
Published in the Proceedings of the Sixteenth International
Conference on Software Engineering, Sorrento, May 1994.

1

On Formal Requirements Modeling Languages: RML Revisited
Invited Plenary Talk

Sol Greenspan1    John Mylopoulos2    Alex Borgida3

123Abstract

Research issues related to requirements modeling are
introduced and discussed through a review of the
requirements modeling language RML, its peers and its
successors from the time it was first proposed at the Sixth
International Conference on Software Engineering (ICSE-6)
to the present—ten ICSEs later. We note that the central
theme of “Capturing More World Knowledge” in the
original RML proposal is becoming increasingly important
in Requirements Engineering. The paper highlights key
ideas and research issues that have driven RML and its
peers, evaluates them retrospectively in the context of
experience and more recent developments, and points out
significant remaining problems and directions for
requirements modeling research.

1 . Introduction
"...Requirements definition is a careful assessment of
the needs that a system is to fulfill. It must say     why     a
system is needed, based on current and foreseen
conditions, which may be internal operations or an
external market. It must say      what    system features will
serve and satisfy this context. And it must say     how      the
system is to be constructed..."

— Doug Ross [Ross77a]

Concern for Requirements Engineering is as old as
Software Engineering itself. When awareness of a looming
software crisis led to the formation of the field of Software
Engineering in 1968, requirements analysis and definition
practices were immediately under review as a potentially
high-leverage but neglected area. By the mid-70s, this
review had produced a wealth of empirical data, confirming
that “the rumored ‘requirements problems’ are a reality”
[Bell75]. The data suggested that requirements errors were
the most numerous and, even more significantly, that they
also were the most costly and time-consuming to correct.
This recognition of the critical nature of requirements
established Requirements Engineering as an important
subfield of Software Engineering.

In response to this recognition came a wave of

                                                
1 Current address: GTE Laboratories Incorporated, 40 Sylvan

Road, Waltham, MA, USA 02254.
2 Current address: Department of Computer Science,

University of Toronto, 6 King's College Road, Toronto,
Ontario, Canada M5S 1A4.

3 Current address: Department of Computer Science, Hill
Centre, Busch Campus, Rutgers University, New
Brunswick, NJ, USA 08903.

requirements concepts, languages, tools and methodologies
(e.g., [TSE77], [Thay90]). However, while the first wave
of requirements engineering research still unfolds, another
wave is taking shape. This second wave is manifested in
terms of a number of "firsts": the first International
Symposium on Requirements Engineering [RE93], the first
International Conference on Requirements Engineering
[ICRE94], and the formation of the first IFIP Working
Group on Requirements Engineering (IFIP WG 2.9).
Moreover, this new wave is characterized by an expanded
scope for and more ambitious demands on Requirements
Engineering; we now see attempts to deal with more types
of information and to understand, formalize and support
more of the requirements definition and analysis tasks. At
the core of these concerns are basic issues of representation
and reasoning about the knowledge accumulated during the
requirements acquisition phase, a subject referred to as
requirements modeling. It is our contention that such
representation and reasoning issues must continue to be
addressed and that their resolution is a prerequisite to
progress in all aspects of Requirements Engineering
research and practice.

This paper reviews the trajectory of our research on
requirements modeling from the language RML (first
proposed in [Gree82]), through its successor Telos, to the
present. Throughout, we highlight key ideas and research
issues that have driven us and our colleagues, evaluating
them retrospectively in the context of experience and more
recent developments, and pointing out significant
remaining research issues.

Section 2 of the paper presents a set of premises for
requirements modeling, which motivated RML and
continue to hold for other related proposals. Section 3
describes the basic features of RML, while Section 4 offers
an overview of other languages that might be considered
intellectual offsprings and peers of RML, describing how
these have dealt with modeling issues left open by the
original RML. Section 5 discusses some experiences using
requirements modeling languages, and the issues of tools
and methodologies that appear to be imperative, if this
approach is to succeed. Section 6 draws some conclusions.

This paper might read like an opinionated tutorial to
some and an implied research agenda to others. One thing
the paper is not, however, is a survey of the field.
Generally, the discussion concentrates on the work we are
most familiar with, our own, with pointers to widely-
known related research. For further work on the state of the
art, the reader is encouraged to look at papers in sources
such as [RE93, ICRE94, ESEC93, CAiSE93, IWSSD].



2

2 . Requirements Modeling
We propose to review some of the principles underlying

the RML framework for requirements modeling, as reported
in [Gree82] and later in [Gree84] and [Borg85a]. This gives
us the opportunity to acknowledge intellectual debts, and at
the same time present  hindsights on RML.

• There is more to writing requirements than
functional specif ications. The stage preceding
software design has been frequently called specification, and
this term is often used as an abbreviation for “functional
specifications”—a prescription of the desired functionality
of a system to be built. This limited scope for requirements
is evident in the use of the term “specification languages,"
applied to highly developed mathematical formalisms such
as Z, VDM, Larch, OBJ (see [Wing90] for an introduction).
Another important aspect of software specifications are
non-functional requirements such as efficiency, security and
privacy.

A specification is, by definition, prescriptive: it
specifies desired properties for a system to be built.
However, it has always been self-evident to many
practitioners that the process of “systems analysis”
preceding the development of software requires the analyst
to achieve an understanding of the application domain,
including the (e.g., organizational) environment within
which the proposed system will eventually function. What
remained largely unstated was that it is useful (dare we say,
imperative) to capture explicitly as much of this
understanding as possible, in order to support
communication between the various “stakeholders”
(customers, developers, testers)—which is the chief
function of the requirements document. An explicit model
is also of use in supporting continuity in face of inevitable
staff turnover and other organizational change. With the
understanding that reuse promises increased productivity,
we now also see another purpose for explicitly capturing
the understanding of the “environment” of the proposed
software system—the requirements model can also be
reused.

A model of a social organization or of the natural world
is not likely to be prescriptive—“natural kinds” like ‘chair’
have no mathematical definitions. Hence we see the need to
distinguish between specification languages, such as those
mentioned above, and modeling languages, which aspire to
offer facilities for the description of settings, or more
precisely, humans’ knowledge/beliefs about these worlds.
This is a philosophical and psychological point which has
profound implications for requirements language designers
and users alike, as well as the requirements discourse.

The title of the original RML paper emphasized this
distinction by talking about “capturing more world
knowledge in the requirements specification”. (It might
have been better to use the term “requirements
document/description  ” to make clear that existing as well as
proposed things are to be discussed.) Among others, Ross
[Ross77b] recognized the significance of this point when
emphasizing that SADT was a notation for communicating
any sort of information, not just software specifications;

and Balzer et al repeatedly pointed to the need for closed
models, which include the environment as well as the
proposed system (e.g., in [Balz79]).

• Develop and present requirements as
models. The appropriate stance to take in describing
open-ended, real world phenomena is a “modeling” one:
systematically identify significant/relevant aspects of the
domain, and provide direct representations of them in the
requirements. Models are the basis of understanding the
world as well as for communicating among all involved
parties. Requirements engineering activities are defined as
model construction, management and analysis tasks.

The case for world modeling is articulated eloquently by
Jackson [Jack78, Jack83], who starts with modeling of
environmental processes prior to system design, a “model
of reality with which [the system] is concerned.”

• Object-centered knowledge representation i s
an appropriate foundation for conceptual
modeling. The logical conclusion of the previous two
points is that we should be developing conceptual models.
The idea of world modeling, as offered by RML, is to
capture (concrete or abstract) entities, activities, and other
phenomena in the world as objects in a model. Moreover,
objects are structured and organized according to principles
of conceptual organization, such as "classes and instances,"
"parts and wholes," and "specializations and
generalizations." Others, including Bubenko [Bube80] and
Solvberg [Solv79], also advocated conceptual modeling for
requirements modeling, or built requirements languages on
top of knowledge representation substrata (e.g., GIST
[Balz82]). The issue of conceptual modeling was considered
by a number of participants at the 1980 Pingree Park
Workshop [Ping81, Brod84], particularly by researchers
working on data modeling for databases. Objects (with
intrinsic identity) form the pearl-seeds around which
knowledge about the domain is grouped. Of course, the
field of Knowledge Representation (e.g., [Find79]) has a
long-standing involvement with this subject matter, and
has served for us as a rich source of ideas. More generally,
the field of Cognitive Science is relevant to this enterprise
(e.g., see [Coll88] for a collection of relevant papers).

