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Cyc is a bold attempt to assemble a 
massive knowledge base [on the 
order of IO* axioms] spanning human L 
consensus knowledge. This article ex- = 
amines the need for such an under-r 
taking and reviews the authors’: 
efforts over the past five years to: 
begin its construction. The methodol- z 
ogy and history of the project are i 
briefly discussed, followed by a more Z 
developed treatment of the current “, 
state of the representation language : 
used [epistemological level], tech- ; 
niques for efficient inferencing and n 
default reasoning [heuristic level], 3 
and the content and organization of ; 
the knowledge base. m 
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Motlvatlon: The) 
Brittleness Bottleneck 

F 
or three decades, Artifi- 
cial Intelligence re- 
searchers have grappled 
with issues like control 

of search in problem solving, organi- 
zation of memory, logic for the 
representation of knowledge, percep- 
tion, and so on, driven by tasks rang- 
ing from infants exploring their 
“worlds” through experts perform- 
ing some intricate reasoning task. 
Despite many types of successes, 
today’s AI software---and in many 
ways non-AI software as well-has 
reached a kind of bottleneck which is 
limiting its competence and usability. 
This article begins with a discussion 
of the nature of that bottleneck, and 
then describes the Cyc project: a 
serious attempt, begtin in late 1984, 
to overcome this limitation. 

The Path to Artificial 
Intelligence 
One of the principle tenets of AI, is 
that one can explicitly, declaratively 
represent a body of knowledge, in a 
way that renders it usable by a num- 
ber of programs. This is in principle 
no different from the way in which a 
book “encodes” knowledge in tables 
and English text on the assumption 
that a wide audience will be able to 
use that data in myriad, possibly 
unanticipated ways. Since programs do 
not (yet) read and understand natu- 
ral language, the encodings we use 
must be rather different, in particular 
much less ambiguous. 

So achieving an ‘41 comprises 
three tasks: 

i) Develop a language (actually a 
logic) for expressing knowledge. 
Since we would like to allow 
many different programs to use 
this knowledge, this “representa- 
tion language” needs a declara- 
tive semantics. 
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ii) 

iii) 

Develop a set of procedures for 
manipulating (i.e., using) knowl- 
edge. Some of these will of neces- 
sity be heuristic, some will be 
strategic or meta-level, some will 
be aimed at truth maintenance 
and default reasoning, some will 
be inductive rather than deduc- 
tive, and so on. 
Build the knowledge base(s). For 
example, encode knowledge in 
the language developed in i) 
above, so that one (person or 
machine) can apply to it the rea- 
soning mechanisms of ii). 

AI has largely concentrated on i) 
and ii). This is unfortunate, since it 
is task iii) that grounds the whole 
enterprise in reality. McCarthy [21] 
was the first to point out the impor- 
tance of being able to represent 
knowledge in a program and initi- 
ated the task of devising representa- 
tions for assorted topics such as time, 
agenthood, etc. Feigenbaum was one 
of the first to actually build programs 
which depended upon a significant 
amount of knowledge as their pri- 
mary source of power. Later dubbed 
“expert systems,” these programs 
showed that impressive levels of per- 
formance could be attained by taking 
iii)-knowledge-even half-seri- 
ously. For example, reasonable per- 
formance in narrow task domains 
may be achieved with modest-sized 
knowledge bases (KBs) (10’ to 10’ 
domain-specific assertions or rules.) 

The Source of Software 
Brittleness 
There is indeed a strong local max- 
imum of cost-effectiveness: by in- 
vesting one or two person-years of 
effort, one can end up with a power- 
ful expert system. The trouble is that 
this is just a local maximum. Know- 
ing an infinitesimal fraction as much 
as the human expert, the program 
has only the veneer of intelligence. Let 
us illustrate what this means. 

