepts  (more precisely, word senses.) For words  with multiple meanings, such as
“plant”, there would be several nodes,  one for each sense of the word, e.g., “plant” as in “industrial plant”,
“plant” as in “evergreen plant “, plant as in “I plant my garden every year”, etc. Nodes were related through
links representing semantic relationships, such as isa (“A bird is a(n) animal”,  “a shark is a fish”), has
(“A bird has feathers”) , and eat (“Sharks eat humans”). Moreover, each  concept could have associated
attributes, representing  properties , such as “Penguins  can’t fly”.

There are several novel ideas in Quillian’s proposal. Firstly, his information base was organized in terms of
concepts  and associations.  Moreover, generic concepts were organized into an isA (or, generalization)
hierarchy, supported by attribute inheritance. In addition, his proposal came with a radical computational
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Figure 3.1: A simple semantic network

model termed  spreading activation. Thus, computation in the information base was carried out by
“activating” two concepts and then iteratively spreading the activation to adjacent, semantically related
concepts. For example, to   discover  the meaning of the term “horse  food”, spreading activation would fire
the concepts horse and food and then spread activations to neighbors, until the two semantic paths

horse --isa--> animal --eats--> food
horse --isa--> animal --madeOf--> meat --isa--> food

are discovered. These paths correspond to two different interpretations of “horse food”, the first amounts to
something like “food that horses eat”, while the second to “food made out of horses”.

Ole-Johan Dahl proposed in 1966 Simula, an extension of the programming language ALGOL 60, for
simulation applications which require some “world modeling”.  Simula [57] allows the definition of classes
which serve as a cross between processes that can be executed and record structures. A class can be
instantiated any number of times. Each instance first executes the body of the class and then remains as a
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passive data structure which can only be operated upon by procedures  associated to the class.  For example,
the class histo defined in figure 3.2 is supposed to compute frequency histograms for a random variable,
i.e., how often the random variable  falls within each of n+1 intervals (-∞, X

1
), (X

1
, X

2
), ...(X

n
, ∞). Each

histogram will be computed by an instance of the class histo. When the class is instantiated, the array T
is initialized. Then each instance keeps  count of a random variable’s  readings  through use of the procedure
tabulate, while procedure frequency computes the frequency for interval i.

Simula advanced significantly the state-of-the-art  in programming languages, and has been credited with the
launch of object-oriented programming. Equally importantly, Simula influenced information modeling by
recognizing that for some programming tasks, such as simulating a barber shop, one needs to build a model
of an application. According to Simula, such models are constructed out  of class instances (objects,
nowadays). These are the basic symbol structures which model elements of the application. Classes
themselves define common features and common behaviours of instances and are organized into subclass
hierarchies. Class declarations can be inherited by subclasses through some form of (textual, actually)
inheritance.

class    histo (X, n);array X;integer n;
   begin    integer N; integer array T[0;n];
     procedure    tabulate (Y); real Y;

   begin    integer i; i := 0; ...    end   ;
     procedure    frequency (i); integer i;

frequency := T[i]/N;
integer i;
   for    i := 0    step    1    until    n    do   

T[i] := 0; N := 0
   end

end.   

Figure 3.2: A Simula class definition

Jean-Raymond Abrial proposed the semantic model for databases  in 1974 [2], shortly followed by Peter
Chen’s entity-relationship model4 [43]. Both were intended  as advances over logical data models, such as
Codd’s relational model proposed only a few years  earlier.

Customer
M1

Places/
PlacedBy

M

M
Contains/
isContained

Book

Order

Figure 3.3: An entity-relationship diagram

The entity-relationship  diagram of figure 3.3 shows entity types Customer, Order and Book, and
relationship Places/PlacedBy , Contains/isContained. Roughly speaking, the diagram
represents  the fact that “Customers place orders” and “Orders contain books”. The Places relationship
type is one-to-many, meaning that a customer can place many orders but each order  can only be placed by a
single customer, while Contains is a many-to-many relationship type (“an order may contain many
books, while a book may be contained in many orders”).
                                                
4 The model was actually first presented at the First Very Large Databases (VLDB) Conference in 1975.
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Novel features of the entity-relationship model include its built-in terms, which constitute ontological
assumptions about  its intended application domain.  In other words, the entity-relationship model assumes
that applications consist of entities and relationships. This means that the model is not appropriate for
applications which violate these assumptions, e.g., a world of fluids, or ones involving temporal events,
state changes,  and the like. In addition, Chen’s original paper showed elegantly  how one could map a
schema based on his conceptual model, such as that shown on figure 3.3, down to a logical schema. These
features made the entity-relationship model  an early favorite, perhaps  the first conceptual model to be used
widely world-wide.

On the other hand, Abrial’s semantic model was more akin to object-oriented data models that became
popular more than a decade later. His model also offers entities and relations, but includes  a procedural
component  through which one can define procedures for performing four operations  on instances of a class
and can attach these to classes.  

Douglas Ross proposed in the mid-’70s  the Structured Analysis and Design Technique (SADT™) as a
“language for communicating ideas” [147, 148]. The technique was used by Softech, a Boston-based
software company, in order to specify requirements for software systems.

According to SADT, the world consists of activities and data. Each activity consumes some data,
represented through input arrows from left to right, produces some data, represented through output arrows
from left to right, and also has some data that control the execution of the activity but are neither consumed
nor produced. For instance, the Buy Supplies activity of figure 3.4 has input arrow Farm
Supplies, output arrows Fertilizer and Seeds and control arrows Prices and Plan &
Budget. Each activity may be defined through a diagram such as that shown in figure 3.4 in terms of sub-
activities. Thus Growing Vegetables is defined in terms of the sub-activities Buy Supplies,
Cultivate, Pick Produce and Extract Seeds.

Buy
Supplies

Cultivate

Extract
Seeds

Farm 
Supplies

Seed & 
Vege
Prices

Plan & 
Budget Weather

Plan

Budget

Fertilizer

Seeds

Plants

Vegetables

Pick
Produce

Vegetables

Grow Vegetables

Figure 3.4: An SADT activity diagram

One of the more elegant aspects of the SADT conceptual model is its duality: Data are described in terms of
diagrams with input, output and control arrows too, but these now represent activities which can produce,
consume or affect the state of a given datum.
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Ross’ contributions include a conceptual model with some advanced ontological assumptions. Unlike the
entity-relationship model, applications consist of a static and a dynamic part  according  to SADT. He also
was influential in convincing software engineering researchers and practitioners alike that it pays to have
diagrammatic descriptions of how a software system is to fit its intended operational environment. This
contributions helped launch Requirements Engineering as an accepted  and important early phase in software
development.

After these pioneers, research on conceptual models5 and modeling broadened considerably, both in the
number of researchers working on the topic, and in the number of proposals for new conceptual models.  In
Databases,   dozens of new semantic data models were proposed, intended to "capture  more of the semantics
of an application" [49]. For instance,  RM/T [49] attempts to embed within the relational model the notion
of entity and organizes relations into generalization hierarchies. SDM (Semantic Data Model) [82],  offers a
highly sophisticated set of facilities for modeling entities and supports the organization of conceptual
schemata in terms of generalization, aggregation, as well as a grouping mechanism.  Taxis [123]  adopts
ideas from semantic networks and Abrial’s proposal to organize all components of an information system,
even exceptions and exception-handling procedures, in terms of generalization hierarchies (taxonomies).
[166] presents an early but thorough treatment of data models and modeling, and [89, 133]  survey and
compare  several semantic data  models.

The rise of object-oriented programming as the programming paradigm of the ‘80s (and ‘90s) led to object-
oriented databases, which adopted some ideas from semantic data models and combined them with concepts
from object-oriented programming [8, 178].  Early object-oriented data models supported  a variety of
sophisticated modeling features (e.g., Gemstone [55],  based on the information model of Smalltalk), but
the trend with recent commercial object-oriented database systems seems to  converge towards  the
information model of popular object-oriented programming languages, such as C++. As such, object-
oriented data models seem to be taking a step backwards  with respect to conceptual modeling.  The rise of
the internet and the World Wide Web  has created tremendous demand for integrating heterogeneous
information sources. This has led to an emphasis on metamodeling techniques in Databases, where one is
modeling the meaning and structure of the contents of different information sources, such as files, databases,
digitized  pictorial data  etc., rather than an application [101, 174].

