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123apstract

Researchissuesrelated to requirementsmodeling are
introduced and discussed through a review of the
requirementsmodelinglanguage RML, its peers and its
successors from the time it was figbposed athe Sixth
International Conference oBoftware Engineeringl CSE-6)
to the presentten ICSEslater. We note that thecentral
theme of “Capturing More World Knowledge” in the
original RML proposal is becominigicreasingly important
in Requirements Engineering.he paper highlights key
ideas and researchissues thathave driven RML and its
peers, evaluateshem retrospectively inthe context of
experienceand more recentdevelopmentsand points out
significant remaining problems and directions for
requirements modeling research.

1. Introduction

"...Requirements definition is @refulassessment of
the needs that a systeisito fulfill. It must saywhy a
system is needed, based on currersnd foreseen
conditions, which may beinternal operations or an
external market. lmust saywhat systemfeatureswill
serve and satisfy this context. And it must g the
system is to be constructed..."

— Doug Ross [Ross77a]

Concern forRequirementsEngineering is as old as
Software Engineering itselfVhen awareness of bboming
software crisis led to the formation of tfield of Software
Engineering in1968, requirementsanalysisand definition
practiceswere immediately underreview as apotentially
high-leveragebut neglectedarea. By the mid-70s, this
review had produced &ealth of empiricadata,confirming
that “the rumored ‘requirementsproblems’ are areality”
[Bell75]. Thedatasuggestedhat requirements errorsere
the most numerouand, evermore significantly, thathey
alsowerethe most costlyand time-consuming tocorrect.
This recognition ofthe critical nature of requirements
established RequirementEngineering as anmportant
subfield of Software Engineering.

In response tothis recognition came a wave of
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requirementgoncepts, languagewmols and methodologies
(e.g., [TSE77][Thay90]). Howeverwhile the first wave
of requirementsengineeringresearchstill unfolds, another
wave istaking shape. Thisecond wave ignanifested in
terms of a number of “firsts": the firstnternational
Symposium on Requirements Engineering [RE93], the first
International Conference on Requirements Engineering
[ICRE94], and the formation of the first IFIP \bftking
Group on RequirementsEngineering (IFIP WG 2.9).
Moreover,this new wave is characterized by aexpanded
scope forand more ambitiousdemands onRequirements
Engineering; we now sesttempts todealwith moretypes
of information and to understand formalize and support
more of therequirementslefinition andanalysis tasksAt
the core of these concerage basic issues afepresentation
andreasoningabout theknowledge accumulateduring the
requirementsacquisition phase, a subjecteferred to as
requirementsmodeling It is our contention thatuch
representatiorand reasoningissues must continue to be
addressechnd that their resolution is grerequisite to
progress in all aspects of Requirements Engineering
research and practice.

This paper reviewsthe trajectory of our research on
requirementsmodeling from the language RML (first
proposed in [Gree82]ihrough itssuccessoffelos, to the
present. Throughout, whighlight keyideasand research
issues thathave driven usand our colleaguesevaluating
them retrospectively ithe context ofexperienceand more
recent developments, and pointing out significant
remaining research issues.

Section 2 of thepaperpresents a setf premises for
requirements modeling, which motivated RML and
continue tohold for other related proposals. Section 3
describes the basic featureRWL, while Section 4offers
an overview of other languageghat might beconsidered
intellectual offspringsand peers of RML, describing how
thesehave dealt wth modeling issues left open by the
original RML. Section &discussesomeexperiencesising
requirementsnodeling languagesand the issues otools
and methodologieghat appear to bemperative, if this
approach is to succeed. Section 6 draws some conclusions.

This papermight readlike an opinionatedtutorial to
someand animplied researchagenda toothers. One thing
the paper is not, however, is asurvey of the field.
Generally, thediscussionconcentrates othe work we are
most familiar with, our own, with pointers towidely-
known related research. For further work the state of the
art, thereader isencouraged tdook at papers insources
such as [RE93, ICRE94, ESEC93, CAISE93, IWSSD].



2 . Requirements Modeling

We propose to review some of the principleslerlying
the RML frameworlor requirementsnodeling, ageported
in [Gree82] and later ifiGree84]and [Borg85a]. This gives
us the opportunity to acknowledge intellectual dedis| at
the same time present hindsights on RML.

e There is more to writing requirements than
functional specifications. The stage preceding
software design has been frequeridjled specification and
this termis oftenused as arabbreviation for“functional
specifications”—aprescription ofthe desiredfunctionality
of a system to bbuilt. This limitedscope forrequirements
is evident in the usef the term“specification languages,"
applied tohighly developednathematicaformalismssuch
as Z, VDM, Larch, OBJsee [Wing90Jor an introduction).
Another important aspect of softwarespecifications are
non-functional requirementich as efficiencysecurity and
privacy.

A specification is, by definition, prescriptive: it
specifies desired properties for asystem to bebuilt.
However, it has always been self-evidentto many
practitioners that the process of “systems analysis”
precedingthe development of softwareequiresthe analyst
to achieve an understanding tifie application domain
including the (e.g., organizational) environment within
which the proposedsystem will eventuallyfunction. What
remained largely unstated was that it is usélate wesay,
imperative) to capture explicity as much of this

understanding as possible, in order to support
communication between the various “stakeholders”
(customers, developers, testers)—which is the chief

function of therequirementglocument. Anexplicit model
is also of use in supporting continuity face ofinevitable
staff turnoverand other organizational change. ¥d the
understandinghat reuse promisesincreasedproductivity,
we now alsosee anothepurpose forexplicitly capturing
the understanding othe “environment” of the proposed
software system—therequirements model camlso be
reused.
A model of a sociabrganization or othe naturalworld
is not likely to beprescriptive—"natural kindsfike ‘chair’
have no mathematical definitions. Hence we seendael to

distinguishbetweenspecificationlanguages, such as those

mentioned above, andodelinglanguages, whiclaspire to
offer facilities for the description of settings, ormore
precisely,humans’ knowledge/beliefshout theseworlds
This is a philosophicahnd psychologicalpoint which has
profoundimplications for requirementdanguagedesigners
and users alike, as well as the requirements discourse.
The title of the original RMLpaper emphasizethis
distinction by talking about“capturing more world
knowledge inthe requirementsspecification”. (It might
have been better to use the term “requirements

document/descriptidrto make clear that existing as well as

proposedhings are tobe discussed.Among others,Ross
[Ross77b]recognizedthe significanceof this point when
emphasizing that SADT wasretationfor communicating
any sort of information, not jussoftware specifications;

and Balzeret al repeatedlypointed tothe needfor closed
models, whichinclude the environment as well as the
proposed system (e.g., in [Balz79]).