• Abstraction and refinement, especial ly
involving Is-A hierarchies, are significant i n
engineering large requirements. The importance of
abstraction in dealing with many details has, of course,
been a central tenet of Software Engineering all along.
Subclass hierarchies were well-known in Simula/Smalltalk,
in knowledge representation frameworks such as semantic
networks, and in data modeling proposals such as [Smit77].
RML and its peers recognized the significance and utility of
having objects in class hierarchies with inheritance (central
pillars of what is now known as “object-orientation”) and
applying them to all aspects of software development
[Mylo80, Gree83, Borg84]. In fact, we have argued
elsewhere [Borg91] that a chief difference between
knowledge representation and conceptual modeling is
precisely this emphatic concern with abstraction and the
engineering of large models.



3

• Formal requirements modeling languages
are needed. The above principles defined a foundation for
the RML proposal presented in [Gree84]. Implicit in this
was the notion that some kind of formal language would be
used to express requirements models. The advantage of any
such formalism is that descriptions which adopt it can be
assigned a well-defined semantics, often using methods
imported from mathematical logic. The advantages of clear
semantics include adjudicating among different
interpretations of a given model, and offering a basis for
various ways of reasoning with models, either through
consistency checking (the foundation of useful tools) or by
supporting question-answering or even
simulation/prototyping.

 Of course, the appeal and usability of some techniques
may be largely due to their relative simplicity and
flexibility derived from informality. We note that the use of
a formal requirements modeling language does not preclude
the concurrent use of informal notations. In fact, the
original RML proposal envisioned early use of an informal
notation, such as SADT, and a transformation process from
an informal SADT model into a formal RML one.4

3. RML: Requirements Modeling Language
[Gree82] presented a framework that formed the basis for

a requirements modeling language called RML. The
language is further elaborated in [Gree84, Borg85a,
Gree86]. This section summarizes its main features.

3 . 1 An Object-Centered Modeling Framework
RML views a model as consisting of objects of various

kinds: individuals, or tokens, grouped into classes, which
are in turn instances of metaclasses. Classes and
metaclasses can have definitional properties, which specify
what kinds of information can be associated to their
instances through factual properties. For example, if the
class Person has name as a definitional property, then
each instance of Person can have a factual property
associating a specific name to it. The requirement that
every factual property must be induced by a corresponding
definitional property is called the Property Induction
Constraint, and offers a form of type checking. A subclass
relationship between classes (and between metaclasses)
asserts that every instance of the subclass is an instance of
the superclass, and moreover, every definitional property of
a class is a definitional property of its subclasses (i.e.,
inheritance).

The description of Figure 3.1 for the activity class
named Admit is intended to convey the idea that the action
of admitting a new patient (to a hospital) involves two sub-
activities which, respectively, obtain information from the
patient (GetInfo) and assign her to a bed (AssignBed).
The first three properties of Admit identify properties that
must be present for every instance of the class
(participants  properties). The next two properties

                                                
4 For further discussions about formality in Requirements

Engineering  see  [Fick91].

(register and canAdmit) are classified under
parts , and specify sub-activities of Admit. The last
attribute, canAdmit?, defines a precondition, which must
be true every time Admit is instantiated. In the name of
uniformity, RML treats assertions such as
HasAuthority(...) as classes in their own right.

The above framework is object-oriented5, in line with
early object-oriented programming languages or knowledge
representation schemes like semantic networks and frames.
However, the restriction to three levels and the relatively
simple rules for property induction and inheritance were
intended to assist in avoiding unnecessary complexity while
providing an adequate expressive framework for
requirements modeling.

3 . 2 An Ontology for Requirements Modeling
According to RML's view of the world (what we shall

call its ontology), there are three types of things to be
talked about, represented by instances of three built-in
object categories, defined in terms of metaclasses: Enti ty,
Activity and Assertion. The concepts of entity and
activity were chosen because they are ubiquitous in
modeling aspects of a real world, and match well
corresponding concepts in other requirements modeling
languages. Each object category is defined by specifying the
property categories (kinds of definitional properties) that
can be associated with those kinds of classes. For example,
as we saw in Figure 3.1, activity classes have
participants , parts  and preconditions
properties, among others.

Each object category is formalized in the semantics of
RML in terms of axioms that capture its essence; for
example, activities have axioms which state that their
start  time must precede their end  time, or that all
precondition properties must be true at the start of a new
activity instance, while postconditions will be true at the
end. The definition of “instance” is construed so that an
activity token’s instancehood in an activity class
corresponds to the occurrence of the activity according to

                                                
5 In the sense that building up a model consists of an

iterative description of concepts and individuals  with
identity rather than an iterative statement of true facts or
algorithms.

Activity Class Admit with
participants

newPatient: Person
toWard: Ward
admitter: Doctor

parts
document: GetInfo(from: newPatient)
checkIn: AssignBed(toWhom: newPatient, 

onWard: toWard)
precondition

canAdmit?: HasAuthority(who: admitter,
where: toWard)

...
                            Figure 3.1



4

the formal properties associated with the class.
Just as for RML entities, RML activity classes are also

organized into specialization/generalization hierarchies.
Organizing activities in this way is a step beyond classical
object-oriented software engineering approaches, in which
objects (corresponding to RML entities) have attached
procedures, but the procedures are themselves not subject to
organization by hierarchies of classes. Some benefits and
ramifications of this are discussed in [Borg80].

Assertion (formula) “objects” are the most novel part of
RML. They provide a formal language for specifying
otherwise informal information. Among their roles, they
are associated as preconditions and postconditions on
activities, and as invariants on entities. Treating assertions
as objects makes them subject to the same
structuring/organizing principles as other objects, but the
meaning is specific to the logical nature of the assertions.
For example, a class’s argument properties are taken to
be free variables of an open formula, while the induced
factual argument properties are taken to be the values bound
to those variable to close the formula. Furthermore, the
semantics of 'instance' for assertion objects include the that
the instance is to be interpreted against the class definition
as a true statement while it is an instance. Other types of
properties of assertions allow the structuring of assertions
in terms of their parts, as for other object categories, but in
this case parts are interpreted as logical conjuncts. The
resulting representation is somewhat akin to, but
semantically richer than, decision tree representations of
complex formulas.

In short, RML supports objects of three general kinds
(activities, entities and assertions) to be related to each
other by binary semantic relationships, grouping these
objects into classes, and organizing them according to
specialization/generalization. Such a modeling framework
lends itself to a methodology for building requirements
models according to “stepwise refinement by
specialization,” [Borg84], which develops class hierarchies
in a regular and incremental manner.

3 . 3 Other Features
A formal semantics is given for RML by defining a

mapping from RML descriptions into a set of assertions in
First Order Predicate Calculus (hereafter FOPC) [Gree86].
These include all RML framework axioms as well as
predicates and axioms associated with the specific classes
defined by the modeler. Assertions translate into
corresponding expressions in FOPC. However, the notation
of FOPC provides no structuring/organization principles or
other support for building and maintaining large theories
(the essence of Software Engineering)—a defect intended to
be addressed by RML, and its data modeling cousins.

The representation of time is essential for languages
intended to model dynamic applications, if one is to prevent
an implementation bias toward imperative programming
style. RML assumes a linear, dense model of time points
and encourages history-oriented modeling of an application,
which consists of describing possible histories for an entity

or activity (or assertion, for that matter). Accordingly, there
is a time argument in every predicate appearing in an RML
assertion. Moreover, time “objects” corresponding to time
intervals are constructed as specializations of RML classes.

4 . Language issues beyond RML
This section reviews extensions of requirements

modeling languages over the past decade, discussing some
of the research issues that have been raised or  remain
outstanding. We will do so by summarizing some of our
own work over this time period, and pointing (in a
regretfully cursory manner) to some significant work by
others.