Within Artificial Intelligence (AI), semantic network  proposals proliferated in the seventies [73], including
ones that treated semantic networks as a graph-theoretic notation  for logical formulas. During the same
period, [119] introduced the notion of frames as a suitable symbol structure for representing common sense
knowledge, such as the concept of a room or an elephant.  A frame may contain information about the
components of the concept being described, links to similar concepts, as well as procedural information on
how the frame can accessed and change over time. Moreover, frame representations focus specifically on
capturing common sense knowledge, a problem that still remains largely unresolved for Knowledge
Representation research. Examples of early semantic network and frame-based  conceptual models include
KRL  [19], KL-ONE [30]  and PSN [106].

Since the early eighties there have been attempts to integrate ingredients from semantic networks, Logic and
procedural representations. An early example of this trend is Krypton [31] and later terminological
languages such as CLASSIC [27]. A CLASSIC information base consists of two components: a
terminological component where terms are described, and an  assertional  one including assertions about the
application.  For example, a CLASSIC information base may include a description for the term
Bachelor,  which uses other more primitive terms such as Married,  Male, and Person, along with
an assertion involving a particular bachelor,  for example, Bachelor(John). The ‘80s also witnessed a

                                                
5 The term "conceptual modelling" was used in the ‘70s either as a synonym for semantic data modelling or in the
technical sense of the ANSI /X3/SPARC report [6] where it refers to a model that allows the definition of schemata
lying between external views, defined for different user groups, and internal ones defining one or several physical
databases. The term was used  more or less in the sense discussed here at the Pingree Park workshop on Data
Abstraction, Databases and Conceptual Modelling, held in June 1980 [35].
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growing interest in the study of tradeoffs between the expressiveness and the tractability of knowledge
representation techniques [33]. Such studies are now serving as major methodological vehicles in
Knowledge Representation research.  Knowledge Representation is thoroughly presented in [34],  reviewed
in [107] and overviewed in [102].

Requirements Engineering was born around the mid-’70s, partly thanks to Ross and his SADT proposal,
partly thanks to others such as [15] who established through empirical study that “the rumored
‘requirements problems’ are a reality”. The case for world modeling was articulated eloquently by Michael
Jackson [92], whose software development methodology [93] starts with a “model of reality with which [the
system] is concerned.”   The use of conceptual models  for information systems engineering was launched
by [157],  while Bubenko’s  Conceptual Information Model, or CIM [39] is perhaps the first
comprehensive proposal for a formal requirements modeling language.  Its features include an ontology of
entities and events, an assertional sublanguage for specifying constraints, including complex temporal ones.
Greenspan’s  RML (Requirements Modeling Language) [79, 80, 23, 81].  attempts to formalize SADT by
using ideas from knowledge representation and semantic data models. The result is a formal requirements
language where entity and activities are organized into generalization hierarchies,  and  which in a number of
ways predates  object-oriented analysis techniques by several years.

During the same period, the GIST  specification language [10], developed at  ISI over the same period as
Taxis, was also based on ideas from knowledge representation and supported modeling the environment; it
was influenced by the notion of making the specification executable, and by the desire to support
transformational implementation. It has formed the basis of an active research group on the problems of
requirements description and elicitation (e.g., [97]). ERAE [65] was one of the early efforts that explicitly
shared with RML the view that requirements modeling is a knowledge representation activity, and had a
base in semantic networks and logic. The KAOS project constitutes another significant research effort
which strives to develop a comprehensive framework for requirements modeling and requirements
acquisition methodologies [58]. The language offered for requirements modeling provides facilities for
modeling goals, agents, alternatives, events, actions, existence modalities, agent responsibility and other
concepts. KAOS relies heavily on a metamodel to provide a self-descriptive and extensible modeling
framework. In addition, KAOS offers an explicit methodology for constructing requirements which begins
with the acquisition of goal structures and the identification of relevant concepts, and ends with the
definition of actions, to be performed by the new system or existing agents in the system’s environment.

The state-of-practice in Requirements Engineering was influenced by SADT and its successors. Data flow
diagrams (e.g., [62]) adopt some of the concepts of SADT, but focus on information flow within an
organization, as opposed to SADT’s all-inclusive modeling framework. The combined use of data flow and
entity-relationship diagrams has led to an information system development methodology which still
dominates teaching and practice within Information Systems Engineering. Since the late ‘80s, however,
object-oriented analysis techniques [154, 46, 149, 91, 22] have been introduced and are becoming
increasingly influential. These techniques offer a more coherent modeling framework than the combined use
of data flow and entity-relationship diagrams. The framework adopts features of object-oriented
programming languages, semantic data models and requirements languages. A recent proposal, the Unified
Modeling Language (UML) [167] attempts to integrate features of the more pre-eminent models in object-
oriented analysis, thereby  enhancing  reusability.

An early survey of issues in Requirements Engineering appears in [146] and the requirements modeling
terrain is surveyed in [173]. [160] includes a monumental in volume tutorial on Requirements Engineering.
Several recent  textbooks on the same topic, e.g., [60], touch on modeling and survey a broad range  of
techniques.

The histories of conceptual modeling  within the areas reviewed here did not unfold independently of each
other. An influential workshop held at Pingree Park, Colorado in 1980 brought together researchers from
Databases, AI, Programming Languages and Software Engineering to discuss conceptual modeling
approaches,  compare research directions and methodologies [35]. The workshop was followed by a series of



- 10 -

other interdisciplinary  workshops which reviewed the state-of-the-art  in information modeling and related
topics [36, 37, 150]. The  International Conference on the Entity-Relationship Approach6, held  annually
since 1979, has marked progress  in research as well as practice  on the general topic of conceptual
modeling.

Several papers and books provide  surveys of the whole field of Conceptual Modeling, or one or more of its
constituent areas.  [110] includes a fine collection of papers on conceptual modeling, most notably a survey
[144], while [21] offers a more recent account of the whole field. [124] surveys the interface between AI and
Databases, much of it related to conceptual modeling. Along a similar path, [28] discusses the similarities
and differences between knowledge representation in AI and semantic data models in Databases, and [126]
compares knowledge representation techniques to object-oriented data models.

It should be acknowledged that this discussion leaves out other areas where conceptual modeling has been
used for some time, most notably Enterprise Modeling [168, 16, 169] and Software Process Modeling
[116].

The proliferation of proposals for new conceptual models calls for some form of a comparative framework,
so that one can classify new proposals, or evaluate whether a particular candidate is appropriate for a
particular information modeling task. We propose to structure such a framework  along three  dimensions:

Ontologies.  As we saw from the previous section, each conceptual model makes some assumptions
about the nature of the applications it is intended to model. Such ontological assumptions  determine  the
built-in terms offered by a conceptual model, and therefore  its  range of applicability.

Abstraction mechanisms. These determine  the proposed organization of an information base using a
particular  conceptual model. This is a fundamental concern for conceptual models because organizations
that are natural and intuitive lead to  more usable information bases which can be searched effectively and
can grow without users losing track of their contents.

Tools .  If an information base is to scale up and remain useful for a long time, it needs tools for building,
analyzing and otherwise managing an information base, to enhance its usability and give users confidence
that its contents are accurate and consistent.

The reader may have noticed that the proposed characterization ignores the methodologies supported by a
particular conceptual model.  This omission is deliberate. All methodologies that have been proposed,
including ones used in practice, are specific to particular uses one intends for an information base. For
instance, using an information base for requirements engineering, e.g., [46], calls for a very different
methodology than, say, one used for data modeling [14], or knowledge engineering in AI [85].

The next three sections describe in detail the nature of each dimension and discuss  what various conceptual
models  offer with respect  to each one.