« Develop and present requirements as
models. The appropriate stance to take idescribing
open-endedreal world phenomena is @modeling” one:
systematicallyidentify significant/relevantaspects of the
domain,and provide direct representationof them in the
requirements. Modelsire the basis ofunderstanding the
world aswell as for communicating among alinvolved
parties.Requirements engineerirggtivities are defined as
model construction, management and analysis tasks.

The case for world modelinig articulatedeloquently by
Jackson [Jack78, Jack83], wtstarts with modeling of
environmentaprocesseprior to systemdesign, a‘model
of reality with which [the system] is concerned.”

« Object-centered knowledge representation is
an appropriate  foundation for conceptual
modeling. The logical conclusion of the previous two
points is thatwe should bedevelopingconceptuaimodels.
The idea of world modeling, asoffered by RML, is to
capture(concrete ombstract)entities, activities,and other
phenomena irthe world asobjects in a model. breover,
objectsare structuredand organized according terinciples
of conceptual organizatiosuch as "classeandinstances,"
"parts and wholes,” and “specializations and
generalizations.Others, including Bubenko [Bube80] and
Solvberg [Solv79], als@dvocatecconceptuaimodeling for
requirementsnodeling, orbuilt requirementdanguages on
top of knowledge representationsubstrata (e.g., GIST
[Balz82]). The issue of conceptual modeling wassidered
by a number of participantat the 1980 Pingredark
Workshop [Ping81, Brod84], particularly by researchers
working on data modeling for databasesObjects (with
intrinsic identity) form the pearl-seeds aroundvhich
knowledgeabout the domin is grouped.Of course, the
field of KnowledgeRepresentatiorfe.g., [Find79]) has a
long-standinginvolvement with this subjectmatter, and
has served for us asrich source of ideas. More generally,
the fieldof Cognitive Science is relevant tthis enterprise
(e.g., see [ColI88] for a collection of relevant papers).

e Abstraction and refinement, especially
involving Is-A hierarchies, are significant in
engineering large requirements. The importance of
abstraction indealingwith many details has, of course,
been a centratenet of Software Engineeringall along.
Subclass hierarchies were well-knownSimula/Smalltalk,
in knowledgerepresentatiorframeworkssuch assemantic
networks, and in data modeling proposals such astT3m
RML and its peers recognized the significance atility of
having objects in clasksierarchieswith inheritance(central
pillars of what is now known a%bject-orientation”) and
applying them toall aspects ofsoftware development
[Mylo80, Gree83, Borg84]. Infact, we have argued
elsewhere [Borg91]that a chief difference between
knowledge representationand conceptual modeling is
preciselythis emphaticconcernwith abstractionand the
engineering of large models.



e« Formal requirements modeling languages
are needed.The above principlesefined afoundation for
the RML proposapresented infGree84]. Implicit in this
was the notion that some kindfofmal languagewould be
used to expressequirementsnodels. Theadvantage of any
such formalism is thadescriptionswvhich adopt it can be
assigned awell-defined semantics, often usingnethods
imported from mathematicébgic. Theadvantages oflear
semantics include  adjudicating among different
interpretations of agiven model,and offering a basis for
various ways ofreasoningwith models, either through
consistency checking (the foundationusfeful tools) or by
supporting guestion-answering or even
simulation/prototyping.

Of course, theappealand usability of sometechniques
may be largelydue to their relative simplicity and

Activity Class Admt with
partici pants
newPat i ent :
tovard: Ward
admtter: Doctor
parts
docurrent : GetInfo(from newPatient)
checkl n: Assi gnBed(t oWiom newPati ent,
onVérd: toVard)
precondition
canAdm t?: HasAuthority(who: admtter,
where: toWard)

Per son

Figure 3.1

(register and canAdm t) are classified under
part s, and specify sub-activities ofAdm t. The last

flexibility derived from informality. We note that the use of attribute,canAdmi t ?, defines arecondition, which must

a formal requirementsodeling languageoesnot preclude
the concurrentuse of informal notations. Infact, the
original RML proposal envisioned earlise of annformal
notation, such as SADBnd atransformationprocessrom
an informal SADT model into a formal RML offe.

3. RML: Requirements Modeling Language

[Gree82] presented a framework that formedidhsis for
a requirementsmodeling languagecalled RML. The
language is furtherelaborated in [Gree84, Borg85a,
Gree86]. This section summarizes its main features.

3.1 An Object-Centered Modeling Framework
RML views a modehs consisting obbjects ofvarious
kinds: individuals,or tokens groupedinto classes which
are in turn instances of metaclasses Classes and
metaclasses camvedefinitional properties,which specify
what kinds of information can be associatedo their
instances througlfactual properties For example, if the
classPer son hasnamne as adefinitional property, then

be trueevery timeAdni t is instantiated. In the name of
uniformity, =~ RML  treats assertions such as
HasAut hority(...) as classes in their own right.

The aboveframework is object-orient&d in line with
early object-oriente¢hrogramminglanguages oknowledge
representation scheméke semantic networkandframes.
However,the restriction tothree levels and the relatively
simple rulesfor property inductionand inheritance were

intended to assist in avoiding unnecessary complexity while

providing an adequate expressive framework for

requirements modeling.

3.2 An Ontology for Requirements Modeling
According to RM.'s view of theworld (what we shall
call its ontology), there are threetypes of things to be
talked about, represented byinstances ofthree built-in
object categories, defined iarms ofmetaclasse€Entity,
Activity and Assertion. The conceptsof entity and
activity were chosen becausethey are ubiquitous in
modeling aspects ofa real world, and match well

eachinstance ofPerson can have a factual property correspondingconcepts inother requirements modeling

associating aspecific name to it. The requirementthat
every factuabpropertymust beinduced by acorresponding
definitional property is called the Property Induction
Constraint, and offers a forof type checkingA subclass

languages. Each object category is defined by specifying the

property categories (kinds oflefinitional properties)that
can be associated with thddgads of classed-or example,
as we saw in Figure3.1, activity classes have

relationship between classes(and between metaclasses) Parti ci pants,parts andpreconditions
asserts that every instance of the subclass is an instance?f#pertiesamong others.

the superclass, and moreovevery definitional property of
a class is aefinitional property ofits subclasseqi.e.,
inheritance).