Programs often use names for con- 
cepts such as predicates, variables, 
etc., that are meaningful to humans 
examining the code; however, only a 
shadow of that rich meaning is ac- 
cessible to the program itself. For ex- 
ample, there might be some rules 

that conclude assertions of the form 
laysEggsInWater(x), and other rules 
triggered off of that predicate, but 
that is only a fragment of what a 
human can read into “laysEggsIn- 
Water.” Suppose an expert system 
has the following four rules: 

IF frog(x), THEN amphibian(x) 
IF amphibian(x), THEN laysEggs- 

InWater 
IF laysEggsInWater(x), THEN lives- 

NearLotsOf(x, Water) 
IF livesNearLotsOf(x, Water), 

THEN 1 livesInDesert(x) 

Given the assertion frog(Freda), 
those rules could be used to conclude 
that various facts are true about 
Freda: amphibian(Freda), laysEggs- 
InWater(Freda), 1 livesInDesert- 
(Freda), etc. Yet the program would 
not “know” how to answer questions 
like: Does Freda lay eggs? Is Freda 
sometimes in water? 

Humans can draw not only those 
direct conclusions from laysEggsIn- 
Water(Freda), but can also answer 
slightly more complex queries which 
require a modicum of “outside” 
knowledge: Does Freda live on the 
sun? Was Freda born live or from an 
egg? Is Freda a person? Is Freda 
larger or smaller than a bacterium? 
Is Freda larger or smaller than the 
Pacific Ocean? Or even: How is 
Freda’s egg-laying like Poe’s story- 
writing? 

Thus, much of the “I” in these 
“AI” programs is in the eye-and 
“I’Lof the beholder. Carefully se- 
lecting just the fragments of relevant 
knowledge leads to adequate but brit- 
tle performance: when confronted 
by some unanticipated situation, the 
program is likely to reach the wrong 
conclusion. It is all too easy to find 
examples of such brittle behavior: a 
: kin disease diagnosis system is told 
about a rusty old car, and concludes 
it has measles; a car loan authoriza- 
tion system approves a loan from 
someone whose “years at the same 
job” exceeds the applicant’s age; a 
digitalis dosage system does not com- 
plain when someone accidentally 
types a patient’s age and weight in 
reverse order (even though this 
49-pound, 102-year-old patient was 
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taken to the hospital by his mother); 
and so on. 

This, then, is the bottleneck of 
which we spoke earlier: brittle re- 
sponse to unexpected situations. It is 
a characterization of software today: it 
is the quality that separates it from 
human cognition. The programs’ 
limitations are both masked and ex- 
acerbated by the misleading sophisti- 
cation of their templates for English 
outputs, by the blind confidence their 
users place in them, and by their 
being labelled with pretentious gen- 
eralizations of their functionality 
(e.g., a “medical diagnosis expert sys- 
tem” today does just a narrow slice of 
differential diagnosis.) 

Overcoming Brittleness 
People are not brittle. Why? Because 
they have many possible ways to re- 
solve a novel situation when it arises: 
asking someone for advice (this may 
include reading some written mate- 
rial), referring to increasingly general 
knowledge (eventually “first prin- 
ciples” or even “common sense”), 
comparing to a similar but unrelated 
situation. But each one of these paths 
to flexibility is closed to today’s pro- 
grams: they do not really understand 
natural language very well, they do 
not have general knowledge from 
which to draw conclusions, and they 
do not have far-flung knowledge to 
use for comparisons. Not only are 
programs vastly more narrow than 
we humans are, they are not 
equipped to dynamically grapple 
with a situation when it exceeds their 
current limitations. As we stated 
earlier, even the so-called expert 
systems, though they are the first at- 
tempt at iii), are only a “half-serious” 
attempt. 

A serious attempt at iii) would en- 
tail building a vast knowledge base, 
one that is 10’ to lo5 larger than to- 
day’s typical expert system, which 
would contain general facts and 
heuristics and contain a wide sample 
of specific facts and heuristics for 
analogizing as well. This KB would 
be distinguished by its breadth even 
more than by its size. Such a KB 
would have to span human consen- 
sus reality knowledge: the facts and 

concepts that you and I know and 
which we each assume the other 
knows. Moreover, this would include 
beliefs, knowledge of others’ (often 
grouped by culture, age group, or 
historical era) limited awareness of 
what we know, various ways of rep- 
resenting things, knowledge of which 
approximations (micro-theories) are 
reasonable in various contexts, and 
so on. 