4 . 1 From RML to Telos
In a nutshell, RML offers a notation for requirements

modeling which combines object-orientation and
organization, with an assertional sublanguage used to
specify constraints and deductive rules. Such a framework is
shared by other proposals that tackle part of the
requirements modeling problem [Webs87]. Unfortunately,
if one is to take seriously the broad application scope of
requirements modeling, RML and its peers suffer from a
serious weakness. Its view of the world is fixed, in the
sense that the notions of entity, activity and assertion are
built into the language. Indeed, the attribute categories
associated with each one of these three notions are defined
formally as part of the RML definition. What is needed to
make a requirements modeling language more expressive is
the ability to define new notions on par with those of
entity, activity and assertion, thereby giving the modeler
the ability to tailor the language to a particular class of
applications.

On the basis of these observations, a revamping effort
for RML was initiated in 1985, within the context of
research projects LOKI and DAIDA funded by the European
Community under the Esprit program. A language called
CML (Conceptual Modeling Language) was an intermediate
result of this activity, formalized in [Stan86] and further
studied and cleaned up in [Koub88] and [Topa89]. The latest
version of the language, obtained after several prototype
implementations and some usage, is Telos [Mylo90].

Telos begins to address this problem of ontological
extensibility by treating attributes/links in exactly the same
way as entities/nodes. In particular, all attribute tokens are
instances of attribute classes which, in turn, are instances
of attribute metaclasses and so on. In addition, assertions
can be associated with any Telos unit (entity or attribute) to
declare constraints or deductive rules. These facilities
combined make it possible to define within Telos (as
attribute metaclasses) the property categories that defined
the semantics of activities and entities in RML.

Figure 4.1 illustrates how this is accomplished with the
definition of the metaclass ActivityClass, its instance
Admit (analogous to the RML definition of Admit given
in Section 3) and an instance of Admit, AdmitMaria.
The reader should be aware that in many respects the
discussion below simplifies the features of Telos, notably



5

its treatment of time.
According to its definition, ActivityClass is an

instance of MetaClass, which is a built-in class
having as instances all metaclasses, also Class, the class
of all classes. Moreover, ActivityClass has five
attribute metaclasses, three of which are instances of
Attribute (a built-in meta-metaclass associated with
Class) and two of which are instances of the built-in
attribute meta-metaclass IntegrityConstraint. The
first integrity constraint (preCondHoldsBefore)
specifies that for every instance (x) of the source of a
precondition attribute class (i.e., an instance of an activity
class) the destination of the precondition attribute (that's the
precondition assertion) must hold at the start of the activity

instance. The second integrity constraint declares that every
activity instance has one subactivity for each part attribute
of its class and that the subactivity must take place during
the activity instance.

Admit is defined as an instance of ActivityClass,
with three Participant attribute classes, two Part
attributes and a Precondition attribute. Its
Participant attributes are also instances of Single,
an attribute metaclass whose instances are single-valued
attributes. Thus, attributes can be instances of several
attribute classes, just like entities. Moreover, commonly-
occurring constraints such as having a single-value or at-
least-one-value can be defined once and for all in an
attribute metaclass, and then used where appropriate
through instantiation.

Figure 4.1 also shows an instance, AdmitMaria, of
Admit. This token represents a particular admission to the
hospital and has associated attributes which declare the new
patient, the assigned ward and its subactivities. Note that
the same mechanisms of instantiation and integrity
constraint used to endow attribute metaclasses such as
preCondition with a semantics are also used to endow
attribute classes (or even attribute tokens, though not
shown here) with an appropriate semantics.

4 . 2 Ontologies
If one accepts the premise that extensible ontologies are

useful for requirements modeling, the obvious next
question is: what are examples of such useful ontologies?
The answer ranges from concepts that are of universal
utility, such as “agents," to more domain-specific notions.
We illustrate these with several examples.

Agents: In dealing with most applications, one
encounters several interacting entities, processes, etc. that
are trying to achieve differing goals. The importance of
recognizing the notion of agents, especially for situations
involving concurrent actions, has a long tradition in
requirements modeling, beginning with the work of Feather
[Feat87], and continuing to such recent proposals as
[Dard91] and [Hage93].

 Goals: A quick review of requirements frameworks,
including SADT and data flow diagrams, reveals that they
offer no specific help for the analysts to capture “...why a
system is needed, based on current and foreseen conditions,
which may be internal operations or an external market...,”
a task mentioned in Ross' classic account of requirements
analysis. To capture the reasons for a system, one needs to
understand and model intentional relationships, such as
organizational goals (e.g., cutting costs, improving
quality), dependencies among agents (the manager depends
on her boss to provide her with the necessary budget for a
project and on her engineers to complete their assigned
tasks on time) and non-functional requirements (such as
wanting an inexpensive solution) and how they relate to
organizational goals (say, cutting expenses).

[Yu93] explores an ontology for capturing intentional
relationships within an organization. The ontology includes
notions such as actor, goal-, task- and resource-dependency,

CLASS ActivityClass IN MetaClass, Class WITH
  attribute

participant: EntityClass
part: ActivityClass
precondition: AssertionClass

  integrityConstraint
preCondHoldsBefore:
 ForAll p/Precondition,x/Token,t,t'/Time

  [x in from(p) at t ⇒
Holds(to(p),t') ∧  t' overlap t]

partsDuringWhole:
 ForAll p/Part,x/Token,t,t'/Time

  [x in from(p) ⇒ Exists q/Attribute

[q in p ∧  from(q)=x ∧ to(p) during x]]
     

   deductiveRule
$ (ForAll p/Patient

 [x ∈  p.room.ward ⇒  x ∈  p.loc]
END ActivityClass

CLASS Admit IN ActivityClass, Class WITH
  participant, single

newPatient: Person
toWard: Ward
admitter: Doctor

  part
document: GetInfo( from: newPatient)
checkIn: AssignBed( toWhom: newPatient,

onWard: toWard)
  precondition

canAdmit?: HasAuthority( who: admitter,
where: toWard)

...
END Admit

TOKEN AdmitMaria IN Admit WITH
  newPatient

: Maria
  toWard

: ChildrensW
  document

: GetInfoFrom Maria
...

END AdmitMaria

                  Figure 4.1



6

role and position. Using it, one can create organizational
models which do provide answers to questions such as
“why does the manager need the project budget?”. Such
models can serve as starting points in the analysis of an
organizational setting, which precedes the adoption of a
solution and the subsequent development of a software
system. A different application of the same framework in
the design of software processes is detailed in [Yu94].

Similarly, Greenspan et. al. [Gree93a] has proposed a
specific ontology for a class of models, those capturing
requirements information for service-oriented systems. A
service-providing enterprise is modeled from four
viewpoints:

• services that meet goals or address the needs of the
customers;

• work flows or processes performed by the enterprise
to provide the services;

• organizational units that serve as loci of
responsibility for the work;

• systems that provide the capabilities and resources for
performing the work.

As in Yu’s work, this raises modeling and analysis
questions in terms of responsibilities, resource
dependencies, roles and positions.

Non-functional requirements: To deal with non-
functional requirements, [Mylo92] proposes a framework
which offers an ontology of goals, methods and goal
dependencies. This ontology, based on ideas proposed by
[Pott88] and truth maintenance systems before them, can be
used to represent non-functional requirements of various
types (security, performance etc.) in terms of goals which
depend, either positively or negatively, on other goals and
particular design decisions during system development. For
example, the goal of having a secure database may depend
positively on subgoals such as "minimize the number of
people who can access the database" and negatively on the
goal "offer a user-friendly interface". A goal is satisficed if
it depends positively on other satisficed goals and does not
depend negatively on any other satisficed goals. The
proposed framework includes methods for goal
decomposition and satisficing. These methods are meant to
be domain-specific in the sense that there will be different
methods for decomposing security goals as opposed to user-
friendliness ones. The framework is explored in detail for
performance and security requirements in [Nixo93] and
[Chun93a].