The description ofFigure 3.1 for the activity class
namedAdmi t is intended to convee idea that thaction
of admitting a new patient (t hospital) involveswo sub-
activities which,respectivelyobtain information from the
patient et | nf 0) and assign her to laed @ssi gnBed).
The first three properties édni t identify properties that
must be present for every instance of the class
(partici pant s properties). Thaeext two properties

4 For further discussionsabout formality in Requirements
Engineering see [Fick91].

Eachobjectcategory is forralized in the semantics of
RML in terms of axioms thataptureits essence; for
example, activitieshave axioms which state thatheir
st art time mustprecedetheir end time, or that all
preconditionpropertiesmust betrue at the start of a new
activity instance, whilgostconditionswill be true at the
end. The definition of‘“instance” is construed sahat an
activity token’s instancehood in anactivity class
corresponds tahe occurrence ofthe activity according to

5 In the sense thabuilding up a model consists of an
iterative description of conceptand individuals with
identity rather than aiiterative statement ofrue facts or
algorithms.



the formal properties associated with the class.

Just as for RMLentities, RML activity classesare also
organized into specialization/generalizationhierarchies.
Organizing activities in thisvay is a stefbeyond classical
object-oriented softwarengineering approaches which
objects (corresponding to RMLentities) have attached
procedures, but the procedurestammselves nasubject to

organization byhierarchies ofclasses. Some benefits and

ramifications of this are discussed in [Borg80].

Assertion (formula) “objects” are thmost novelpart of
RML. They provide aformal languagefor specifying
otherwiseinformal information. Among their roleshey
are associated aspreconditions and postconditions on
activities, and afvariants onentities. Treating assertions
as objects makes them subject to the
structuring/organizing principles agther objects, but the
meaning isspecific tothe logicalnature ofthe assertions.
For example, a class& gunment properties are taken to
be free variables ofan open formula, while thénduced
factual argument properties are taken to be the valoasd
to thosevariable toclosethe formula. Furthermore, the
semantics of 'instance' for assertion objéntfudethe that
the instance is to biaterpretedagainst the clasdefinition
as a true statement whileig an instanceOthertypes of
properties ofassertions allow thsetructuring ofassertions
in terms of their partsgs for otheobject categoriesput in
this case parts are interpreted adogical conjuncts. The
resulting representation issomewhat akin to, but
semanticallyricher than, decision treerepresentations of
complex formulas.

In short, RML supports objects diiree general kinds
(activities, entitiesand assertions) to beelated to each
other by binary semantic relationships, groupinghese
objects into classes,and organizing themaccording to
specialization/generalizatiorsuch amodeling framework
lends itself to a methodology forbuilding requirements
models according to Stepwise refinement by
specialization,”[Borg84], which developsclass hierarchies
in a regular and incremental manner.

3.3 Other Features
A formal semantics is given for RML byefining a

mapping from RML descriptions into a set of assertions i

First OrderPredicateCalculus (hereafterFOPC) [Gree86].
These includeall RML framework axioms as well as
predicatesand axioms associatedvith the specific classes
defined by the modeler. Assertions translate into
corresponding expressions in FOPC. However, the notati
of FOPC provides natructuring/organizatioprinciples or
other supportfor building and maintaining large theories
(the essence of Software Engineering)defectintended to
be addressed by RML, and its data modeling cousins.
The representation otime is essentialfor languages
intended to model dynamic applications, if one ipievent
an implementation biasoward imperative programming
style. RML assumes a lineadensemodel of timepoints
and encourages history-oriented modeling ofpplication,
which consists of describing possible histories for an enti

or activity (or assertion, fahat natter). Accordingly, there
is a time argument in evepredicateappearing in an RML
assertion. Mreover, time“objects” corresponding tdime

intervals are constructed as specializations of RML classes.

4 . Language issues beyond RML

This section reviews extensions of requirements
modeling languagesver thepastdecadediscussing some
of the researchissues thathave beenraised or remain
outstanding. We willdo so by summarizing some of our
own work over this time period, and pointing (in a
regretfully cursory ranner) tosome significant work by

thers.

samed.1l From RML to Telos

In a nutshell, RML offers anotation for requirements
modeling which corbines  object-orientation  and
organization, withan assertional sublanguagesed to

specify constraints and deductive rules. Such a framework is

shared by other proposals thattackle part of the

requirementsmodeling problemWebs87]. Unfortunately,
if one is totake seriouslythe broad applicationscope of
requirementamodeling, RML andits peers suffefrom a

seriousweaknesslts view of theworld is fixed, in the

sense thathe notions ofentity, activity and assertion are
built into the languagelndeed,the attribute categories
associatedvith eachone of thesehreenotions are defined

formally as part of the RML definition. What iseeded to
make a requirementsadeling languagenore expressive is
the ability to define new notions on par with those of
entity, activity and assertion,therebygiving the modeler
the ability to tailor thelanguage to garticularclass of
applications.

On the basis ofhese observations revampingeffort
for RML was initiated in1985, within thecontext of
research projects LOKI and DAIDA funded ltye European
Community underthe Esprit program. Aanguagecalled
CML (Conceptual Modeling Language) wasiatermediate
result of this activity,formalized in [Stan86] and further
studied and cleaned up[ikoub88] and [Topa89]The latest
version of the languag@btained afterseveral prototype
implementations and some usage, is Telos [Mylo90].

N Telos begins toaddressthis problemof ontological

extensibility by treating attributes/links in exactly tka@me

way as entities/nodefn particular,all attribute tokens are
instances of attributelassesvhich, in turn, are instances
oOf attributemetaclasseand soon. In addition, assertions
¥hn be associated with any Telos unit (entity or attribute) to
declare constraints or deductive rules. These facilities
combined make it possible to define within Telos (as
attribute metaclassesphe propertycategoriesthat defined

the semantics of activities and entities in RML.