4. Ontologies

Ontology is a branch of Philosophy concerned with the study of what exists. General ontologies have been
proposed since the 18th century, including recent  ones such as [40, 41]. For our purposes, an ontology
characterizes some aspects  of a class of applications. For instance, an ontology for time may characterize
the temporal aspect of many applications in terms of points and temporal relations among them. Likewise,
an ontology for manufacturing, may consist of (industrial) processes, physical and human resources and the
like. Research within AI has formalized many interesting ontologies and has developed algorithms for
generating inferences  from an information base that adopts  them (e.g., [170] describes  efficient algorithms
                                                
6 Recently renamed International Conference on Conceptual Modeling (ER).
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for temporal reasoning). Along a very different path, [171, 172]  study the adequacy of  information models
in accommodating a general ontology, such as that proposed in [40].

As indicated in section 2, every conceptual model offers built-in generic symbol structures, or terms. For
instance, the entity-relationship model offers two built-in, generic terms: entity and relationship
for modeling applications which are assumed to consist of entities and relationships. The reader should note
that comparisons of conceptual models on the basis of their built-in terms are vulnerable to problems of
synonymy, homonymy etc. In other words, two different models may be appropriate for the same class of
applications, but use different terms to talk about these applications. We’d like to have a framework which
deems these conceptual models as being comparable with respect to their intended subject matter.
Ontologies help us achieve precisely  this objective.

In order to give some structure to a broad and highly multidisciplinary topic, we focus on four rather coarse-
grained ontologies, based on a broad survey of conceptual models and the primitive terms they support.

Static  Ontology.  This encompasses static aspects of an application, by describing what things exist,
their attributes and interrelationships. Most  conceptual models assume that the world is populated by
entities which are endowed with a unique and immutable identity, a lifetime, a set of attributes, and
relationships to other entities. Basic as this ontology may seem, it is by no means universal. For instance,
[84]  offers an ontology for material substances where  entities (say, a litter of water and a pound of sugar)
can be merged resulting in a different entity. Also note that very successful  models, such as  statecharts
[83], don’t  support this ontology, because they are intended for a very different class of applications (real-
time systems). Nor is this ontology trivial. For certain applications  it is useful to distinguish between
different modes of existence for entities, including physical existence, such as that of the author of this
paper, abstract existence, such as that of the number 7, non-existence, characteristic of Santa Claus or my
canceled trip to Japan, and impossible existence, such as that of the square root of -1 or the proverbial
square circle  [88].

We have already seen an example of entity and relationship descriptions (figure 3.3)  Figure 4.1 shows how
entity and relationship classes  are defined in the KAOS requirements modeling language. According to the

Entity Library
Has available,checkedOut,lost: setOf[BookCopy]
coverageArea: setOf[Subject]
Invariant (∀lib:Library)(lib = available ∪ checkedOut ∪ lost
 ∧  available ∩ checkedOut = ∅ ∧ available ∩ lost = ∅
 ∧ checkedOut ∩ lost = ∅ )
...
end Library

Relationship Borrowing
Links  Borrower [Role Borrows, Card 0::N]
BookCopy [Role BorrowedBy, Card 0::1]

Invariant ( ∀lib:Library,bor:Borrower,bc:BookCopy)
 (Borrowing(bor,bc) ∧ bc ∈ lib ⇒

bc ∈ lib.checkedOut ∧ ★Requesting(bor,bc)]
...
end Borrowing

Figure 4.1: Defining entities and  relationships in KAOS

example, Library  is an entity class with associated attributes available, checkedOut, lost, all
of which take as values sets of instances of BookCopy. The definition includes one set-theoretic  invariant
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constraint, which states that every instance of Library (lib) is the union of its three associated book
copy sets, also that these sets are mutually exclusive. The relationship class defined is named Borrowing,
and it relates the Borrower  and  BookCopy entity classes, has associated cardinality constraints, as
well as an invariant.  The invariant states that if a borrower  has borrowed a book copy and the book copy
is in the library, then the book copy  is in the library’s checked out  list. Moreover, the book copy must
have been requested by the borrower sometime in the past.  Note that, unlike the entity-relationship model,
class descriptions here can have associated user-defined invariants  specified in a formal Logic-based
language.

Spatial information is particularly important for applications which involve the physical world. Such
information has been modeled in terms of 2- or 3-dimensional points or larger units, including spheres,
cubes, pyramids  etc. (for instance [59]). A hard  modeling problem for spatial information is its inherently
approximate nature, calling for special modeling provisions [162].

Dynamic Ontology.  Encompasses dynamic aspects of an application in terms of states, state transitions
and processes, Various flavors of finite state machines, Petri nets, and more recent statecharts  have been
offered since the ‘60s as appropriate modeling tools for dynamic discrete  processes involving a finite
number of states and state transitions.  Such models are well-known and well-understood and they  have
been used successfully to describe real-time applications in telecommunications and other  fields. Statecharts
[83]  constitute a more recent proposal for specifying large finite state machines. A statechart is defined in
terms of states and transitions too. However, more than one state may be “on” at any one time., and states
can be defined as “AND” or “OR” compositions of other statecharts. As a result, statecharts have been
proven much more effective in defining and simulating large finite state machines  than conventional
methods.  The statecharts  model  is supported by a popular CASE tool called STATEMATE.

An alternative to state-transition ontologies is founded on the notion of process. A process  is a collection
of partially ordered steps intended to achieve a particular goal [56]. Processes may be executed by agents,
human or otherwise. Under different  guises, processes have been modeled and studied in several different
areas, including software processes (Software Engineering), activities (Requirements  Engineering), plans
(AI), tasks (CSCW), office procedures (Office Information Systems), and business processes (Management
Studies).  Depending on their intended use, process models generally focus on “how”  or “what”
information. Models intended to support the execution of the process focus on the “how”, while models
intended for analysis (such as consistency checking) focus on the “what”.

CONGOLOG offers a high level specification language for concurrent processes, grounded on a theory of
action developed within Knowledge Representation [61, 108]. In CONGOLOG, primitive actions can be
defined in terms of pre/postconditions. These can then be composed in terms of modeling constructs such as
sequencing (‘;’), conditional (if-then), iteration (while <condition> do...) but also concurrent
activity (‘||’), non-deterministic choice (choose) and others.  An interpreter for the language  has been
implemented in PROLOG which  supports the simulation of, and reasoning about, modeled processes.

The example  of figure 4.2 shows the definition of the process determineCostToSettle which
describes how a claim is to be handled by an insurance company.  The process consists of four sequential
steps which successively consult with the claims file, get medical and  vehicle (damage) appraisals,  consult
with each and  produce a report. The step which involves fetching vehicle and medical appraisals  consists
of two sub-steps which are carried out  in parallel.  For these sub-steps, an appraiser  is first chosen, and
she is then asked to carry  out the appraisal. It is interesting that even though CONGOLOG offers a
program-like structure for describing processes, the underlying logic is designed to support reasoning with
respect to process specifications, as well as simulations, even when the initial state for the process  is only
partly specified.

Temporal information is fundamental to the nature of dynamic worlds., Such information, for example
“Maria graduated before her 20th birthdate” can be modeled in terms of points and associated relations.  The
temporal dimension of events, such as Maria’s graduation, can  be represented in terms of a single time
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point (for instantaneous events) or two time points. These points can then be related through relations such
as before, after.  [3] proposes  a different ontology for time based on intervals, with thirteen associated
relations such as overlap, meet, before and after. For database design,  many extensions

procedure    determineCostToSettle(claim)        
consultClaimFile(claim);

        % concurrently obtain vehicle and medical appraisals
           choose    v

[VehicleAppraiser(v)?;
    % pick an appraiser for vehicle

                    request(v,doVehicleAppraisal(claim))]
         ||
            if    ClaimInvolvesMedicalExpenses(claim)    then   
    choose    m

[ MedicalAppraiser(m)?;
    % pick a medical appraiser

                     request(m,doMedicalAppraisal(claim))]);
         consultMedicalAppraisalReport(claim);
         consultVehicleAppraisalReport(claim);
         fileCostToSettleReport(claim)
end       procedure   

Figure 4.2: CONGOLOG specification of a composite process

have been proposed to the entity-relationship and other models to accommodate time, e.g., [161]. A related,
and important concept in understanding physical systems is the concept of causality. Causality imposes
existence constraints on events: if event A causes event B and A has been observed, B can be expected as
well, possibly with some time delay. Within AI, formal models of causality have been offered as far back as
[113, 142].