L 
ate in 1984, we began the 
first serious attempt at 
iii), and the bulk of this 
article describes that ef- 

fort. We have made significant pro- 
gress since then, and anticipate a 
kind of crossover (from primarily 
manual knowledge entry to primarily 
automatic entry via natural language 
understanding (NLU)) later this de- 
cade. As the next article in this issue, 
“Knowledge and Natural Language 
Processing” and [2] explain in detail, 
one cannot expect to shortcut the 
building of the large KB today-let 
alone five years ago-by NLU, 
because open-ended NLU itself 
requires such a KB-for semantic 
disambiguation of word senses, 
resolving anaphora, inducing the 
meaning of ellipses, and so on. 

Interestingly, our work is spurring 
progress in i) and ii): in i), because 
the utility of various representation 
language features can best be judged 
by using the language; in ii), because 
what is wanted is not the most effi- 
cient inference procedure overall, but 
rather those that are used most often, 
so it is good to perform activity ii) in 
the context of a large “task-indepen- 
dent” test-bed KB. 

Overview of the Cyc Project 
Although our project Cyc empha- 
sizes iii), building an immense KB 
requires that we also cover i) and ii). 
Namely, the KB must be built in some 
representation language, hence we 
have to include some of activity i). 
We also have to worry about some of 
ii) because the KB is going to be 
vastly smaller than its deductive clo- 
sure, (i.e., in order to answer most 
queries, it will have to do some so- 
phisticated inference). The next 

three paragraphs-and, in much 
more detail, the next three sections of 
this article-discuss our approach to 
i), ii), and iii): our representation 
language (CycL), our inference en- 
gine (actually many little ones), and 
our ontology. 

Representation L.an.ge. We developed 
our representation language incre- 
mentally as we progressed with task 
iii). Each time we encountered some- 
thing that needed saying but was 
awkward or impossible to represent, 
we augmented the language to han- 
dle it. Every year or two we paused 
and smoothed out the inevitable re- 
cent “patchwork.” The latest lan- 
guage has been stable for 18 months; 
that is, its paradigm and “core” have 
remained stable, even though we 
have added many relatively minor 
extensions to it. To summarize it in 
a sentence, it is a frame-based lan- 
guage embedded in a more expres- 
sive predicate calculus framework 
along with features for representing 
defaults, for reification (allowing one 
to talk about propositions in the KB) 
and for reflection (allowing one to 
talk about the act of working on some 
problem.) 

Inference Engine. The same “incre- 
mental engineering approach” was 
taken to building the inference en- 
gine. As we identified frequently 
used classes of inferences that could 
be used more efficiently, we intro- 
duced special mechanisms for this 
purpose. Traditional computer sci- 
ence has identified many problems 
having varying levels of complexity 
and has,devised special data struc- 
tures and algorithms for solving 
them. AI on the other hand, has 
largely opted for single, very general 
mechanisms (e.g., resolution) for 
doing problem solving. We have 
adopted the former paradigm and 
are applying it to cover the kinds of 
problems that a system such as Cyc 
tries to solve. This approach is quite 
similar to that advocated in [4]. 

Ontology of the KB. As for the KB, we 
alternate bottom-up growth with top- 
down design. The bulk of the effort 
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is currently devoted to identifying, 
formalizing and entering “micro- 
theories” of various topics (e.g., 
money, buying and shopping, con- 
tainers, etc.) We follow a process that 
begins with a statement, in English, 
of the theory. On the way to our goal, 
an axiomatization of the theory, we 
identify and make precise those Cyc 
concepts necessary to state the 
knowledge in axiomatic form. To test 
whether the topic ha.s been ade- 
quately covered, stories dealing with 
the topic are represented in Cyc, then 
questions any human ought to be 
able to answer after reading the story 
are posed to Cyc. 

T 
here are currently be- 
tween one and two mil- 
lion assertions in our 
KB. manv of which are , . 

general rules, classifications, con- 
straints, and so on; only a fraction (at 
present) are specific facts dealing 
with particular objects and events 
(e.g., famous people and battles.) 

More significantly, we feel we have 
found “solutions” for various repre- 
sentation thorns that we might have 
become caught on: time, space, 
belief, hypotheticals and counterfac- 
tuals, interval-based quantities, sub- 
stances, composite tangible and 
intangible entities, etc. By “solution” 
we mean the following: a set of par- 
tial solutions which work adequately 
in the moderately common cases, 
and which work very well in the very 
common cases. For example, a signif- 
icant amount of work on the problem 
of representing aspects of agents such 
as their beliefs, goals, etc., in AI and 
philosophy, has focused on trying to 
reduce the total number of these prop- 
ositional attitudes to the barest mini- 
mum and in trying to handle rather 
esoteric problems such as the Prison- 
ers Dilemma [28]. We, on the other 
hand, have been quite promiscuous 
about inventing new propositional 
attitudes and have concentrated on 
more mundane issues such as pre- 
dicting what the driver of a car on an 
American road probably intends 
when he turns on his left turn signal. 