Figure 4.1 illustrates how this eccomplished Vth the
definition of the metaclasact i vi t yCl ass, its instance
Admi t (analogous to the RML definition dfdmni t given
in Section 3)and aninstance ofAdm t, Adni t Mari a.
The readershould beawarethat in many respects the

Riscussion below siplifies thefeatures ofTelos, notably



CLASS Activitydass IN Metad ass, O ass WTH
attribute
participant: Entityd ass

part: Activityd ass
precondi tion: Assertiond ass
i ntegrityConstraint
pr eCondHol dsBef or e:
For All p/ Precondition, x/ Token,t,t"'/Tine
[x infromp) at t O
Hol ds(to(p),t") Ot'
part sDur i ngWhol e:
ForAll p/Part,x/ Token,t,t'/Time
[x infrom(p) O Exists g/Attribute

[ginp Ofron{qg)=x Oto(p) during x]]

overlap t]

deducti veRul e
$ (ForAl'l p/Patient

[x Op.roomward O x O p.loc]
END Activityd ass

CLASS Admit IN Activityd ass,
participant, single
newPat i ent: Person
toward: Vard
admtter: Doctor
part
docurent: Getlnfo( from newPatient)
checkl n: Assi gnBed( toWiom newPatient,
onVrd: toVéard)

Cass WTH

precondi tion
canAdm t?: HasAuthority( who: admtter,
where: toWard)

END Admi t

TOKEN AdmtMaria IN Admt WTH
newPat i ent
: Maria
toVvard
Chi | drensW
docunent
Get | nf oFrom Mari a

END Adni t Mari a

Figure 4.1

its treatment of time.

According toits definition, Acti vityC ass is an
instance of Met aCl ass, which is a built-in class
having as instances athetaclasses, ald0 ass, theclass
of all classes.Moreover, ActivityC ass has five
attribute metaclasseghree of which are instances of
Attribute (a built-in meta-metaclassassociatedwith
Cl ass) andtwo of which are instances ofthe built-in
attribute meta-metaclass nt egri t yConstrai nt. The
first integrity constraint gr eCondHol dsBef or e)
specifiesthat for every instance X) of the source of a
preconditionattribute clasgi.e., aninstance ofan activity

instance. The second integrity constralatlareghat every
activity instance hasne subactivityfor eachpart attribute
of its classandthat the subactivity mugike placeduring
the activity instance.

Admi t is defined as an instance Afti vi tyd ass,
with three Parti ci pant attribute classes, twdar t
attributes and a Precondition attribute. Its
Parti ci pant attributesarealso instances o8i ngl e,
an attributemetaclass whose instancege single-valued
attributes. Thus,attributes can be instances ofseveral
attribute classegust like entities. Mreover, commonly-
occurringconstraintssuch as having aingle-value or at-
least-one-value can bdefined once and for all in an
attribute metaclassand then used where appropriate
through instantiation.

Figure 4.1 also shows an instangéri t Mari a, of
Adni t . This token represents a particular admission to the
hospital and has associated attributes whietiarethe new
patient, theassignedvard andits subactivities. Note that
the same mechanismof instantiation and integrity
constraintused to endowattribute netaclassessuch as
preCondi t i on with a semanticarealso used toendow
attribute classes (oreven attribute tokens,though not
shown here) with an appropriate semantics.

4.2 Ontologies

If one accepts the premisieat extensiblentologies are
useful for requirements modeling, the obviousnext
questionis: whatare examples of suchuseful ontologies?
The answer rangedsrom conceptsthat are of universal
utility, such as‘agents,” to moralomain-specifimotions.
We illustrate these with several examples.

Agents: In dealing with most applications, one
encounters severalteracting entities, processes, etdhat
are trying to achieve differinggoals. Theimportance of
recognizingthe notion of agentsgspecially forsituations
involving concurrentactions, has along tradition in
requirements modeling, beginning with the workFefather
[Feat87], and continuing to suchrecent proposals as
[Dard91] and [Hage93].

Goals: A quick review of requirements frameworks,
including SADT and dateflow diagramsyrevealsthat they
offer no specifichelp forthe analysts taapture“...why a
system is neededbased orcurrentandforeseenconditions,
which may be internalperations or aexternal narket...,”
a taskmentioned inRoss'classicaccount ofrequirements
analysis. To capture the reasons fayatem, oneleeds to
understandand model intentional relationships such as
organizational goals (e.g., cutting costs, improving
quality), dependencieamong agents (thenanagerdepends
on her boss terovide hemwith the necessary budgébr a
projectand on her engineers taomplete their assigned
tasks on time)and non-functional requirements(such as
wanting aninexpensivesolution) and how theyrelate to
organizational goals (say, cutting expenses).

[Yu93] explores arontology for capturingintentional

class) the destination of the precondition attribute (that's tHé&lationships within an organization. The ontolaggludes
precondition assertion) must hold at the start of the activit§otions such asctor, goal, task and resource-dependency



role andposition Using it, one can createorganizational
models which do provide answers tajuestions such as
“why doesthe managemeed the projectbudget?”. Such
models carserve asstarting points in theanalysis of an
organizationalsetting, which precedesthe adoption of a
solution and the subsequent development of software
system. Adifferentapplication of the sam@&amework in
the design of software processes is detailed in [Yu94].
Similarly, Greensparet. al. [Gree93a]has proposed a
specific ontology for a classof models, thosecapturing
requirementanformation for service-orientedsystems. A

service-providing enterprise ismodeled from four
viewpoints:
¢ servicesthat meet goals oaddresshe needs of the
customers;

< work flows orprocessegperformed bythe enterprise

to provide the services;

e organizational units that serve

responsibility for the work;

¢ systems that provide the capabilit@sdresources for

performing the work.

As in Yu's work, this raises modelingand analysis
questions in terms of responsibilities, resource
dependencies, roles and positions.