Intentional Ontology. Encompasses the world of agents, and things agents believe in, want, prove or
disprove,  and argue about. This ontology includes  concepts such as agent, issue, goal, supports, denies,
subgoalOf, etc. The subject of agents having beliefs and goals and being capable of carrying out actions has
been studied extensively in AI, e.g., [111] addresses the problem of representing propositional attitudes,
such as beliefs, desires and intentions for agents. The importance of the notion of agents, especially for
situations involving concurrent actions, has a long tradition in requirements modeling, beginning with [70]
and continuing  with recent  proposals, such as [58].

Modeling the issues which arise during complex decision making is discussed in [54]. The application of
such a framework to software design, intended to capture the arguments pro and con, and the decisions they
result in, has been a fruitful research direction since it was first proposed in [137], with notable refinements
described in [115, 104]. For example, [115] models design rationale in terms of questions (Q),
options (O) and criteria (C). Figure 4.3 shows the structure of a decision space concerning the
design of an Automated Teller Machine (ATM), The four questions raised, have associated options. Choice
among them will be done by using an associated list of criteria. For example, for the question of what range
of services will be offered (by the ATM under  design), there are two options, full range and cash only, and
two criteria for choosing among them. The cash-only option raises an auxiliary question, whether services
can be restricted by having switchable machines, where services can be “masked out”, or by having
machines which are inherently limited in the services they offer. On a complementary front, [78] studies the
types of contributions a stakeholder can make to an argumentation structure  such as the one shown in
figure 4.3.
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More recently, [45] proposes softgoals as a suitable concept for modeling software non-functional
requirements, such as software usability, security, reliability or user-friendliness. Softgoals can be thought

Q: What range of
services to offer?

Q: How to select 
cash amount?

Q: Where to retrieve
cash and receipt from?

Q: How to initiate 
the transaction?

O: Full range

O: Cash only

O: Same slot

O: Identify customer

O: Select cash amount

O: Same slot as receipt

O: Different slots

O: Defaults

O: Typing & defaults

O: Type in amount

C: Speed

C: Variety of services

Q: How are 
services restricted?

O: Fixed machines

O: Switchable machines

C: Fast

C: Obvious

C: Variety of amount

C: Fast

C: Low cost

C: Obvious

C: Fast

C: Low error

Figure 4.3: Modeling design  rationale  in terms of questions, options and criteria [115]

as ill-defined goals, without a clear-cut definition of when they have been satisfied (hence their name).
Nevertheless, softgoals have been found to play a pivotal role in many design tasks, serving as guiding
rules for choosing among alternative design decisions.

Social Ontology . This ontology covers social settings, permanent organizational structures or shifting
networks of alliances and inter-dependencies [77, 120, 134, 153]. Traditionally, this ontology has been
characterized in terms of concepts such as actor, position , role, authority, commitment etc. [175, 176, 177]
proposes a novel set of concepts which focus on strategic dependencies between actors. Such a dependency
exists when an actor has committed to satisfy a goal or softgoal, carry out a task,

Car repaired

Pay repairs
Max estimate

Continue business

D

Owner
Body
Shop

D

D D

DD

DD

Figure 4.4: Strategic dependencies between actors

or deliver resources to another actor. Using these concepts, one can create organizational models which do
provide answers to questions such as “why does the manager need the project budget?”. Such models can
serve as starting points in the analysis of an organizational setting, which precedes any reengineering of
business processes, and the subsequent development of software systems.

Figure 4.4 shows a simple strategic dependency graph between two actors, a (car) owner and a body shop.
The dependencies shown on the graph include a goal dependency, “owner depends on the Body shop to fix
the car”, a resource dependency, “Body shop depends on owner to pay for repairs”, and two softgoal



- 15 -

dependencies, “Owner depends on body shop to maximize estimates”, while “Body shop depends on owner
to continue business”.

5. Abstraction Mechanisms

By definition, abstraction involves suppression of (irrelevant) detail. For example, the generic concept of
person can be abstracted from those of particular persons (George, Maria, Chryss,...) by suppressing
personal details such as each person’s age, preferred food, etc., so as to concentrate on commonalties:
persons have an address, an age ranging from 0 to 120, etc. Likewise, the concept of employee might be
abstracted from those of secretary, teacher, manager and clerk by suppressing particular features of these
concepts (teachers teach a subject, managers manage some group of people) and focus on commonalties (all
employees have a salary, a position, a job description,...)

Abstraction mechanisms organize the information base and guide its use, making it easier to update or
search it Not surprisingly, abstraction mechanisms have been used in Computer Science even before the
advent of conceptual models. For instance, abstraction was used heavily in pioneering programming
languages such as ALGOL 60 and LISP. Of course, the source of ideas for suitable abstraction mechanisms
has to be grounded in Cognitive Science [52]. In the discussion that follows, we list for each abstraction
mechanism one reference which surveys  the literature (when available).

Classification  (see [121]).  This is a fundamental abstraction mechanism for human cognition, and it has
proven just as fundamental for conceptual models and information bases. According to this abstraction
mechanism, sometimes called instanceOf, an atom (entity, relationship, attribute, activity or whatever)
within an information base is classified under one or more generic  atoms (classes), thereby making it an
instance of  these classes. Instances of a class share common properties. For example, all atoms classified
under Person, have an address and an age, while others classified under Dog, possess a master
(sometimes) and have four legs.  

Classification has been used under a number of guises to support syntactic and semantic consistency. For
example, sorts in Logic [51] and types in programming languages are used mostly for syntactic checking.
So do tables or relations in the relational model. In semantic networks and object-oriented information
models, classification distinguishes between tokens or objects, which represent particular individuals in the
application, and types or classes  which represent generic concepts.

Besides syntactic and semantic consistency, classification can also lead to more efficient search algorithms
for a knowledge base. If, for instance, the system is looking for an object whose student number is
98765432 and it is known that only students have student numbers, then only the set of instances of
Student must be searched.

Some information models (e.g., Smalltalk) allow classification to be recursive; i.e., classes may (or must)
themselves be instances of other classes.  In this case the class Person might be an instance of the
(meta)class AnimateClass which has as instances all classes describing animate entities.

In such situations classification may be unconstrained, allowing both a token and a class that it is an
instance of to be instances of some common class, or constrained in the sense that there is a linear order of
strata (or levels) so that every atom in the information base belongs to a unique level and  an atom at level
τ can only be an instance of classes at level τ +1.  To allow for classes which have themselves as instances,
such as Class, the class that has all classes as instances, one needs a special ω  level.

Telos [125] adopts such a stratified classification scheme and uses it to classify not only entities but all
atoms in an information base, including attributes and relationships. Figure 5.1 shows portions of a Telos
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information base. The entity7 EntityClass is a metaclass at level 2 of the Telos stratosphere (as
indicated by its superscript). Its instances include classes Student, but also Person and Professor
(the latter instanceOf arrows are not shown on the diagram). Likewise, RelationshipClass is a
binary relationship metaclass  relating entity classes to other entity classes. Going one level down,
Student is an instance of SimpleEntityClass but also of the ω -class Class (which actually, has
all classes and metaclasses shown in the figure as instances, thought this is not shown). Parent and

Chryss0

EntityClass2 RelationshipClass2

Classω

Student1 Parent1

Teacher1

Tassos0

Person1

Professor1

Father0

George0

Athan0

Dimitris0

Theory0

Economics0
Accounting0

Figure 5.1: Multi-level classification of entities and relationships in Telos

Teacher are relationship classes and instances of RelationshipClass. Finally, looking at level 0,
Chryss is a student and has three teachers and one parent. Note that the four relationships Chryss
participates in have their own labels (so that one can distinguish between the three teachers of Chryss as
her Theory, Economics and Accounting teachers respectively.)