Software development domain: More specialized
work has also been carried out in the modeling and
representation of the process of software development. An
implementation of Telos, called ConceptBase, was used to
represent requirements, design, implementations along with
design rationale, software processes used and other relevant
information about an information system development
project within the context of the DAIDA Project [Jark92].
In the context of the ITHACA Project [Cons94], initiated
in 1989, Telos was used in a software-reuse information
base to organize descriptions of code, requirements, design
specifications, run-time data, bug reports, and the like for

software developed using different methodologies, tools and
programming languages. Using the  features of Telos, the
designers of the software information base were able to
define a number of associations among software
descriptions that serve as basis for structuring the software
information base, including new kinds of relationships such
as a form of similarity and correspondence.

Other work by Jarke and colleagues has considered the
use of ConceptBase extended by appropriate links to model
development in-the-large and in-the-many (e.g., [Jark88])
and to organize software repositories.

Time: Requirements modeling languages appear to
generally support some form of historical perspective on
the world model. Some languages (e.g., GIST) take a state-
transition view of history, while others (e.g., RML, Telos)
incorporate an explicit notion of time in the language;
RML and Telos experimented with an interval-based
ontology for time, while ERAE [Dubo86] and its
successors have chosen to represent temporal information
using temporal logic operators, which appear to be much
less verbose in some situations than Telos.

The above results, and other proposals for new, more
expressive languages for requirements modeling (e.g.,
[Dard93]} suggest that future requirements modeling
frameworks will offer a richer ontology than the basic
entity-activity diet of the past.

4 . 3 Abstraction
One of the intended contributions of RML was the

explicit introduction of so-called abstraction principles to
help organize the considerable mass of details that belong
in a requirements model. We briefly consider a variety of
abstraction techniques as a way to review relevant research
and to suggest possible new directions.

Generalization has been particularly favored by our
own research, subclass hierarchies with inheritance playing
a central role [Borg84, Borg88] as an organizing principle
for the contents of conceptual models. It is interesting to
note that in requirements modeling, the placement of
classes/concepts into subclass hierarchies is left entirely up
to the human developers. In contrast, researchers in
knowledge representation, led by Brachman, and more
recently information systems (e.g., review in [Borg92a]),
have found it useful to allow the computer system to be
charged with self-organizing concept definitions (e.g.,
“patients with age under 64” is a subclass of “patients with
age under 70” and is disjoint from “persons with age over
72”). It still remains to demonstrate the benefits of such
description languages for requirements modeling.

Classification received considerable attention in
Telos, where the semantics and extensibility of the
language were built into the metaclasses. (See Section 4.1).

Exceptions (special, extraordinary circumstances)
abound in any human enterprise, and considerably
complicate the understanding of a situations, especially at
the beginning. This has led us to advocate [Borg85b] a
normal-case first abstraction, where only the common/usual
states and events in the domain are modeled first, and then



7

in successive pass(es), the special/exceptional situations
and how they are handled are added. This is particularly
successful if (i) there is some systematic way to find the
abnormal cases, and (ii) there is a way to specify the
exceptional circumstances as footnotes/annotations that do
not interfere with the first reading.

Similarly, it is not uncommon to find generalization
leading to   over  -abstraction (e.g., “all patients are assigned
to rooms”), so that a subclass may contradict some aspect
of one of its ancestors (e.g., “emergency-room patients may
be kept on stretchers in hallways”). In [Borg88], we analyze
the conflicting desiderata for subclass hierarchies that allow
such ‘improper specialization’, and then suggest a simple
language facility to accommodate them, while maintaining
the advantages of inheritance, and even subtyping.

Note however that the above papers deal with the issue
of exceptions only at the level of (database) programming
languages, albeit ones supporting conceptual modeling.
The issue of exceptions in specifications has however been
considered in [Fink93] and [Scho93]; it seems interesting to
contrast and perhaps combine these approaches.

Parameterization and modularization are
abstraction techniques that have been used with great
success in programming and formal specification techniques
such as OBJ and Z, beginning with [Burs77]. Among
requirements modeling languages, ERAE [Dubo92]
supports parameterization to enhance the reusability of
requirements. In a different direction, during program
specification [Barr82, Borg84], we have found particularly
useful the grouping of events and assertions into scripts
that represent long-term patterns of conditioned actions and
dependencies (e.g., “a patient is admitted, repeatedly treated,
then discharged”). Scripts, based on the work of Zisman
[Zism78] on production systems with Petri nets, appear to
be related to “object histories” advocated by some object-
oriented approaches.

Viewpoints: A problem inherent in the task of
requirements elicitation and modeling is that there are often
differences in  opinion, approaches, etc. among
stakeholders. As in databases, the modeling of views and
their relationships has emerged as a significant research
issue, with the work of  Finkelstein et al  [Fink92] leading
the way in Requirements Engineering. Perhaps not
surprisingly, the various techniques above are not
independent, and have additional uses: scripts are a natural
place to describe the handling of special, exceptional
circumstances, while view-points provide a mechanism for
dealing with inconsistency in specifications [Fink93,
Nuse93].

4 . 4 Formal Reasoning
 Logic provides a paradigmatic case of how one can

assign formal semantics to a formal language, and what
kinds of tools one can build on top of this. A considerable
number of requirements engineering languages in fact have
an underlying formal deductive logic. RML itself was given
meaning by translation to FOPC [Gree86]. Others build
directly on modal logics of actions (e.g., [Kent93]) or

temporal logics (e.g., see [Ghez93] for review).
One way to achieve brevity of expression in

requirements is by having what are known as defaults,
deductions that are made in the absence of other
information. For example, in specifying an activity, it is
widely useful to be able to describe only what has changed,
leaving it implicit that "everything else stays the same".
These kinds of defaults, known as frame axioms in the AI
literature, become essential when dealing with object-
oriented specifications with inheritance: if we wish to be
able to specialize an activity so that the specialized version
does additional things, then the more general activity
cannot assert that it does all  and    only   what it has been
stated to do. In [Borg93] we examine a number of
alternative approaches to this, and propose a new technique
that appears to have simple yet solid foundations. Defaults
can also be used to approach the thorny problem of
reasoning in the presence of inconsistencies. Work reported
in [Ryan93, Scho93, Fink93] shows how these and other
issues may be addressed by including default reasoning in
requirements modeling. We remark that defaults may also
play a role when trying to “animate” requirements as a way
of playing out what-if scenarios where insufficient
information has been presented at the beginning.

There appear to be several basic approaches to the
formalization of requirements languages; one is to adopt as
foundation some advanced logic (e.g., default, modal,
deontic logic) or other mathematical formalism (e.g., order-
sorted algebras, rewrite systems); the other is to try to stay
within the framework of standard First Order Predicate
Calculus. Hoping to inherit the benefits of the well-
understood semantics and well-studied proof techniques of
FOPC, we have tended to follow the second approach. For
example, both the exceptional subclasses and the technique
for dealing with the frame problem mentioned above are
explicated in terms of FOPC (rather than default logic,
whose semantics are less settled). The utility of using
FOPC is also argued by Zave and Jackson [Zave93], who
advocate the use of unadorned FOPC as a lingua-franca for
combining multiple languages.

The field of Requirements Engineering, like knowledge
representation, must eventually come to terms with the
computational intractability (even undecidability) of
reasoning with most expressive logical formalisms: if we
are to have useful tools, we cannot allow them to
unexpectedly go off into ‘trances’. One approach is to
severely stylize and limit the kind of reasoning we are
prepared to support, as for example, in the advanced type
checking of modern programming and specification
languages. Another alternative would be to dip into the
research on limited and approximate reasoning looking for
relevant ideas. Or one can aim for more qualitative forms of
reasoning, as in [Chun93b] on the satisficing of non-
functional requirements. In all of these cases, researchers
should however be alert to the possibility that the more
restrictive circumstances or goals of requirements modeling
may considerably simplify the solutions that are being
borrowed from fields like knowledge representation.



8

4 . 5 Other Languages
RML is not unique in its premises or its features. Many

other formal requirements modeling languages, some
mentioned above, have been proposed over the same period
as RML and its direct descendants.

The Conceptual Information Model, CIM [Bube80] is
perhaps the first comprehensive proposal for formal
requirements modeling language. Its features include an
ontology of entities and events, an assertional sublanguage
for specifying constraints, including complex temporal
ones.