Non-functional requirements: To deal with non-
functional requirements, [Mlo92] proposes dramework
which offers anontology of goals methodsand goal
dependenciesThis ontology, based on ideaproposed by
[Pott88] and truth maintenance systems before them, can
used to representnon-functional requirements ofvarious
types (securityperformanceetc.) in terms of goalsvhich
dependeitherpositively ornegatively, on other goals and
particular design decisions durisgstemdevelopment. For
example, the goal of havingsecuredatabasenay depend
positively on subgoalsuch as "minimize the number of
people whocan accesthe databaseand negatively on the
goal "offer auser-friendlyinterface”. Agoal is satisficedif
it depends positively on otheatisficedgoalsanddoes not
depend negatively on any othersatisficed goals. The
proposed framework includes nethods for goal
decomposition and satisficinghese methodare meant to
be domain-specific inthe sensehat therewill be different
methods for decomposing security goals as opposaskts
friendlinessones. Theramework is exploredn detail for
performanceand security requirements in[Nixo93] and
[Chun93a].

Software development domain: More specialized
work has alsobeen carried out in the modeling and
representation othe process okoftware development. An
implementation of Telosgalled ConceptBase, wassed to
represent requirements, designplementationsalong with
design rationalesoftware processassedand otherrelevant
information about an information systerdevelopment
projectwithin the context of theDAIDA Project[Jark92].
In the context othe ITHACA Project [Cons94],nitiated
in 1989, Telos wasused in asoftware-reusenformation
baseto organizedescriptions oftode,requirementsdesign
specifications, run-timelata,bug reportsand the like for

as loci of

software developed using differemiethodologiestools and
programming languages. Using theatures ofTelos, the
designers othe software information base wre able to
define a number of associations amongsoftware
descriptions thaserve adasisfor structuringthe software
information base, including new kinds of relationstspsh
as a form of similarity and correspondence.

Other work byJarkeand colleagueshas considered the
use of ConceptBastended by appropriatenks to nodel
development in-the-largand in-the-many (e.g., [Jark88])
and to organize software repositories.

Time: Requirementsmodeling languagesppear to
generallysupport some form of historicglerspective on
the world model. Somkanguages (e.g., GIST) takestate-
transition view of history, whilethers (e.g.RML, Telos)
incorporate anexplicit notion of time in the language;
RML and Telos experimentedwith an interval-based
ontology for time, while ERAE [Dubo86] and its
successors have chosem representemporal information
using temporalogic operators, whichappear to banuch
less verbose in some situations than Telos.

The aboveresults, and other proposals fonew, more
expressive languagefor requirementsmodeling (e.qg.,
[Dard93]} suggest thatfuture requirements modeling
frameworkswill offer a richerontology than thebasic
entity-activity diet of the past.

4.3 Abstraction

One of theintendedcontributions of RML was the
E’?plicit introduction of so-calledabstractionprinciples to
help organizethe considerable @mss ofdetails that belong
in a requirementsnodel. We brieflyconsider avariety of
abstractiortechniques as way to review relevantesearch
and to suggest possible new directions.

Generalization hasbeen particularlyfavored by our
own researchsubclasshierarchieswith inheritanceplaying
a centralrole [Borg84,Borg88] as anorganizing principle
for the contents ofconceptuamodels. It is interesting to
note that inrequirements mwdeling, the placement of

classes/concepts into subclass hierarchies is left entirely up

to the humandevelopers. Incontrast, researchers in
knowledge representationled by Brachman, and more
recently information systemge.g., review in [Borg92a]),
have found ituseful to allow the coputer system to be
charged with self-organizing conceptdefinitions (e.g.,
“patients with age under 64" & subclass ofpatientswith
ageunder70” and isdisjoint from “personswith age over
727). 1t still remains to demonstratehe benefits ofsuch
description languages for requirements modeling.
Classification received considerable attention in
Telos, where the semanticsand extensibility of the

language were built into the metaclasses. (See Section 4.1).

Exceptions  (special, extraordinary circurstances)
abound in any human enterprise, and considerably
complicate theunderstanding of &ituations, especially at
the beginning. This hakd us to advocat¢Borg85b] a
normal-case first abstractionyhere onlythe conmon/usual
states anevents in the domin are modeledirst, andthen



in successivepass(es), thespecial/exceptionakituations
and how they are handledare added. This is particularly
successful if (ithere issome systematicway to find the
abnormal casesand (i) there is a way to specify the

temporal logics (e.g., see [Ghez93] for review).

One way to achieve brevity of expression in
requirements is byhaving whatare known as defaults
deductions that are made inthe absence of other

exceptional circurstances afootnotes/annotations that do information. For examplen specifying anactivity, it is

not interfere with the first reading.

Similarly, it is notuncommon tofind generalization
leading tooverabstraction(e.g., “all patientsare assigned
to rooms”), so that a subclass megntradictsomeaspect

widely useful to be abl® describeonly what haschanged,
leaving itimplicit that "everything elsestays thesame".
These kinds ofiefaults,known asframeaxiomsin the Al
literature, become essential whendealing with object-

of one of its ancestors (e.g., “emergency-room patients mayientedspecificationswith inheritance: if wewish to be

be kept on stretchers in hallways”). In [Borg88], amlyze
the conflicting desiderafar subclasshierarchieghat allow
such‘improper specialization’,and then suggest a simple
language facility toaccommodat¢hem, whilemaintaining
the advantages of inheritance, and even subtyping.

Note howevethat theabove paperdealwith the issue
of exceptiononly at the level of(databaseprogramming
languages, albeibnes supportingconceptual radeling.
The issue of exceptioria specifications hakoweverbeen

able to specialize an activity so that #pecializedversion
does additional things, then the moregeneral activity
cannot asserthat it doesall and only what it hasbeen
stated todo. In [Borg93] we examine anumber of
alternative approaches to tha)d propose a newechnique
that appears havesimple yetsolid foundationsDefaults
can also beused to approachthe thorny problem of
reasoning in the presenoé inconsistencieswWork reported
in [Ryan93, Scho93, Fink93hows how thesand other

considered in [Fink93] and [Scho93]; it seems interesting tissues may baddressed byncluding default reasoning in

contrast and perhaps combine these approaches.

Parameterization and modularization are
abstractiontechniquesthat have beenused with great
success in programming and formal specificatashniques
such asOBJ and Z, beginning with [Burs77]. Among
requirements modeling languages, ERAE [Dubo92]
supports parameterization toenhancethe reusability of
requirements. In adifferent direction, during program
specification[Barr82, Borg84], we haveound particularly
useful the grouping of eventnd assertiondnto scripts
that represent long-term patternscohditionedactions and
dependencies (e.g., fatient isadmitted,repeatedly treated,
then discharged”).Scripts, based onthe work of Zisman
[Zism78] on productiorsystems with Petri netgppear to
be related to“object histories” advocated bysome object-
oriented approaches.