A major advantage of any classification scheme which allows for metaclasses is that it is in a strong sense
extensible. If the modeler wants to use the concept  of process for the information base of figure 5.1, she
can do so by adding the metaclass ProcessClass (with associated information, whose nature depends on
the information model being used) and then use it the same way EntityClass and
RelationshipClass are on figure 5.1.  This is the essence of metamodeling. For more discussion on
this topic, see [96].

Classification mechanisms offered in different conceptual models vary widely as to the features they offer
and the overall structure they impose on the information base. In most proposals, classification has only
two levels (tokens/type, instances/class,  tuples/relation, etc.) Some proposals treat classes like atoms
which need to be classified under  metaclasses  (see above). In other schemes, including Telos, everything in
an information base needs to be classified under one or more classes. Moreover, some schemes allow
multiple classifications for an atom, such as placing the token Chryss under classes  Student,
Employee and HockeyPlayer,  even though these classes are unrelated to each other. Lastly, some
classification schemes treat classification as an invariant property of each atom, while others allow
classifications of an atom to change over its lifetime in the information base. For instance, the entity
George might be classified first under Newborn, then Child, Adolescent, Adult during the
lifetime of an information base, reflecting changes in the application being modeled.

                                                
7 For consistency, we are using here the terminology introduced earlier in this paper, rather than that used in
[125].
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Generalization (see [32]). As we have already seen from previous sections, atoms in an information base
which represent generic concepts have been traditionally organized into taxonomies, referred to as isA8 or
generalization hierarchies, which organize all classes in terms of a partial order relation determined by their
generality/specificity. For example, GradStudent may be declared as a specialization of Student
("Every grad student is a student"), which is in turn a specialization of Person ("Every student is a
person").

Inheritance is a fundamental ingredient of generalization hierarchies. Inheritance is an inference rule that
states that  attributes and properties of a class are also attributes and properties of its is-a descendants. Thus
the address and age attributes of Person, are inherited by Student and, transitively, by
GradStudent. This inheritance may be strict in the sense that constraints on attributes and properties can
be strengthened but cannot be overridden, or default, in which case overriding is allowed. For example, if
the age of persons has been declared to range from 0 to 100 years old, with strict inheritance the age of
students can be declared to range from 5 to 80 but not from 5 to 120. Default inheritance, on the other hand,
allows students to be 120 years old, though persons were declared to live only up to 100 years, or penguins
to not fly though birds were declared to do so.

Generally, the organization of classes/concepts into a generalization  hierarchy is left entirely up to the
human modeler. An interesting alternative to this practice is offered by terminological logics [27], where
term definitions can be automatically compared to see if one is more general (“subsumes”) the other. For
instance, the term “patients with age under 64” is  subsumed by “patients with age under 70” and is disjoint
from “persons with age over 72”). Within such conceptual models, generalization hierarchies can be
automatically computed, simplifying the task of extending but also searching an information base.

Aggregation (see [122]). This mechanism, also called partOf, views objects as aggregates of their
components or parts.  Thus, a person can be viewed as a (physical) aggregate of a set of body parts -- arms,
legs, head and the like -- or as a (social) aggregate of a name, address, social insurance number etc.
Components of an object might themselves be aggregates of yet other simpler components. For example,
the address of a person might be declared as the aggregation of a street number, street name, city, etc.

organization
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1,1
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Figure 5.2: Multiple decompositions of the concept of organization

                                                
8 Note that the literature on Conceptual Modeling has generally treated isA as a semantic relationship between
generic  atoms, such as “a shark is a fish”, rather than as a relationship between  an instance and its class, as in
“Clyde is a fish”. In AI, some of the frame-based representations used isA ambiguously to represent both
generalization and classification relationships.
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There is considerable psychological evidence that most of the information associated with a concept is of
the aggregation variety [118]. Within Computer Science, [100] proposed a formalization of aggregation
within his object-oriented data model in order  to move away from pointer-type references between objects.
In his proposal, components may be dependent on the aggregates to which they belong. This means that if
an aggregate is removed from the information base, so are its dependent components. Likewise, a
component may be exclusive, which means that it can only be part of a single aggregate. In addition,
aggregation may be strictly hierarchical or recursive. For instance, an employee may be defined as the
aggregation of a department, a salary and another employee who serves as the employee's manager. Finally,
an atom in the information base  may be treated as an aggregate in more than one ways. Figure 5.2 models
an organization as an aggregate in two complementary ways: as a hierarchical aggregation of different
managerial levels (managerial perspective), or as a vertical aggregation of departments serving different
functions, such as production and marketing (administrative perspective). The notation used on figure 4.4 is
adopted from [69]  and it depicts aggregations in terms of triangles. Moreover, the allowable (min, max)
cardinality of each aggregate is indicated by the two numbers shown next to each aggregation link. In
particular, looking at the administrative perspective, an organization may have zero to one finance,
production, sales, and administrative departments respectively.

Contextualization. A problem inherent in any modeling task is that there are often differences of
opinion or perception among those gathering, or providing information. Contextualization can be seen as
an abstraction mechanism which allows partitioning and packaging of the descriptions being added to an
information base. In a situation where one is modeling how patients are admitted into a hospital, this
abstraction mechanism allows relative descriptions of the process, i.e., the process according to a particular
person, or even a hospital unit, rather than insisting on a description which captures all the viewpoints in
one shot.

Various forms of a contextualization mechanism have been used routinely in advanced information system
applications [130]. Since the early days of AI, contexts have found uses in problem solving, as means for
representing intermediate states during a search by a problem solver in its quest for a solution [87], in
knowledge representation, as representational devices for partitioning a knowledge base (e.g., [86]),  In
CAD and Software Engineering, workspaces, versions  and configurations  [98] are by now generally
accepted notions offering respectively mechanisms for focusing attention, defining system versions and
means for defining compatible system components. Database views  have been traditionally used to present
partial, but consistent, viewpoints of the contents of a database to different user groups.

More recently, such mechanisms have been adopted for object-oriented databases [1, 152, 18]. Programming
language modules,   scopes  and scope rules determine which parts of a program state are visible to a
particular program segment. Perspectives, have been proposed as a structuring mechanism for hypertext
bases [139], or general  purpose information bases [128].

Within Requirements Engineering, the modeling of relative viewpoints has emerged as a significant research
issue in requirements engineering as well as in distributed, heterogeneous databases. [74] describes early and
influence work on this issue from a  Requirements Engineering perspective. Using viewpoints to relativize
descriptions in an information base is serving as a mechanism for dealing with inconsistency in
requirements specifications [75, 131, 143].

KAOS supports contextualization in terms of a view mechanism, intended to structure requirements
specifications according to different  actors (stakeholders), who may a different viewpoint and different goals
for a forthcoming software system. In particular, a view is defined as a ternary  relation between an actor, a
master concept and a facet. For instance, a meeting may be have different  associated facets from a
scheduler’s  and a participant’s  point of view, as shown in figure 5.3. The scheduler  wants to know of
time constraints and the required equipment, while a participants is primarily interested in the importance of
the meeting in order  to plan her  own schedule.
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Entity Meeting
Has date: Calendar, location: Place

Entity MeetingToSchedule
FacetOf Meeting SeenBy Scheduler
Has excludedDates: SeqOf[Calendar],
   requiredEquipment: SetOf[Equipment]

Invariant (∀m: Meeting)(m.date not in m.excludedDate)

Entity MeetingToAttend
FacetOf Meeting SeenBy Participant
Has priority: {low,medium,high}

Figure 5.3: Multiple views on the concept  meeting

Materialization (see [135]).  This abstraction mechanism relates a class, such as CarModel, to a more
concrete class, such as Car. Other examples of materialization include the relationship between a
(theatrical) play, say “Hamlet”, and particular productions of the play, say the one now playing at the Royal
Alexandra theater. These can be further materialized by particular shows of  each production, such as the
matinee show on October 26, 1997. This is clearly a very useful abstraction mechanism for manufacturing
applications, which involve multiple, often indistinguishable entities, of the same type. As argued in [135],
the formal properties of materialization constitute a combination of those of classification and
generalization.