What do we hope to get from our 
efforts? Here are three possible levels 

of success, in decreasing order of op- 
timism. It is interesting to note that 
we put the chance of the better result 
at less than 5 percent in 1984, but- 
due to our clipping of representation 
thorns, and stabilizing of the repre- 
sentation language, inference engine 
suite, and high-level ontology-we 
now place it as high as 60 percent: 
l Good: While not directly built 

upon and widely used, the Cyc 
research does provide some insight 
into issues involved in task iii). 
Perhaps it gives us an indication as 
to whether the symbolic paradigm 
is flawed and, if so, how. It also 
might yield a rich repertoire of 
“how to represent it” heuristics, 
and might at least motivate future 
research issues in tasks i) and ii). 

l Better: Cyc’s KB is used by the 
next generation of AI research pro- 
grams, and its size and breadth 
help make them more than theo- 
retical exercises. No one doing 
research in symbolic AI in 1999 
wants to be without a copy of Cyc, 
any more than today’s researchers 
want to be without EVAL and 
ASSOC. Eventually, it empowers 
the first full-fledged natural lan- 
guage understanding systems, 
non-brittle expert systems, and 
machine learning systems. 

l Best: Cyc, or something similar, 
serves as the foundation for the first 
true artificial intelligent agent. 
Application programs routinely tie 
into it, in effect letting it look over 
their shoulder. No one in the early 
twenty-first century even considers 
buying a machine without com- 
mon sense, any more than anyone 
today even considers buying a PC 
that cannot run spreadsheets, word 
processing, and networking 
software. 

CycbTme eye 
Representatlon 
Lanmuame 
CycL is the language in which the 
Cyc KB is encoded. Let us first con- 
sider some of the issues that heavily 
influenced the design of CycL. As we 
mentioned earlier, it is our aim that 
the Cyc KB be usable by many dif- 
ferent problem solvers. This implies 

that the CycL should have a clear 
(and hopefully simple) semantics. We 
also want CycL to provide certain in- 
ferential capabilities and these should 
not be intolerably inefficient. Since 
most of our commonsense knowledge 
is in the form of defaults, CycL 
should provide some scheme for 
dealing with such knowledge. We 
would like to have all the expressive- 
ness of first-order predicate calculus 
with equality, and we would also like 
a means for handling propositional 
attitudes (such as beliefs, goals, 
dreads, etc.) [26]. And finally we 
would also like to provide some facil- 
ities for operations such as reifica- 
tion, reflection, and so on. This, in 
short, is the “wish list” for CycL. 

Epistemological Level and Default 
Reasoning 
Two of the “wish-list” entries seem to 
be at odds with each other: having a 
clean and simple semantics, yet pro- 
viding speedy inference. To improve 
inferencing abilities, we want to 
include special-purpose representa- 
tions and inference routines, proce- 
dural attachments, etc. But these 
make it harder to provide a simple se- 
mantics. Also, while it is reasonable 
to expect the semantics of CycL to 
remain unchanged, it is likely that 
new constructs are going to be in- 
crementally added to improve Cycles 
inferencing. The addition of new 
special-purpose constructs is likely to 
prove bothersome to other programs 
that use Cyc-for instance, programs 
which were written before the new 
constructs even existed and hence 
could not take advantage of them. 

We therefore would like users of 
Cyc (either humans or application 
programs) to interact with the system 
at an epistemological level and not at a 
heuristic level. These terms, and the 
distinction between them, are used in 
the sense as used by McCarthy and 
Hayes in [23]. These observations 
lead to the conclusion that the KB 
should be constructed at two levels, 
the Epistemological Level (EL) and 
the Heuristic Level (HL)-and this 
is exactly what we have done. The 
Cyc KB exists at these two levels and 
an external program (or human user) 
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can interact with CycL at either of 
these levels. 