Viewpoints: A problem inherent in thetask of
requirements elicitation andadeling isthat thereare often
differences in opinion, approaches, etc. among
stakeholders. Asn databasesthe modelingof views and
their relationships hagmerged as a&ignificant research
issue, with the work of Finkelsteat al [Fink92] leading

the way in Requirements Engineering. Perhaps not computational

surprisingly, the various techniques aboveare not
independentandhave additionalises: script@re anatural
place to describethe handling of special, exceptional
circumstanceswhile view-pointsprovide amechanism for

dealing with inconsistency in specifications [Fink93,
Nuse93].
4.4 Formal Reasoning

Logic provides a paradigatic case ofhow one can
assignformal semantics to a formal languagmd what
kinds of tools one can build on top thfis. A considerable
number ofrequirement®ngineering languages fact have

requirementsnodeling. Weremark that defaults mayalso
play a role when trying to “animate&quirements as a way
of playing out what-if scenarios where insufficient
information has been presented at the beginning.

There appear tde several basic approaches to the
formalization of requirementanguages; one is tadopt as
foundation some advancedlogic (e.g., default, modal,
deontic logic) oother mathematicdbrmalism (e.g., order-
sorted algebras, rewrite systems); the othép try to stay
within the framework of standardFirst Order Predicate
Calculus. Hoping to inherithe benefits of thewell-
understood seamtics and well-studied proof techniques of
FOPC, we haveended tofollow the secondapproach. For
example, botlthe exceptionalsubclasseandthe technique
for dealingwith the frame problem mentioned above are
explicated interms of FOPC (rather than default logic,
whose semanticsire less settled). Theutility of using
FOPC is alsargued byZave and Jackson[Zave93], who
advocate theise ofunadorned-OPC as dingua-franca for
combiningmultiple languages.

The field of Requirementé&Engineering, likeknowledge
representationmust eventually come to termswith the
intractability (even undecidability) of
reasoningwith most expressivdogical formalisms: if we
are to have useful tools, we cannot allow them to
unexpectedly gooff into ‘trances’. Oneapproach is to
severelystylize and limit the kind of reasoning we are
prepared tosupport, ador example, in theadvancedtype
checking of modern programming and specification
languages. Anothealternative would be to dipnto the
research orimited andapproximatereasoninglooking for
relevant ideas. Or one can aim for mqualitative forms of
reasoning, as in [Chun93b] on the satisficing rafn-
functional requirements. Imall of these casesgesearchers
should however bealert to the possibility that the more

an underlying formal deductive logic. RML itself was givenyegtrictive circumstances goals ofrequirements modeling

meaning by translation t6OPC [Gree86]. Others build
directly on modallogics of actions (e.g., [Kent93]) or

may considerablysimplify the solutions thatare being
borrowed from fields like knowledge representation.



4.5 Other Languages

RML is not unique in its premises or itsatures. Many
other formal requirements modeling languages,some
mentioned above, haleenproposedover the sameperiod
as RML and its direct descendants.

The Conceptual Information Model, CINBube80] is
perhaps the first comprehensive proposal for formal
requirementsmodeling languagelts features include an
ontology of entitiesandevents, arassertionakublanguage
for specifying constraints, including complex temporal
ones.

The GISTspecification languagiBalz82], developed at
ISI over the same periaas Taxis/RML, was alsobased on
ideas from knowledge representation and supported
modeling the environment; it wasfluenced bythe notion
of making the specification executable, and by dbsire to
support transformational implementation. It Hasned the
basis ofan activeresearchgroup on the problems of
requirements description and elicitation (e.g., [John92]).

ERAE [Dubo86] [Dub092] waone of theearly efforts
that explicitly shared with RML the view thatquirements
modeling is aknowledgerepresentatiomctivity, and had a
base in semantic networks and logic.

The KAQOS project constitutes another significant
researcheffort which strives todevelop a comprehensive
framework for requirementsmodeling and requirements
acquisition methodologiefbard93]. The languageoffered
for requirementsnodeling providesfacilities for nmodeling
goals, agents,alternatives, eventsactions, existence
modalities, agentresponsibility and other concepts.
Moreover, like Telos, KAOSrelies on ameta-model to
provide a self-descriptive and extensible rmdeling
framework.

5. Requirements Modeling Experience

A requirements modeling language alone doesnstire
that modelersan creategood models. Giverthe language,
oneneeds ateast the following inaddition: aframework
(metamodel) reflecting an appropriatentology for the
domain; a methodologyjor elicitation and acquisition of
models; analysisnethodsthat helpanswerquestions and
find and resolve issues/problems; teabport to help with
the above. While it isbeyondthe scopeof this paper to
elaborate on these issuasgeneral, wewill reporthere on
some experience with RMandits successoranentioning
some relevant other work in passing.

5.1 Implementations

Many of the above-mentioned requirements modeling
languages have beémplemented, inthe sensdhat there
are knowledge-basmanagemensystems thatan “reason”
about the models representadtheselanguages irorder to
perform tasks such as consistency checkirgyestion
answering, orinferring propositions thathad not been
explicitly asserted.

For example, the implementatioh Telosrelies heavily
on results from deductive databases,both for query
processing (complicated by tpeesence of Horelause-like

deductiverules) and for constraintenforcement. Teporal
reasoning ishandledthrough aspecial-purposenference
engine based on efficieatgorithms for temporaleasoning
[Vila89], extended through a number of heuristics.

A subset of Telos was implemented at the University of
Crete, using C++, and h&®en tested gsart of theabove
mentioned ITHACA project to manage software
repositories containingpundreds ofthousands oBoftware
object descriptions.