The GIST specification language [Balz82], developed at
ISI over the same period as Taxis/RML, was also based on
ideas from knowledge representation and supported
modeling the environment; it was influenced by the notion
of making the specification executable, and by the desire to
support transformational implementation. It has formed the
basis of an active research group on the problems of
requirements description and elicitation (e.g., [John92]).

ERAE [Dubo86] [Dubo92] was one of the early efforts
that explicitly shared with RML the view that requirements
modeling is a knowledge representation activity, and had a
base in semantic networks and logic.

The KAOS project constitutes another significant
research effort which strives to develop a comprehensive
framework for requirements modeling and requirements
acquisition methodologies [Dard93]. The language offered
for requirements modeling provides facilities for modeling
goals, agents, alternatives, events, actions, existence
modalities, agent responsibility and other concepts.
Moreover, like Telos, KAOS relies on a meta-model to
provide a self-descriptive and extensible modeling
framework.

5. Requirements Modeling Experience
A requirements modeling language alone does not ensure

that modelers can create good models. Given the language,
one needs at least the following in addition: a framework
(metamodel) reflecting an appropriate ontology for the
domain; a methodology for elicitation and acquisition of
models; analysis methods that help answer questions and
find and resolve issues/problems; tool support to help with
the above. While it is beyond the scope of this paper to
elaborate on these issues in general, we will report here on
some experience with RML and its successors, mentioning
some relevant other work in passing.

5 . 1 Implementations
Many of the above-mentioned requirements modeling

languages have been implemented, in the sense that there
are knowledge-base management systems that can “reason”
about the models represented in these languages in order to
perform tasks such as consistency checking, question
answering, or inferring propositions that had not been
explicitly asserted.

For example, the implementation of Telos relies heavily
on results from deductive databases, both for query
processing (complicated by the presence of Horn clause-like

deductive rules) and for constraint enforcement. Temporal
reasoning is handled through a special-purpose inference
engine based on efficient algorithms for temporal reasoning
[Vila89], extended through a number of heuristics.

A subset of Telos was implemented at the University of
Crete, using C++, and has been tested as part of the above
mentioned ITHACA project to manage software
repositories containing hundreds of thousands of software
object descriptions.

Three independent Prolog-based implementations of
Telos have been developed at SCS (Hamburg) [Gall86], the
University of Passau [Jark88] and the University of Crete
[Vassiliou90] and are in use at several sites. The Passau
implementation, named ConceptBase, has been the most
complete of these and the one that has seen most use. On
the basis of positive experiences from this work,
ConceptBase was adopted in a number of projects,
including the NATURE project [Jark93a], which uses it as
an integration platform for all components of a
comprehensive requirements engineering environment..

We believe that part of the success of Telos and its
implementations lies in the ability of the language to be
extended to new ontologies and domains; among others,
Telos has been extended to deal with agents, plans, goals,
similarities, etc. through the addition of suitable
metaclasses. However, often an unfortunate side-effect of
meta-extensions is relatively poor performance, in
comparison with special-purpose implementations. It
remains an open problem whether there is a way to achieve
some extensibility without sacrificing efficiency (as
attempted in [Borg92], for example).

ACME [Gree91] constitutes another effort to implement
and exploit the RML framework. ACME was originally
conceived as an implementation of RML on a commercial
knowledge representation system (Intellicorp’s KEE™) but
evolved over time on the basis of implementation
experiences and practice. In order to offer some flexibility
in providing different modeling frameworks for different
application domains and different analysis tasks, the object-
oriented conceptual modeling constructs (objects,
properties, classes, metaclasses) have been separated from
the RML ontology of entities, activities and assertions.
The former appears in ACME as the Conceptual Modeling
Platform (CMP), and the framework of choice, e.g., RML
or any other, is built separately on top of the CMP. RML
property categories are implemented in a manner analogous
to their treatment in Telos, i.e., as attribute metaclasses,
having definitional properties as instances. Thus, one
defines classes of definitional properties by associating
properties and behavior to attribute metaclasses. We have
implemented some of the SOS framework on top of
ACME [Gree93a]; experience is reported below.

5 . 2 Experience with ACME
We mention here some substantial experience gained

using ACME, which has been used to model requirements
for the purposes of a business process re-engineering (BPR)
effort. Models consist of one to two thousand concepts



9

(e.g., workflows, process steps, actions, data entities),
translating to between ten and twenty thousand ACME
objects (where everything, including properties, are
considered to be objects). The ACME tool builders
interacted with the designers of the BPR methodology in
order to acquire their framework (metamodel) into ACME.
Then, subject matter experts, namely experts in the
business process being re-engineered (which happened to be
trouble reporting and repair), used the framework and the
tool to acquire and analyze their models. The framework
included a simple assertion language for stating initiation
conditions on actions.

There were several lessons learned, all of them anecdotal
and none of them conclusive. However, we view it as
important to share such experiences, because, as stated in
[Luba93], little is actually known about how organizations
do requirements. We attempt to evaluate our experience
against the slogans discussed above in Section 2.

Use explicit world modeling: In this domain, world
modeling constituted a major portion of the requirements
engineering activities. Modeling the business processes was
the most time-consuming and, arguably, the most
important activity. Once the models took shape, it was
relatively straightforward to state requirements, such as
constraints, policies, and non-functional properties. Such
requirements are statements about the world, and once the
world was understood (i.e., adequately modeled), a large
portion of the requirements work had been done. The
converse is also true: in the absence of an explicit model,
we surmise that the statement of requirements would have
been very difficult or impossible to create and comprehend.
It required considerable commitment to use a modeling
approach and to involve people at all levels.

 Object-oriented conceptual modeling: All in all, the use
of the structuring mechanisms of an object-oriented
framework were useful to modelers, although, to paraphrase
the title of a panel at RE93 last year [Pott93] they might
not have known their requirements were object-oriented
unless they asked their analyst. From the modeler’s
viewpoint, the units of description were entities, processes,
actions, trigger conditions, and so on. The fact that all
units of description were treated uniformly as objects by
ACME was not necessarily relevant during modeling.
However, from the point of view of ACME the tool, the
implementation relies heavily on object-orientedness.

Use abstraction techniques: Many discussions of
concepts centered on distinctions that can be explained by
abstraction techniques such as specialization, part-of,
similarity, exception, and the like. This conceptual
modeling vocabulary was obviously useful. However, there
was no attempt to use stepwise refinement by
decomposition or specialization as an overall process
principle or model organization mechanism. The concept of
a workflow task did not even have a notion of
decomposition into subtasks; elaboration/refinement of the
models was done by replacing nodes/links in a “flat” model
by other nodes and links. The lack of decomposition might
actually have been responsible for some efficiencies in the

modeling process, since no one had to present or defend
arbitrary groupings of concepts into another, or the
invention of concepts that contain others. However, despite
the simplicity and comfort of the flat approach, they
anticipated a grave disadvantage coming later on in the use
of the modeling methodology: there would be little chance
for reuse due to the failure to create reusable abstractions in
the first place.

Formality: Formal semantics are needed to allow for
automated analysis, but the more complex the language
gets, the harder it is to use. Our initial attempts at a rich
logic in ACME made the language hard to use: users could
not easily create or understand assertions in a model.
However, a simple/weak language was worse than English,
which at least recorded informally the intended meaning of
the expression. We compromised by using a relatively
simple but formal language (e.g., no quantifiers, and
special term constructors only as needed). Novices could
specify things and get some inconsistency checking done
within ACME. ACME can parse and execute the
expressions. In the tradeoff between formality and
complexity, we agree with [Zave91] that formality should
not be avoided but rather strategies for coping with the
concomitant complexity should be pursued, for example,
using multiple viewpoints or other means to form simpler
projections of the information.

Other reports of experiences with using requirements
languages include [Hage93] and [Jarke93b].

5 . 3 Other Support for Requirements Process
Our experience motivates us not only to improve the

language foundations but also the methodological and tool
support for the requirements process. The main difficulties
of requirements engineering concern negotiating a common
understanding of concepts, dealing with ambiguity, and
clarifying desires, needs and constraints [Gaus89]. Because
these topics have to do mainly with human understanding
and communication, they are particularly difficult to make
amenable to rigorous or formal treatment. For example, it
needs to be recognized that most of the requirements
process is spent not in the possession of correct and
consistent models, but  rather, as indicated by Feather
[Feat91], in “Getting Right From Wrong.” That is to say,
requirements modeling consists of a series of incremental
steps that (hopefully) converge in a model with the
appropriate content.