The Epistemological Level (EL) 
uses a language that is essentially 
first-order predicate calculus (with a 
slightly different syntax) with aug- 
mentations for reification [20] (i.e., 
having a name for propositions, and 
being able to make statements about 
other statements) and reflection [32] 
(e.g., being able to refer to the facts 
supporting the system’s beliefs in 
another fact in axioms). The EL is 
meant for giving an account of the 
KB in a form that has a simple 
semantics and is easy to use to 
communicate. 

The Heuristic Level (HL), by con- 
trast, uses a variety of special- 
purpose representations and proce- 
dures for speedy inference. The HL 
is used whenever any inference needs 
to be done. It is best to think of the 
HL just as an optimization; i.e., to 
consider only the EL as “real,” as 
containing all the knowledge. 

CycL has a facility called Tell-Ask 
(TA) for translating sentences from 
the Epistemological Level into the 
most appropriate representations in 
the Heuristic Level and vice versa. 
One can therefore type Epistemolog- 
ical Level expressions (i.e., in some- 
thing like first-order predicate 
calculus) to TA, and they are con- 
verted into whichever Heuristic 
Level representation is most efficient 
(inverse, transfersirhmugh, automatic clas- 
sification, inheritance, etc.). 

The actual First-Order Predicate 
Calculus (FOPC)-like logic used by 
the Epistemological Level is called 
the “Cyc constraint language” (CL). 
In addition to the expressiveness 
provided by this, CycL also allows 
sentences and function terms to be 
reified into objects.’ The Constraint 
Language also allows some amount 
of reflection of the problem solver 
into the language. It also uses a 
number of modals (e.g., beliefs and 
desires) to talk about the proposi- 
tional attitudes of agents. 

‘The reification of a function term is different from 
the ualuc of that function term. For example, it might 
then be referred to in a proposition about how costly 
its evaluation might be, which proofs depend on 
knowing the value, and other meta-level assertions. 

Some of the assertions in Cyc’s KB 
are monotonic (i.e., the addition of new 
facts cannot cause them to be re- 
tracted). But most (over 90 percent) 
are non-monotonic: they are cur- 
rently held default beliefs which can 
quite possibly turn out to be invali- 
dated. Very little that we believe 
about the world is certain and abso- 
lute; that is true not only for heuris- 
tics (and conclusions derived using 
them), but also for most common- 
sense “facts” about the world. They 
often turn out to be simplifications 
(“Lincoln was a good President”), 
approximations (“The earth goes 
around the sun in an ellipse”), or, 
more rarely, just plain wrong (e.g., 
over half of American high school 
students believe that if you drop a 
wrench on the moon, it will just hang 
in mid-air there!). The monotonic 
(absolutely true) assertions are usu- 
ally those that are definitional (e.g., 
it is absolutely certain that tall peo- 
ple are people) or provable (which 
usually means mathematical facts, 
such as “squares of odd numbers are 
odd”). 

Unlike many AI programs, most 
of whose default reasoning facilities 
are woven into the logic they use, Cyc 
uses only minimal support from the 
logic for doing its default reasoning, 
with most of the knowledge associ- 
ated with default reasoning being 
represented as axioms in the KB [12]. 

The only non-monotonic con- 
structs used are equivalent to the 

Closed World Assumption and the 
Unique Names Assumption. The 
Closed World Assumption is used 
only to provide the language with 
non-monotonicity, and the default 
reasoning abilities are designed using 
this and the notion of arguments. 
The syntactic structure of defaults is 
following that suggested in [22]. 
Thus, the statement “birds usually 
fly” is represented as follows? 

Esa (x Bird) A 1 abl (x) > jlies (x) 

To derive conclusions from this, we 
use the concept of arguments, so we 
have an argumentation axiom (instead of 
the circumscription axiom.) 

An argument for a proposition P is 
similar to a proof for P, but is non- 
monotonic. For example, later infor- 
mation never invalidates a proof, 
once one is found, but might very 
well invalidate an argument. The 
essential differences between a proof 
and an argument are that, unlike in 
proofs, the sentences in an argument 
can be assumptions [25] and that 
arguments are first-class objects 
which can be referred to in axioms. 
The assumptions that can be made 
are sentences of the form 1 abi(...). 