Three independentProlog-based iplementations of
Telos have been developadSCS (Hamburg)Gall86], the
University of Passa{lark88]andthe University ofCrete
[Vassiliou90]and are inuse atseveralsites. ThePassau
implementation,namedConceptBasehas been the most
complete of thesandthe one that haseenmost use. On
the basis of positiveexperiences from this work,
ConceptBasewas adopted in anumber of projects,
including the NATUREproject [Jark93a]which uses it as
an integration platformfor all components of a
comprehensiveequirements engineering environment

We believe that part of thesuccess ofTelos and its
implementations lies in the ability of tHanguage to be
extended tonew ontologiesand domains; among others,
Telos hasheenextended to dealith agents, plans, goals,
similarities, etc. through the addition of suitable
metaclassesHowever, often anunfortunate side-effect of
meta-extensions is relatively pooperformance, in
comparison with  special-purpose implementations. It
remains an open problem whether there is a wagchieve
some extensibility without sacrificing efficiency (as
attempted in [Borg92], for example).

ACME [Gree91] constitutes anotheffort to implement
and exploit the RML framework. ACME was originally
conceived as aimplementation of RML on @ommercial
knowledgerepresentatiosystem(Intellicorp’s KEE™) but
evolved over time on the basis of implementation
experiencesndpractice. Inorder to offer some flexibility
in providing different modeling frameworks for different
application domains and different analy&isks, theobject-
oriented conceptual modeling constructs (objects,
properties, classesetaclasseshave beerseparatedrom
the RML ontologyof entities, activities and assertions.
The former appears in ACME &ise Conceptual ddeling
Platform (CMP),andthe framework ofchoice,e.g., RML
or any other, is builseparately oriop of the CMP. RML
property categories are implemented in a manner analogous
to theirtreatmentin Telos, i.e., asattribute netaclasses,
having definitional propertiesas instances.Thus, one
defines classes of definitional properties by associating
propertiesandbehavior toattribute metaclasses. Weave
implementedsome of theSOS framework ontop of
ACME [Gree93a]; experience is reported below.

5.2 Experience with ACME

We mention here some substantiaéxperiencegained
using ACME, which hasbeenused to model requirements
for the purposes of a business proaessngineering (BPR)
effort. Modelsconsist of one to twahousandconcepts



(e.g., workflows, processsteps, actionsdata entities),
translating tobetweenten and twenty thousand ACME
objects (where everything, including properties, are
considered to beobjects). The ACME tool builders
interactedwith the designers othe BPR nethodology in
order to acquir¢heir framework (metamodeinto ACME.
Then, subject matter expert;lamely experts in the
business process being re-engineered (whigipened to be
trouble reportingand repair), usedthe framework and the
tool to acquire andanalyzetheir models. Theframework
included asimple assertionlanguage forstating initiation
conditions on actions.

There were several lessons learned, athem anecdotal
and none of them conclusiveHowever, weview it as
important tosharesuchexperiences, because, stated in
[Luba93], little is actuallyknown abouthow organizations
do requirements. Weattempt to evaluateour experience
against the slogans discussed above in Section 2.

Use explicit world modeling: In this domain, world
modeling constituted anajor portion of therequirements

engineering activities. Modeling the business processes waspressions.

the most time-consuming and, arguably, the most
important activity. Once the models took shape, it was
relatively straightforward tostate requirements,such as
constraints, policiesand non-functional propertiesSuch
requirementsre statementaboutthe world, and once the
world was understood(i.e., adequatelymodeled), a large
portion of the requirementswork had been done. The
converse isalso true: in theabsence of aexplicit model,
we surmise that the statement re@juirements wouldhave
been very difficult oimpossible tocreateand comprehend.
It required considerable comitment to use a oueling
approach and to involve people at all levels.
Object-oriented conceptual modelingtl in all, the use
of the structuring mechanisms of aobject-oriented
framework were useful to modelers, althoughp&maphrase
the title of apanel atRE93 lastyear[Pott93] they might
not have known their requirementswere object-oriented
unless theyasked their analyst. From the adeler's
viewpoint, the units of descriptiowere entities, processes,
actions, trigger conditions,and soon. The fact that all
units of descriptionwere treateclniformly as objects by
ACME was not necessarily relevant duringnodeling.
However,from the point ofview of ACME the tool, the
implementation relies heavily on object-orientedness.
Use abstraction techniques: Many discussions of
conceptscentered ordistinctions thatcan be explained by
abstraction techniques such as specializationpart-of,
similarity, exception, and the like. This conceptual
modeling vocabularyas obviously usefulHowever,there
was no attempt to use stepwiseefinement by
decomposition or specialization as an overatbcess
principle or model organizatiomechanism. Theoncept of
a workflow task did not even have anotion of
decompositiorinto subtasksglaboration/refinement of the
models was done by replacingdes/links in dflat” model
by other nodes and link$he lack of decompositiomight
actually have beenesponsible fosomeefficiencies in the

modeling process, since no ohad to present ordefend

arbitrary groupings of conceptsinto another, or the
invention of concepts that contain otharwever,despite

the simplicity and comfort of the flat approach, they
anticipated a gravdisadvantage coimg later on in the use
of the modelingnethodologythere would bdittle chance

for reuse due to the failure tweatereusableabstractions in
the first place.

Formality: Formal semanticsire needed toallow for
automatedanalysis, but the more complex tlenguage
gets, theharder it is touse. Ournitial attemptsat arich
logic in ACME made the languaderd touse: usergould
not easily create or understandssertions in amodel.
However, a simple/weak languagas worsehan English,
which at leastecordednformally theintendedmeaning of
the expression. Weompromised byusing a relatively
simple but formal language (e.g., no quantifiers, and
special term constructomsnly as needed).Novices could
specify things and get some inconsistenaghecking done
within ACME. ACME can parse and execute the
In thetradeoff between formality and
complexity, weagreewith [Zave91]that formality should
not be avoidedbut rather strategies forcoping wth the
concomitant complexityshould bepursued, for example,
using multiple viewpoints oother means to form simpler
projections of the information.

Other reports ofexperienceswith using requirements
languages include [Hage93] and [Jarke93b].

5.3 Other Support for Requirements Process

Our experiencemotivates us not only to improve the
language foundationsut also themethodologicabndtool
supportfor the requirementprocess. The maidifficulties
of requirementgngineeringconcernnegotiating a common
understanding ofconcepts,dealing with ambiguity, and
clarifying desiresheeds anaonstraints [Gaus89Because
these topicdave to damainly with humanunderstanding
and communication, theyre particularly difficult to make
amenable taigorous or formal treatmenEor example, it
needs to be recognizethat most of therequirements
process isspentnot in the possession aforrect and
consistent models, butrather, asindicated by Feather
[Feat91], in “GettingRight From Wong.” That isto say,
requirementsnodelingconsists of aseries ofincremental
steps that(hopefully) converge in a model it the
appropriate content.