In this vein, a useful approach is that offered by
Reubenstein [Reub91], who gave a precise meaning to
several types of “issues” that arise while developing a
requirements model, such as inconsistencies, ambiguities
and incompleteness. These issues were detected according to
formal rules corresponding to the intuition behind these
terms. Given a rather general frame-based representation
scheme with an embedded propositional expression
language, Reubenstein’s Requirements Apprentice
recognized the presence of these issues and kept an agenda
of issues to be resolved.

Keeping track of assumptions and rationale [Gree93b] is



10

another aspect of requirements modeling that needs
attention and is being addressed by various researchers, e.g.,
[Rame92].

Another important aspect of requirements modeling is
decision-making to achieve requirements models that satisfy
design goals, resolve conflicting requirements, predicting
failure, and so on. While constructing a requirements
model, one is concerned with critiquing, parallel
elaboration, etc. This requires combining   the
representation of specialized domain knowledge with
problem-solving techniques, such as planning and
searching, as in  [Ande93, Robi94, Fick88].

The KAOS methodology [Dard93] exploits the
expressiveness of the KAOS modeling language to support
all phases of requirements acquisition, starting with initial
goals (both functional and non-functional), proceeding with
the identification of potential agents who could take
responsibility for the satisfaction of these goals, all the
way to the assignment of actions to particular agents,
including computer systems to be built.

Finally, a number of other methodology and tool issues,
such as presentations, transformations, visualization,
connection to hypertext are addressed by others, e.g.,
[John92], [Lali93], [Jark93b].

6 . Discussion and Conclusions
The paper has presented a retrospective on RML, its

premises, main features, evolution over the past decade,
experiences in use and its peers among requirements
modeling languages. We have stuck mostly to
representation and reasoning issues, with some reports of
implementations, and allusion to tools and methodology as
important related work.

Like any other researcher in a similar situation, we are
pleased to see some of the premises and features of RML
and its peers being used in systems analysis practice
through the methodology known as Object-Oriented
Analysis (OOA)—for example, [Schl88, Coad90, Rumb91,
Jaco92, Booc93, Wirf90], to name a few. The basic tenets
of OOA include an object-oriented representation framework
augmented with a simple ontology and a graphical notation
for describing portions of a model. Some OOA proposals
go further by adding facilities for representing temporal,
cardinality and other constraints, while others attempt to
endow their notation with a formal semantics. In so doing,
they have to address some of the same issues faced by
formal requirements modeling languages since 1980,
including issues mentioned in this paper.

Surprisingly, much of the work on OOA has been done
independently of earlier work within the Requirements
Engineering community6. Perhaps this practice can be

                                                
6 For example, [Embley92] presents an Entity-Relationship-

like model for OOA, extended with notions for modeling
actions, triggers and states, with a formal semantics defined
in terms of a translation into FOPC, very much along the
lines of RML. Throughout, there is no reference to the
formal requirements modeling languages mentioned here.

reviewed. Requirements Engineering has a head start on the
development of formal (and object-oriented) requirements
modeling languages, tools and methodologies and has much
to offer. OOA, on the other hand, clearly has been
accumulating a wealth of practical experience that can serve
as basis for more directed and directly applicable future
research in Requirements Engineering.

Language design has been a central theme in Software
Engineering research throughout its history. The emergence
of formal requirements modeling languages and OOA
techniques is the logical next step in providing linguistic,
methodological and tool support for the early phases of the
software lifecycle, very much for the reasons first
articulated in [Bell75]. However, requirements modeling
languages, because of their subject matter, are
fundamentally different from programming and specification
languages whose subject matter (software systems) is man-
made, bounded and objectively known. A corollary of this,
argued in the original RML paper as well, is that designers
of requirements modeling languages need to turn to research
in areas other than core computer systems and
programming languages (areas such as knowledge
representation), in search of ideas and research results that
serve as basis for the design of their languages. To put it
another way, it is unwise to try to design requirements
modeling languages by merely adopting programming
language ideas.

Requirements engineering is just one of several tasks a
computer professional may be called on to perform that
requires modeling aspects of the real world. Data modeling
for database design, process modeling for software and
business process engineering, and knowledge engineering
for expert system development are others. Moreover, the
demand for such world modeling skills for the computer
professional is growing, as we find that software systems
need to be conceived right from the start as embedded
systems in a complex, evolving organizational setting.
Unfortunately, this skill is being given very little attention
in the standard undergraduate computer science curriculum.
How well do our graduating computer science students
know FOPC and its use in representing facts about an
application? Is the relationship between

AirCanadaFlight#23#from#NYC#to#Toronto

and AirlineFlights like the relationship between an
instance and a concept, or like the relationship between a
concept and a superconcept? What about the relationship
between AirCanadaFlight#23 and the flight leaving
tomorrow morning from NYC to Toronto? And what is the
effect of making one choice vs. the other? How much
practice have students had in building requirements or
process models with formal tools, using different notations
(compared with, say, how much training they receive in
using different programming languages)? Where in their
program of study do they learn about world modeling as a
professional skill (worth learning in its own right and on
par with system modeling) which comes with a theory and
an engineering practice? We believe the time has come to
think of conceptual modeling as essential to our



11

undergraduate curriculum, to be taught to computer science
undergraduates as a subject whose manifestations they will
encounter in varied fields such as requirements analysis,
database design, knowledge engineering and process
modeling.

Acknowledgments.
We offer our heart-felt thanks to all our collaborators and

co-authors over the years, as well as the members of the
Requirements Engineering community. We also appreciate
very much the comments, given often on extremely short
notice, by the following people: Anthony Finkelstein, Axel
van Lamsweerde, Matthias Jarke, Pamela Zave and Eric Yu.

Mark Feblowitz (GTE Labs) has done remarkable work on
the design and implementation of ACME, from which valuable
experience and insights have been gained.

John Mylopoulos has been supported in part by the
National Science and Engineering Research Council of Canada,
the Canadian Institute of Advanced Research, the Information
Technology Research Centre of Ontario, also by the Institute
of Robotics and Intelligent Systems.

Alex Borgida has been supported in part by NSF Grant IRI
91-19310.

References

[Ande93] Anderson, J. R., and B. Durney, B., “Using Scenarios
in Deficiency-Driven Requirements Engineering,” in [RE93].

[Balz79] R. Balzer, N. Goldman, “Principles of good software
specifications and their implications for specification
languages,” Proc. IEEE Conf. Spec. of Reliable Software, pp.
58-67.

 [Balz82] Balzer, R., N. Goldman, D. Wile, “Operational
specifications as a basis for rapid prototyping,” Proc. Symp.
Rapid Prototyping,  ACM Soft. Eng. Notes, 7(5), Dec. 1982,
pp. 3-16.

[Barr82] Barron, J., “Dialogue and Process Design for
Interactive Information Systems Using Taxis,” Proc. SIGOA,
June 1982, ACM SIGOA Newsletter, 3(1,2), pp. 12-20.

[Bell75] Bell, T. E., and Thayer, T. A., “Software
Requirements: are they really a problem,” Proc. 2nd Int. Conf.
on Software Engineering, 1976, pp. 61-68.

[Booc93] Booch, G., Object-Oriented Design with
Applications, Benjamin/Cummings, 2nd edition, 1993.

[Borg80] Borgida, A., and S. J. Greenspan, "Data and
Activities: Exploiting Hierarchies of Classes," in [Ping81].

[Borg84] Borgida, A., Mylopoulos, J., and Wong, H. K. T.,
“Generalization/Specialization as the Basis for Software
Specification,” in [Brod84].

[Borg85a] Borgida, A., Greenspan, S. and Mylopoulos, J . ,
"Knowledge Representation as a Basis for Requirements
Specification," IEEE Computer 18(4), April 1985. Reprinted in
Rich, C. and Waters, R., Readings in Artificial Intelligence and
Software Engineering, Morgan-Kaufmann, 1987.