Normalization. Special, extraordinary circumstances abound in any application, and considerably
complicate its understanding, especially so during early modeling stages. This has led to proposals for a
normal-case first abstraction [24], where only the common/typical entities, states and events in the
application are modeled first, while successive pass(es) deal with the special/exceptional situations and how
they are to be treated. This abstraction mechanism is particularly successful if there is some systematic way
to find the abnormal cases and  moreover, there is a way to specify the exceptional circumstances as
footnotes/annotations that do not interfere with the first reading. Similarly, it is not uncommon to find
examples were generalization leads to over-abstraction (e.g., “all patients are assigned to rooms”), so that a
subclass may contradict some aspect of one of its ancestors (e.g., “emergency-room patients may be kept on
stretchers in hallways”). [26] analyzes the conflicting desiderata for subclass hierarchies that allow such
‘improper specialization’, and then suggests a simple language facility to accommodate them, while
maintaining the advantages of inheritance, and even subtyping.

Note however that the above papers deal with the issue of exceptions only at the level of (database)
programming languages, albeit ones supporting conceptual modeling. The issue of exceptions in
specifications has however been considered in [75, 151], among others. It seems interesting to contrast and
perhaps combine these approaches.

Parameterization. This is a well known abstraction technique, imported from Mathematics, that has
been used with great success  in programming and formal specification languages  such as Z [159]. Among
requirements modeling languages, ERAE and its successors [66] support parameterization to enhance the
reusability of requirements. For example, one may define a requirement model  with two parameters,
resource and consumer, which includes actions such as request and grant and constraints such as
“a grant will take place for an available resource if there is a waiting consumer”. This model can then be
instantiated with resource bound to book and customer bound to libraryUser. Alternatively, the
model may be instantiated for a car rental application with different bindings for the two parameters.
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6. Tools

Computer-based structures, for information modeling or anything else, are useless without tools that
facilitate their analysis, design, construction and management. Assessment of a conceptual model needs to
take into account the availability of such tools, alongside their expressiveness and support for abstraction
mechanisms.

It is interesting to note that successful tools developed in other areas of Computer Science are founded on
elaborate theoretical research, produced over many years. For example, compilers in programming languages
greatly facilitate programming by performing various forms of syntactic and semantic analysis, also by
generating efficient machine-executable code. Likewise, database management systems (DBMS) greatly
simplify the task of managing databases, thanks to facilities such as query optimization, transaction
processing and error recovery. In both cases, these tools are based on theoretical research, such as formal
languages, code optimization techniques, concurrency control algorithms, and query optimization
techniques.

For this paper, we focus on three basic classes of tools which we consider essential for any technology
intended to support the creation and evolution of information bases: analysis, design and management tools.

6.1 Analysis Tools: Verification and Validation

Analysis tools perform various forms of checking on the contents of an information base to establish that
they are consistent and accurately reflect the application, thereby giving users confidence that the
information base is meaningful and correct. One type of checking, which we shall refer to as verification,
treats an information base as a formal symbol structure which must satisfy syntactic and semantic rules
provided by its conceptual model. Verification can take the form of establishing that syntactic rules are
obeyed, checking candinality constraints for entity-relationship-like models, or checking semantic
consistency of rules and constraints included in the information base.

Verification tools are grounded on the formal definition of a conceptual model. There is little non-trivial
analysis one can do for a conceptual model that is only informally defined, such as SADT or data flow
diagrams. There is much analysis that can be done (but, at great computational cost) for formal, and
expressively powerful conceptual models which offer an assertional sublanguage, such as RML or KAOS.
In between these extremes we have conceptual models which are formally defined, but offer no assertional
sublanguage, and therefore don’t need a computationally expensive inference engine. Among many others,
various forms of the extended entity-relationship model fit this in-between category (e.g., [161]). This
points to a great advantage of conceptual models which offer built-in terms that cover the ontology of a
particular application over ones that do not, but offer instead general  facilities for defining the terms that
one needs for a given application: analysis tools based on the former type of conceptual model will
generally be much more efficient than analysis tools based on the latter type.

Since requirements definition for software systems calls for the reconciliation of possibly inconsistent
demands by different stakeholders, the analysis of inconsistency has received  much attention in the
literature [165]. Several approaches to the problem begin by using forms of logic where inconsistency does
not lead to arbitrary conclusions9. [90]  exploits such a logic to derive from inconsistent requirements
useful conclusions. For example, if there already  exist  two inconsistent requirements

(req1) number(gadgets) = 1
(req2) number(gadgets) = 2

one can derive  a weaker requirement,
number(gadgets) ≥ 1

                                                
9 Conventional logics suffer from the so-called paradoxes of implication  which state that "anything implies a
true proposition" (formally, A ⇒  (B ⇒  A)) and "a contradiction implies anything" (formally A  ∧ ¬A ⇒  B).
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from both (req1) and (req2) and use it as starting point towards  reconciliation of the inconsistency.

Many researchers have focused on goal inconsistencies and have proposed techniques for resolving them.
[Robinson89] proposes a technique for identifying conflicting requirements, characterizing them as goal
inconsistencies, and resolving them through negotiation. Along similar lines, [127, 45] offer a qualitative
reasoning procedure for detecting  inconsistencies between non-functional requirements, represented as
softgoals.  Likewise. [20] proposes an iterative process for identifying conflicting conditions, evaluating
their respective risks, and resolving them through negotiation.

Other forms of inconsistencies have also been explored. [158] describes a framework for detecting overlap in
requirements, noting that overlap is a prerequisite to inconsistency, while [72] explores deviations of a
running system from its stated requirements. Along a different path, [24, 11]  describe  frameworks for
modifying the contents of an information base so that it will accommodate an exception without creating an
inconsistency.

A popular approach to dealing with inconsistency  in AI has been  to support truth maintenance
mechanisms [64]. Such mechanisms maintain a network of links representing logical relations among facts.
These can be used when inconsistencies are discovered,  to identify the source of these inconsistencies and to
determine what facts in the information base need to be revised. Another approach to inconsistency involves
using weaker  logics which explicitly exclude the above paradoxes of implication, such as relevance logics
[5].

Here is a partial list of different types of verification-type analysis that may be offered by a particular
information model, depending on the ontologies that it supports:
• Static ontology -- checking cardinality constraints,  checking invariants, spatial reasoning
• Dynamic ontology -- simulation of finite state machines and extensions thereof, proving  that state

invariants are preserved by processes defined in terms of pre/postconditions; proving termination and
liveness properties, temporal reasoning

• Intentional ontology -- goal satisfaction algorithms for AND/OR goal graphs, marker-passing
algorithms

• Social ontology -- means-ends  analysis

Whereas  verification tools are concerned with the internal consistency of an information base vis-à-vis its
conceptual model, validation tools check for the consistency of an information base with respect to its
application. Clearly, such consistency  is critical to the usefulness of an information base.  Validation tools
adopt a variety of strategies, depending on the nature of the conceptual model used.  Some tools support
validation by paraphrasing in natural language the contents of the information base [117].  The biggest
problem for paraphrasing how much to include in the generated text, so it is neither ambiguous, nor
verbose.

A second approach, which only applies to process descriptions in the information base, is to animate or
simulate them, thereby confirming that they behave consistently with the modeler’s expectations.  This is
relatively straightforward for state transition models, including statecharts [83], possible but much harder
for formal process specification models such as CONGOLOG [108], or Albert II [67].  A variety of tools
use heuristics to pinpoint potential problem areas  in the contents of an information base. [42, 63]  describe
two research efforts in this category.

Turning to AI-oriented tools, [136] describes  early work on validating expert  system rules (here the
information base is capturing expertise in the performance of some task) by examining the performance of
the expert system and noting failures, which are then traced back to the use or lack thereof of particular
rules.