In this vein, a useful approach isthat offered by
Reubenstein [Reub91], whgave a precisaneaning to
severaltypes of “issues” that arise while developing a
requirementanodel, such as inconsistencies, ambiguities
and incompleteness. These issues were detacteuding to
formal rulescorresponding tothe intuition behind these
terms. Given arather generaframe-basedrepresentation
scheme with an embedded propositional expression
language, Reubenstein’'s Requirements Apprentice
recognizedhe presence ofhese issueandkept anagenda
of issues to be resolved.

Keeping track ohssumptions andationale[Gree93b] is



another aspectof requirements modeling that needs
attention and is being addressed by vari@searchers.g.,
[Rame92].

Another important aspect ofrequirements wdeling is
decision-making to achieve requirememizdels that satisfy
designgoals, resolve conflicting requirements predicting
failure, and so on. While constructing arequirements
model, one is concerned with critiquing, parallel
elaboration, etc. This requires corhining the
representation ofspecialized domain knowledge with
problem-solving techniques, such as planning and
searching, as in [Ande93, Robi94, Fick88].

The KAOS methodology [Dard93] exploits the
expressiveness of the KAQ8odeling languagéo support
all phases ofequirementsacquisition, startingvith initial
goals (both functional and non-functiongdypceedingwith
the identification of potential agents whocould take
responsibility for the satisfaction of thesgoals, all the
way to theassignment of actions tgarticular agents,
including computer systems to be built.

Finally, a number of othanethodology andbool issues,
such as presentationstransformations, visualization,
connection to hypertexare addressed byothers, e.g.,
[John92], [Lali93], [Jark93b].

6 . Discussion and Conclusions

The paperhas presented aetrospective on RML, its
premises, mairfeatures,evolution over the past decade,
experiences inuse and its peers among requirements
modeling languages. Wehave stuck mostly to
representatiomnd reasoningissues, with someeports of
implementations, and allusion to to@sd nethodology as
important related work.

Like any othemresearcher in aimilar situation, we are
pleased toseesome of the premiseand features of RML
and its peers being used in systems analysigractice
through the methodology known as Object-Oriented
Analysis (OOA)—for example, [Schi88, Coad¥umb91,
Jaco92, Booc93, Wirfa0], to nanzefew. Thebasic tenets
of OOA include an object-oriented representafiamework
augmented with a simptatology anda graphicahotation
for describingportions of a modelSorme OOA proposals
go further by addingfacilities for representingtemporal,

cardinality and other constraints, while others attempt to

endow their notation with ormal semantics. Irso doing,
they have toaddresssome of the same issudaced by
formal requirements modeling languagessince 1980,
including issues mentioned in this paper.

Surprisingly, much of thevork on OOA hasbeendone
independently of earliework within the Requirements
Engineeringcommunity. Perhapsthis practice can be

6 For example, [Embley92presents arEntity-Relationship-
like model for OOA, extended withnotions for modeling
actions, triggers and states, wahformalsemanticsdefined
in terms of aranslationinto FOPC, verymuch along the
lines of RML. Throughout, thereis no referenceto the
formal requirements modeling languages mentioned here.
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reviewed. Requirements Engineering hd®adstart on the
development offormal (and object-oriented)requirements

modeling languages, tools and methodologies and has much

to offer. OOA, on the otherhand, clearly has been
accumulating a wealth of practical experieticat can serve
as basisfor more directed anddirectly applicable future
research in Requirements Engineering.

Language desighasbeen a centralheme in Software
Engineering research throughout its history. Thergence
of formal requirementsmodeling languagesand OOA
techniques ighe logical nexistep inproviding linguistic,
methodological and tool support for tearly phases of the
software lifecycle, very nuch for the reasons first
articulated in [Bell75]. However, requirements modeling
languages, because of their subject matter, are
fundamentally different from programming and specification
languages whose subject matfsoftwaresystems) isman-
made, bounded arabjectively known. A corollary ofthis,
argued in the original RMpaper as welljs thatdesigners
of requirements modeling languages need to tumedearch
in areas other than core computer systems and
programming languages (areas such as knowledge
representation), irsearch of ideaand researchresults that
serve adasisfor the design oftheir languages. To put it
anotherway, it is unwise to try todesign requirements
modeling languages by merely adopting programming
language ideas.

Requirements engineering jisst one ofseveraltasks a
computer professional may kmalled on to perform that
requires modelingispects othe real world.Data modeling
for databasedesign, process modeling foisoftware and
businessprocessengineering,and knowledge engineering
for expertsystemdevelopmentare others. Mbreover, the
demandfor suchworld modeling skills for the computer
professional iggrowing, as wedind that software systems
need to beconceivedright from the start asembedded
systems in acomplex, evolving organizational setting.
Unfortunately, this skill is being givewery little attention
in the standard undergraduatemputersciencecurriculum.
How well do ourgraduatingcomputer science students
know FOPC andits use inrepresenting factabout an
application? Is the relationship between

Al r CanadaFl i ght #23#f r om#NYC#t o#Tor ont o

andAi r| i neFl i ght s like the relationshipbetween an
instanceand aconcept, or likethe relationshipbetween a
conceptand asuperconcept? Wat about therelationship
betweenAi r CanadaFl i ght #23 andthe flight leaving
tomorrow morning from NYC to Toronto? And what is the
effect of making onechoice vs. the other? How much
practice havestudentshad in building requirements or
process models with form#bols, usingdifferent notations
(comparedwith, say, how mch training theyreceive in
using different programminglanguages)? Were in their
program of studyo they learnaboutworld modeling as a
professionakkill (worth learning inits own rightand on
par with system modeling) whiatomes with a theory and
an engineeringpractice? Webelieve thetime hascome to
think of conceptual modeling as essential to our



undergraduate curriculum, to b&ught tocomputerscience
undergraduates assaibject whose manifestations thenll
encounter invaried fields such asrequirementsanalysis,
database design, knowledge engineering and process
modeling.
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