[Borg85b] A. Borgida, “Language features for the flexible
handling of exceptions in Information Systems," ACM TODS
10(4), pp.565-603, December 1985.

[Borg88] A. Borgida, “Modeling class hierarchies with
contradictions," Proc. ACM SIGMOD Conf. , pp.434-443,
1988.

[Borg91]  A. Borgida, “Knowledge Representation, Semantic
Modeling: Similarities and Differences”,  E-R Approach’91,
Elsevier Publ., 1991.

[Borg92a] A. Borgida, “A New Look at Description Logics, and
Their Utility in the Management of Information," Dept. of
Computer Science, Rutgers University, June 1993. (revised
version of DCS-TR-295, June 1992).

[Borg92b] Borgida, A. and R. Brachman, “Customizable
Classification Inference in the ProtoDL Description
Management System'', Proc. 1st Conf. Information and
Knowledge Management, Baltimore, MD, November 1992

[Borg93] Borgida, A., Mylopoulos, J. and Reiter, R., "...And
nothing else changes: The frame problem in procedure
specifications,” Proc. 15th Int. Conf. on Software
Engineering, Baltimore, 1993.

[Brod84] Brodie, M., Mylopoulos, J. and Schmidt, J., (eds.)
On Conceptual Modeling: Perspectives from Artificial
Intelligence, Databases and Programming Languages,
Springer-Verlag, 1984.

[Bube80] Bubenko, J., “Information Modeling in the Context
of System Development,” in Proc IFIP 80, pp. 395-411, 1980.

[Burs77] Burstall, R., J.  Goguen, “Putting theories together to
make specifications," Proc. IJCAI’77, pp.1045-1052.

[CAiSE93] Proc. 5th Int. Conf. Advanced Information Systems
Engineering, Paris, June 1993, LNCS 685, Springer Verlag.

[Chun93a] Chung, L., "Dealing with security requirements
during the development of information systems," in
[CAiSE93].

[Chun93b] Chung, L. Representing and Using Non-Functional
Requirements: A Process-Oriented Approach, Ph.D. thesis,
Dept. of Comp. Sci,., U. of Toronto, 1993.

[Coad90] Coad, P., and Yourdon, E., Object-Oriented Analysis,
Yourdon Press, Englewood Cliffs, NJ, 1990.

[Coll88] Collins, A., and Smith, E., Readings in Cognitive
Science: A Perspective from Psychology and Artificial
Intelligence, Morgan-Kaufmann, 1988.

[Conk88] Conklin, J., and Begeman, M., "gIBIS: A Hypertext
Tool for Exploratory Policy Discussion," Trans. on Office
Info. Systems, 6(4), Oct. 1988, pp. 281-318.

[Cons94] Constantopoulos, P., Jarke, M., Mylopoulos, J. and
Vassiliou, Y., "The Software Information Base: A Server for
Reuse," VLDB Journal  (to appear).

[Dard91] Dardenne, A., S. Fickas, and A. van Lamsweerde,
"Goal–Directed Concept Acquisition in Requirements
Elicitation," in Proc. of the Sixth International Workshop on
Software Specification and Design, October, 1991.

[Dard93] Dardenne, A., S. Fickas, and A. van Lamsweerde,
"Goal–Directed Requirements Acquisition," in Science of
Computer Programming, 20, 1993, pp. 3-50.



12

[Dubo86] Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F.
and Rifaut, A., "A knowledge representation language for
requirements engineering," Proc. IEEE 74(10), 1986.

[Dubo92] Dubois, E., Du Bois, P. and Rifaut, A., "Elaborating,
Structuring and Expressing Formal Requirements for
Composite Systems," Proc. Int. Conf. on Adv. Info. Systems
Eng.. (CAiSE-92), Manchester, 1993.

[Dubo94] Dubois, E., Du Bois, P., DuBru, F., "Animating
Formal Requirements Specifications of Cooperative
Information Systems," Proc. 2nd Int. Conf. on Cooperative
Information Systems, Toronto, 1994.

[Embley92] Embley, D., Kurtz, B., Woodfield, S., Object-
Oriented Systems Analysis, Yourdon Press, Prentice-Hall,
1992.

[ESEC93] Proc. of the 3rd European Software Engineering
Conference, Milan, Italy, Springer-Verlag, 1993.

[Feat87] Feather, M. “Language support for the specification
and derivation of concurrent systems," ACM Trans. on Prog.
Lang. 9(2), April 1987, pp. 198-234.

[Feat91], Feather, M., “Requirements Engineering: Getting
Right From Wrong,” in [ESEC93], pp. 485-488.

[Fick88] Fickas, S., Nagarajan, P., “Critiquing Software
Specifications: a Knowledge-Based Approach,” in IEEE
Software, Nov. 1988.

[Fick91] Fickas, S., Position papers for panel on “Neats vs.
Scruffies,” S. Fickas, organizer, in [ESEC93].

[Find79] Findler, N. V., (ed.), Associative Networks:
Representation and Use of Knowledge by Computers, Academic
Press, New York, 1979.

[Fink92] A. Finkelstein, J. Kramer, et al., "Viewpoints: A
Framework for Multiple Perspectives in System
Development", Int. Journal of Soft. Engineering and
Knowledge Eng., 2(1), World Scientific Publishing, pp. 31-
57, March 1992.

[Fink93] A. Finkelstein, D. Gabbay, et al , “Inconsistency
handling in multi-perspective specifications”, in [ESEC93],
pp. 84-99.

[Gall86] Gallagher, J. and Solomon, L., "CML Support
System," SCS Technische Automation und Systeme GmbH,
Hamburg, June 1986.

[Gaus89] Gause, D., C., and Weinberg, G. M., Exploring
Requirements: Quality Before Design, Dorset House, 1989.

[Gree82] Greenspan, S., Mylopoulos, J. and Borgida, A.,
"Capturing More World Knowledge in the Requirements
Specification," Proc. 6th Int. Conf. on SE, Tokyo, 1982.
Reprinted in Freeman, P., and Wasserman, A. (eds.) Tutorial on
Software Design Techniques, IEEE Computer Society Press,
1984. Also in R. Prieto-Diaz and G. Arango, Domain Analysis
and Software Systems Modeling, IEEE Comp. Sci. Press, 1991.

[Gree83] Greenspan, S., and J. Mylopoulos, "A Knowledge
Representation Approach to Software Engineering: The Taxis
Project," Proc. Conf. Canadian Info. Processing Society,
Ottawa, Ontario, May 1983,  pp. 163-174.

[Gree84] Greenspan, S., Requirements Modeling: A Knowledge
Representation Approach to Requirements Definition, Ph.D.
thesis, Department of Computer Science, University of
Toronto, 1984.

[Gree86] Greenspan, S., A. Borgida, and J. Mylopoulos, "A
Requirements Modeling Language and Its Logic," Information
Systems, 11(1), pp. 9-23, 1986. Also appears in Knowledge
Base Management Systems, M. Brodie and J. Mylopoulos,
Eds., Springer-Verlag, 1986.

[Gree91] Greenspan, S., M. Feblowitz, C. Shekaran, and J .
Tremlett, "Addressing Requirements Issues Within a
Conceptual Modeling Environment," Proc. of the 6th Int.
Workshop on Soft. Spec. and Design, October, 1991.

[Gree93a] Greenspan, S., and M. Feblowitz, "Requirements
Engineering Using the SOS Paradigm," in [RE93], pp. 260-
265.

[Gree93b] Greenspan, S., Panel on Recording Assumptions and
Rationale, in [RE93], pp. 282-285.

[Hage93] Hagelstein, J., D. Roelents, P. Wodon, “Formal
requirements made practical," in [ESEC93], pp. 127-144.

[ICRE94] Proc. IEEE International Conference on
Requirements Engineering, April 18-22, 1994.

[IWSSD] Procs. 5th/6th/7th Int. Workshops on Software
Specification and Design, IEEE Computer Society Press,
Tracks on Requirements Engineering, 1989/1991/1993.