6.2 Design Tools



- 22 -

An information base constitutes an artifact. As such, it needs careful crafting, or design, based on rules
which guide the design process. These rules suggest when is an artifact well structured and when it is not.
For information modeling, such rules have been proposed for the relational  model [48], and they define
formally various normal forms for relational schemata. Placing a relational schema in these forms
eliminates the danger for certain types of anomalies which can occur in the database upon the
insertion/removal/update of tuples. To the extend that this work is based on tuple attributes, it also applies
to other information models, such as the entity-relationship model, which offer attributes and are relatively
unstructured. For more expressive conceptual models, [68] studies the quality of schemata, measured in
terms of metrics, and proposes  transformations for improvement and integration.

One aspect of the information base design  problem which has received considerable attention  for databases
is schema integration.  This topic encompasses  techniques which take as input a number of partial database
schemata, presenting partial views of the information to be handled by a database, and build a global
schema. To accomplish the task, one needs to address terminological problems, such as synonymy (two
different names for the same information), or ambiguity (same name used differently within different partial
schemata), semantically equivalent  but syntactically different symbol structures, semantic inconsistencies
etc. [13] presents an authoritative survey of work in this area.

A number of expert system tools have been reported in the literature which support database design, by
automating, or semi-automating schema integration, the generation of a logical schema from a conceptual
one, and the selection of indexing scheme etc. [29]  describes  a tool in this category and compares it with
others in the same area.

Since non-technical  people communicate best in natural language, several projects have attempted to build
tools which generate portions of an information base from natural language  descriptions . OICSI [145]  is
one of the best-known systems in this area. It’s approach is to take simple input sentences, such as
“Subscribers have a name, address and subscription number” and map them first into a deep structure, which
then is integrated with the current  version of the information base. This approach has been attempted for
database design, e.g., [99], for requirements acquisition, e.g., [145], as well as knowledge acquisition, e.g.,
[9, 141].

A related approach to information base design  involves acquiring knowledge from examples and forms. For
instance, [12] describes a method for deriving a conceptual database  schema from forms in a bottom-up
fashion. The method begins by building up increasingly more complex entity description and forming
generalizations when two or more descriptions have overlapping components. In a similar spirit, [155]
reports on an expert system which builds up a database schema from business documents, while [25]
proposes a system which applies machine learning techniques to modify an existing database schema and its
associated constraints in order to deal with semantic inconsistencies. The role of form analysis in computer-
aided software engineering is thoroughly discussed  in [44].

The last, but not least, approach  to be discussed here includes  tools which support  reuse-based design. In
this category. The basic idea for such tools is that a repository of past cases is consulted whenever a new
modeling task needs to be performed. The repository includes  past cases that have been cleaned up, and
abstracted so that they become more generally applicable. Selection of “similar” cases is achieved by using
some form of a similarity metric, which measures the distance between the new modeling task and stored
past cases. [76] describes the objects and roles model (ORM) and its application in specifying reusable
requirements. [112]  describes  a more recent, and more sophisticated requirements reuse scheme based on
the KAOS model. The matching algorithm used here takes a query, defined by a partial requirements
specification which needs to be completed, and matches it against other complete cases in a repository.
Depending on the outcome, the query may be generalized so that it will match less similar cases. This way,
retrieval from the repository  can be interactive and makes full use of the structural richness of the KAOS
model.

6.3 Management Tools
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Management tools begin with a good implementation which offers facilities for building, accessing and
updating an information base. Beyond a mere implementation, one would like to have an efficient
implementation which scales up in the sense that primitive operations are relatively unaffected by the size
of the information base. In the case of databases, such efficiency is derived from elaborate systems research
into physical storage management, caching and indexing techniques,  and the like

Query optimization makes it possible to efficiently evaluate queries expressed in a high level, declarative
language such as SQL. experience from databases suggests that having such a facility broadens the class of
users for the information base. In addition, concurrency control can increase dramatically the number of
transactions that can be executed against an information base per unit time. Also, error recovery can serve as
safeguard against system failure, ensuring that the information base can be returned to a consistent state
after a crash.

Of course, all these are accepted features of commercial relational DBMS products. Much work has been
done on extending the research which makes these features a reality for relational databases to other, more
advanced data models, including object-oriented, and multimedia ones. Generally, there are few supported
management  tools for conceptual models. However, see ConceptBase [95, 53, 96] for a system that moves
in the right direction. It is also worth noting other research projects on the subject, such as [109, 129].

7. Assessment of Conceptual Models

The three-dimensional characterization of conceptual models, can now be exploited to assess different
conceptual models, to guide the design of new models so that they truly advance the state-of-the-art, also to
evaluate and compare candidates  for a given information modeling task. We begin the section by offering
an admittedly coarse-grained evaluation of some well known conceptual models. We then present some
suggestions to those who have to choose among conceptual models, or dare to design new ones.

7.1 Evaluating Conceptual Models

An obvious way to use the framework proposed in the previous section is to evaluate the degree to which
different conceptual models cover the four basic ontologies, support the six abstraction mechanisms and
offer the three classes of tools. The overall “mark” for a given conceptual model is some combination of the
marks it gets with respect to each dimension. Likewise, the overall mark for each dimension is some
combination of the partial marks for each component of the dimension.

A disclaimer is in order  here. Like any other form of evaluation scheme, this one is highly dependent on
the definition of the dimensions we have proposed, and arbitrary with respect to the actual assigned “marks”.
Nevertheless, we consider it a useful coarse-grain instrument for the assessment of conceptual models,
certainly better than no evaluation scheme at all.

Let’s use the entity-relationship (ER) model as example to present and illustrate our evaluation scheme.
Firstly, the model clearly supports the static ontology. Secondly, the model offers minimal support for the
other ontologies in the sense that one can define activities, goals and social dependencies as entities or
relationships, but none of the semantics of these terms is embedded in the ER model or the tools it offers.
To assign marks, and keep things simple, we will allocate a mark in the range {great, good, OK,
so-so, none}, depending on how well a conceptual model supports each ontology, abstraction
mechanism or tool type.

In the case of the ER model, its mark for the static ontology might be good+, and so-so for all other
ontologies. Why only good+? Well, there other conceptual models, e.g., [82], which offer a substantially
more elaborate  notion of entity than the ER model. See also the entity definition facilities of KAOS
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(figure 4.1), where the modeler can specify invariants using a formal language. In other words, we reserve a
perfect  mark for the best proposals  in the literature in supporting a particular ontology or abstraction
mechanism, and in offering tools.

To make more concrete  the evaluation of how well the static ontology is supported, let’s set some rules:
• Rule SO.1: A built-in term for entity/object/...with associated attributes results in a mark of

OK or better.
• Rule SO.2: Support for cardinality constraints  on attributes adds  a mark.
• Rule SO.3: Support for a variety of additional types of constraints, or user-defined constraints

gets  a top mark.
• Rule SO.4: Facilities for fully defining terms such as entity and relationship, get a mere OK

On that basis, conceptual models such as SDM and KAOS get top marks for their support for the static
ontology.

Turning to abstraction mechanisms, ER supports a simple form of classification, in the sense that every
entity/relationship is an instance of a single entity/relationship type. This is clearly a long way from the
sophistication of some of the more recent  proposals, so it only gets a so-so. Other abstraction
mechanisms are supported circumstantially. One can define isA, partOf, instanceOf, etc. as
relationships, but the semantics of these are not embedded either in tools, or the ER model itself. Let’s give
ER, rather generously, so-so- marks for other  abstractions.

Again, we can make the marking for each abstraction mechanism more concrete by laying down some rules.
We will use classification as example:

• Rule CA.1: A two-level classification mechanism gets a so-so.
• Rule CA.2: A multi-level classification mechanism gets at least OK.
• Rule CA.3: Multiple classification adds  a mark.
• Rule CA.4: Variable classification adds a mark.

With these rules, conceptual models such as UML and Telos which supports a multi-level classification
scheme, as well as multiple and variable  classification get top marks.

With regard to tools, there is a variety of tools which perform simple forms of analysis on ER schemata,
including normalization tools. Moreover, there are well-accepted techniques for mapping down an ER
information base into a relational database. For these reasons, we give ER high marks with respect to the
tool dimension, say great, great, and good+ respectively. A few points have been taken away for
management  tools because whatever is available was developed specifically for the relational model.
Overall then, the ER model gets high marks for its support of the static ontology and the availability of
management tools, but can use enhancements in all other areas. Of course, for the time it was proposed,
this conceptual model is still a classic.

SADT. This model supports, to some extent, both the static and dynamic ontologies, though its marks in
both cases are OK. Likewise, with respect to abstraction mechanisms, SADT offers a single structuring
mechanism where each box (representing data or activity) can be elaborated into a diagram. This structuring
mechanism has no associated semantics, so it can be treated as a rather primitive form of aggregation and
lands a mark of OK. Finally, the marks for design and management tools are also OK, since SADT did
come with a basic implementation along with some, generally ad hoc, design rules. However, since SADT
is only informally defined,  little analysis is possible.

Extended entity-relationship model (EER model). This is an extension of the entity-relationship
model which has appeared in various forms since the late ‘70s (used, for example, in [14]). The EER model
supports sophisticated forms of generalization and aggregation, plus the simple form of classification found
in ER, so we’ll give it so-so, good, and good respectively for classification, generalization and
aggregation. The marks for supported ontologies don’t  change, but analysis, design and normalization tools
become a bit more problematic than for the ER model, because of the presence of the two abstraction
mechanisms.
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UML ([UML97]). This proposal promises to be the industry standard for software modeling, with interest
and participation in its definition from major  hardware and software vendors. Our evaluation here focuses
on the features of UML intended for requirements modeling. With respect  to ontologies, UML supports
adequately static and dynamic ontologies with concepts  derived from object-oriented notations. It also
seems to support some concepts related to business modeling, so we’ll give it good+, good+, none, and
OK- respectively. Regarding abstraction mechanisms, UML supports well classification, generalization,
also some forms of aggregation,  contextualization . Its marks for this dimension:  great, great, OK, and
OK. For tools, it is not clear yet what will be available. As with SADT, we note that as long as UML
remains an informal model, there isn’t much that can be done with respect  to analysis tools.

ConceptBase ([95]). This is a prototype  implementation of a version the Telos model (called O-Telos).
This model was designed with metamodeling applications in mind. Accordingly, its most important feature
is its extensibility, i.e., new terms can be defined as metaclasses with associated constraints and deductive
rules,  to be used for a particular modeling task. Not surprising, the model is generally weak with respect
to supported ontologies. We’ll give it OK for the each of the four ontologies. On the other  hand, there is
excellent support for generalization and classification, a rudimentary  form of aggregation,  as well as a
solid implementation. Accordingly, we give it great for generalization, classification, OK for aggregation
and contextualization,  good for analysis, design and  management  tools respectively.

KAOS ([58]). This conceptual model  supports well static, dynamic and intentional ontologies, and  gets
great marks for each. Along the abstraction mechanism dimension, KAOS gets good to great marks for
generalization,  classification, aggregation, and  contextualization. Moreover, thanks to its formal
foundations,  it can support a variety of analysis and design tools and has a prototype implementation. On
tools then, we’ll give KAOS good, good and OK marks respectively.

The table of figure 7.1 summarizes the evaluation of the six conceptual models discussed above.

   ER        S A D T       EER     UML     ConceptBase   KAOS

Static good+ OK good+ good+ OK great
Dynamic so-so OK so-so good+ OK great
Intentional so-so none so-so none OK great
Social so-so none so-so OK- OK so-so
Classificati so-so so-so so-so great great great
Generaliz. so-so- none good great great great
Aggreg. so-so- so-so good OK- OK good
Context.  so-so- so-so so-so- OK OK great
Analysis great so-so good+ ? good good
Design great OK great ? good good
Managem. good+ OK good ? good OK

Figure 7.1: Evaluation of six conceptual models

7.2 Choosing a Conceptual Model

Suppose then that you are leading a project that has an application modeling component. How could you
use the insights of the proposed  assessment methodology  to select  the conceptual model  that is best
suited for your project?
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A starting point for the selection process is to consider three alternatives.  The first involves adopting an
existing generic information base. For example, if you are developing a banking system, there may be an
existing collection of defined banking terms available, using some conceptual or even logical information
model. Adopting it has the obvious advantage of cutting costs and project time. No wonder reuse of generic
information bases has received much attention in AI [105, 132], as well as in Requirements Engineering,
e.g., [103, 112].

A second alternative is to adopt an existing conceptual model and develop your own information base from
scratch. This is clearly a preferred alternative only if the first one does not apply. Selection of an existing
conceptual model can proceed by identifying the nature of the application to be modeled, i.e., answering the
question “what kinds of things will we need to talk about?”, or “does the application involve temporal or
spatial information?” In addition, one needs to make rough guesses on the size of the information base, i.e.,
“how many generic and token atoms?” For a project which will involve a large number of generic terms,
abstraction mechanisms are essential. For instance, for a project involving the description of aircraft designs
where the number of generic terms may be in the tens of thousands, use of abstraction is unavoidable. For a
project which will require the construction of a very large information base, say with billions of instances,
analysis, design and  management  tools are a must.

It is important to keep in mind during the selection process that not all abstraction mechanisms will be
equally  useful to any given project. For a project  requiring the modeling of few but very complex
concepts, aggregation  is clearly most helpful and modeling through some form of stepwise decomposition
is the most appropriate modeling method. If, on the other hand, the modeling task involves many simple
but similar concepts, generalization is the abstraction to turn to. Finally, a project involving heavy use of
multiple descriptions for one and the same entity, such as multiple versions of the same design or multiple
perspectives on the same data, use of contextualization is recommended to organize and rationalize these
perspectives  of the same reality.

The last, most time consuming, and least desirable alternative is for your project to develop its own
conceptual model. Such an alternative is feasible only for long term projects. Before adopting it, you may
want to think twice what is unique about your modeling task, and why it is that none of the existing
conceptual models apply. Also to think of the overhead involved in designing and implementing your new
conceptual model, before you can actually exploit it.

The moral of this discussion is that not all conceptual models are created equal with regard to their
usefulness for your modeling task. The exercise of identifying what is the application like, also what
abstractions and tools are most useful can greatly reduce the danger of disappointment later on. Moreover,
design of new conceptual models should be avoided at all costs because it is rarely justified when you are
trying to model an application, as opposed to furthering the state-of-the-art  in conceptual modeling.

8. Conclusions and Directions for Future Research

We have set out to study and characterize information modeling, in research and practice, also in different
areas of Computer Science. Our study included a brief history of the area, a proposed comparative
framework  for conceptual models consisting  of three orthogonal dimensions, and the assessment of several
conceptual models  from the literature.

Even though crude, the assessment  of the previous section suggests a direction of progress  since the mid-
’70s.  Specifically, pioneering conceptual models such as ER and SADT  support one ontology, or less
than two respectively, and offer little in terms of abstraction mechanisms. Conceptual models of the mid-
’80s, such as ones embedded in object-oriented databases and requirements languages, support  aggregation
and generalization and improve on the support of the static and dynamic ontology.  Finally, in the mid-’90s
we are looking at conceptual models which begin to grapple with the intentional ontology, treat
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classification with the respect that it deserves, and support various forms of parameterization and
contextualization  (e.g., [58, 69]).

At the same time, the comparative framework suggests  fruitful directions for further research. In particular,
we expect  that the study of new ontologies, and the consolidation of existing ones, such as the intentional
and social ontologies, will continue. Other abstraction mechanisms will be proposed, formalized and
integrated into existing or new conceptual models. The field of Databases will continue to push the limits
of database management  technology so that it applies to ever more powerful and expressive information
models, including conceptual ones.  As well, new application areas will need to be explored and
methodologies  will have to be developed for modeling, analogously to the state of practice today for
knowledge  engineering , data modeling, and requirements engineering.

Of course, advancing information modeling practice  to a new generation of ever more powerful conceptual
models requires  more than just research.  Computer science and information systems engineering
professionals need solid education and training on the subject, which must begin with the thorough teaching
of conceptual modeling  as a core subject and an important professional skill in Computer Science and
Information Systems curricula.
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