[Jaco92] Jacobson, I., Christerson, M., Jonsson, P., and
Overgaard, G., Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[Jack78] Jackson, M., Proc. 2nd Int. Conf. on Software
Engineering, 1976, pp. 72-81.

[Jack83] Jackson, M., System Development, Prentice-Hall,
1983.

[Jark88] Jarke, M., Eherer, S., Gallersdoerfer, R., Jeusfeld, M.,
Staudt, M., “ConceptBase -- a deductive object manager,”
Special Issue on Deductive and Object-Oriented Databases,” M.
Kifer (ed), J. of Intelligent Information Systems (to appear).

[Jark92] Jarke, M., Mylopoulos, J., Schmidt, J. and Vassiliou,
Y., "DAIDA: An Environment for Evolving Information
Systems," ACM Trans. on Info.  Sys., 10, 1, 1992, pp. 1-50.

[Jark93a] Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y.
Vassiliou, “Theories Underlying Requirements Engineering:
An Overview of NATURE at Genesis,” in [RE93], pp. 19-33.

[Jark93b] Jarke, M., Jeusfeld, M., Szczurko, P.: "Three aspects
of intelligent cooperation in the quality cycle." Int. J. Intel.
Coop. Information Systems 2(4), 1993.

[John92] Johnson, W.L., M. Feather and D. Harris,
“Representing and presenting requirements knowledge," IEEE
Trans. on SE, October 1992, pp. 853-869.

[Kent93] Kent, S., Maibaum T., and Quirk, W., “Formally
Specifying Temporal Constraints and Error Recovery,” in
[RE93], pp. 208-215.

[Koub88] Koubarakis, M., An Implementation of CML, M.Sc.
thesis, Dept. Comp. Sci., Univ. of Toronto, 1988.



13

[Lali93] Lalioti, V. and Loucopoulos, P., ”Visualization for
Validation”, in [CAiSE93], pp. 143-164.

[Luba93] Lubars, M., Potts, C., and Richter, C., “A Review of
the State of the Practice in Requirements Modeling,” in
[RE93], pp. 2-14.

[Mylo80] Mylopoulos, J., Bernstein, P. A. and Wong, H. K.
T., "A Language Facility for Designing Data-Intensive
Applications," ACM Trans. on Database Systems 5(2), June
1980. Reprinted in Zdonik, S. and Maier, D., Readings in
Object-Oriented Database Systems, Morgan-Kaufmann, 1989.

[Mylo90] Mylopoulos, J., Borgida, A., Jarke, M., and
Koubarakis, M., "Telos: Representing Knowledge About
Information Systems," ACM Transactions on Information
Systems, October 1990.

[Mylo92] Mylopoulos, J., Chung, L., Nixon, B.,
“Representing and Using Non-Functional Requirements,” in
[TSE92], pp. 483-497.

[Nixo93] Nixon, B., "Representing and Using Performance
Requirements During the Development of Information
Systems," in [RE93], pp. 42-49.

[Nuse93] B. Nuseibeh, Kramer, J.,  and Finkelstein, A.,
"Expressing the Relationships Between Multiple Views in
Requirements Specification," Proc. 15th Int. Conf. on SE, pp.
187-196, Baltimore, MD, May 1993, IEEE CS Press.

[Ping81] Brodie, M. and Zilles, S., (eds.) Proc. of Workshop
on Data Abstraction, Databases and Conceptual Modeling,
Pingree Park Colorado, Joint SIGART, SIGMOD, SIGPLAN
Newsletter, January 1981.

[Pott88] Potts, C and Bruns, G., "Recording the Reasons for
Design Decisions," Proceedings Tenth International
Conference on Software Engineering, Singapore, 1988.

[Potts93] Potts, C., Organizer, Panel on “I never knew my
requirements were object-oriented until I talked to my analyst,”
in [RE93], pp. 226-230.

[Rame92] Ramesh, B., and V. Dhar, “Supporting Systems
Development Using Knowledge Captured During Requirements
Engineering,” in [TSE92].

[RE93] Proc. IEEE Int. Symp. on Requirements Engineering,
IEEE Computer Society Press, January 1993.

[Reub91] Reubenstein, H., and Waters, R., “The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition,” IEEE Trans. on SE,  March 1991, pp. 226-240.

[Robi94] Robinson, W., and Fickas, S., “Supporting Multi-
perspective Requirements Engineering,”in [ICRE94].

[Ross77a] Ross, D. T., and Schoman, “Structured Analysis for
Requirements Definition,” in [TSE77], pp. 6-15.

[Ross77b] Ross, D. T., and Schoman, “Structured Analysis: A
Language for Communicating Ideas,” in [TSE77], pp. 16-34.

[Rumb91] Rumbaugh, J., et al., Object-Oriented Modeling and
Design, Prentice-Hall, 1991.

[Ryan93] Ryan, M., “Defaults in Specifications,” in [RE93],
pp. 142-151.

[Schl88] Shlaer, S., and Mellor, S., Object-Oriented Systems
Analysis, Yourdon, Englewood Cliffs, NJ, 1988.

[Scho93], Schoebbens, P. Y., “Exceptions in algebraic
specifications, on the meaning of ‘but’," Science of Computer
Programming, 20, pp. 73-111, 1993.

[Smit77] Smith, J., and D.C.P. Smith, “Database Abstractions:
Aggregation and Generalization,” ACM Trans. on Database
Systems, 2(2), Jun. 1977, pp. 105-133.

[Solv79] Solvberg, A., “A Contribution to the Definition of
Concepts for Expressing Users’ Information System
Requirements,” Proc. Int. Conf. on E-R Approach to Systems
Analysis and Design,” Dec. 1979.

[Stan86] Stanley, M., CML: A Knowledge Representation
Language with Applications to Requirements Modeling, M.Sc.
thesis, Dept. Comp. Sci., Univ.  of Toronto, 1986.

[Thay90] Thayer, R. and Dorfman, M., System and Software
Requirements Engineering, (two volumes), IEEE Computer
Society Press, 1990.

[Topa89] Topaloglou, T. and Koubarakis, M., "An
Implementation of Telos," TR-KRR-89-8, Department of
Computer Science, University of Toronto.

[TSE77] IEEE Trans. on Software Engineering, Special Issue on
Requirements Analysis, SE-3, No. 1, Jan.  1977.

[TSE92] IEEE Trans. on Software Engineering, 18(6) & 18(10),
Special Issue on Knowledge Representation and Reasoning in
Software Development,    June & October 1992.

[Vila89] Vilain, M., Kautz, H. and van Beek, P., "Constraint
Propagation Algorithms for Temporal Reasoning: A Revised
Report," in Weld, D. and De Kleer, J., (eds.) Readings in
Qualitative Reasoning About Physical Systems, Morgan
Kaufmann, 1989.

[Webs87] Webster, D.E., "Mapping the Design Representation
Terrain: A Survey," TR-STP-093-87, Microelectronics and
Computer Corporation, Austin, 1987.

[Wirf90] Wirf-Brock, R., B. Wilkerson, and L. Wiener,
Designing Object-Oriented Software, Prentice-Hall, 1990.

[Wing90] Wing, J., “Specifiers Introduction to Formal
Methods,” IEEE Computer  23(9), Sept. 1990, pp. 8-26.

[Yu93] Yu, E., "Modeling Organizations for Information
Systems Requirements Engineering," in [RE93], pp. 34-41.

[Yu94] Yu, E. and Mylopoulos, J., "Understanding 'Why' in
Software Process Modeling, Analysis and Design," Proc.
Sixteenth Int. Conf. on Soft. Eng. , Sorrento, 1994.

[Zave91] Zave, P., “A Comparison of the Major Approaches to
Software Specification and Design,” in [Thay90], p. 199.

[Zave93] P. Zave and M. Jackson, "Conjunction as
Composition", Trans. on Software Engineering and
Methodology, 2,4, ACM Press, Oct. 1993, pp. 379-411.

[Zism78] Zisman, M., “Use of Production Systems for
Modeling Concurrent processes,” In D. A. Waterman and F.
Hayes-Roth (Eds), Pattern-Directed Inference Systems,
Academic Press, 1978, pp. 53-68.