We then write more axioms that 
allow us to conclude P (or 1 P), given 

PThe “isa” predicate corresponds to the set- 
membership relation; it is sometimes called ISA, 
is-a, AKO, element-of, In Cyc’s KB we happen 
to call this insfancLJf. Also, the “abt’ predicates are 
short for abnoml infnrhion i; so abt corresponds to 
being an exception in the sense of being a bird and 
not being able to fly. 

THUS, MUCH OF THE 
Ecl” IN THE ccAl” 
PROGRAMS IS IN 
THE EYE-AND V” 
-OF THE BEHOLDER. 
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a set of arguments for and against 
P-i.e., axioms which conclude that 
some argument is invalid, or con- 
clude that one argument is stronger 
than another. Here is the Argumen- 
tation Axiom; it says to believe in a 
proposition P: 

i) if there is an argument for it, 
ii) the argument is not known to be 

invalid, and 
iii) there is no preferred argument 

for -IP (except perhaps some 
which are known to be invalid):3 

(V (ul,p) (argumentFor 
A 1 invalidArg(ar) A 

(V (4 (arpmentFor(al,‘( l,P)) 
> (invalidArg(a2) 

V preferred(al, a~))))) 
> True(P)) 

A closed-world assumption is 
made for the predicates argumentFor 
and invulidrlrg. This axiom uses the 
truth-predicate True and in order to 
avoid the possibility of paradoxes we 
allow the truth-predicate to be par- 
tial. (i.e., (True(‘p) V True(’ 1 p)) is 
not a theorem). 

The salient aspect of this approach 
to doing default reasoning is that 
most of the “work” is done using ax- 
ioms in the language and not “wired 
in” to the logic. The real core of the 
default reasoning is a set of additional 
axioms. The axioms in one group 
specify when an argument is invalid: 
if one of the assumptions made by an 
argument is false, then the argument 
is invalid. The axioms in the other 
group specify when one argument is 
preferred to another: In the former 
group, if one of the assumptions 
made by an argument is false, then 
the argument in invalid. In the sec- 
ond group, causal arguments are 
preferred over reductio ad absurdurn 
arguments. This provides greater 
flexibility and control, and makes it 
easier to fix things if inadequacies are 

SNote that ‘p, read “quote p,” refers to the sentence 
p, rather than to its truth-v.aluc. Normally, one 
is free to substitute “equals for equals” in 
mathematical or logical formula:, but think of the 
trouble you would get into with “Fred believes 
Mary’s age is 39” if it turns out that Mary is 40. We 
certainly do not want to do the substitution and con- 
clude “Fred believes 40 is 39.” ‘II?) prevent this sort 
of problem, assertions and formulae (such as 
“Mary’s age”) can be quoted in this fashion. 
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detected (i.e., adding/removing axi- 
oms from the KB is strongly prefer- 
able to changing the logic, especially 
when a massive KB already exists 
and assumes a certain logic). 

This concludes the discussion of 
the Epistemological Level. A short 
description of some of the techniques 
used at the Heuristic Level to speed 
up inference follows. 

The neurls+lcLevel: 
InFerenclng In eye 
The Heuristic Level (HL) is meant 
for doing inferencing. As opposed to 
the Epistemological Level, where we 
tried to avoid superfluous constructs, 
the HL incorporates a host of “logi- 
cally” superfluous mechanisms for 
improving efficiency. 

M ost of the novelty 
and power of 
Cyc stems from 
its rich, broad 

knowledge base; so why all this treat- 
ment of reasoning? Even though 
most commonsense reasoning is 
shallow, “shallow” still means one or 
two deductions away from what is al- 
ready there in the KB. For instance, 
you have to make the following deci- 
sions: what to cook for dinner to- 
night; whether a wrench released on 
the moon will hang there or fall to the 
lunar surface; why someone just 
laughed; whether X is likely to al- 
ready be acquainted with Y, etc. 
Most of the answerable queries are 
not preconceived. Their answers are 
not worth pre-computing and cach- 
ing because tney are numerous and, 
individually, each very unlikely ever 
to be asked (e.g., “Did Aristotle know 
about the Space Shuttle?” “Did 
Jefferson’s right thumb have a 
thumbnail?“). Cyc can answer those 
questions correctly, giving “right” 
arguments for its answers, and the 
ability to answer those questions is 
part of what it means to have com- 
mon sense. .yet it would be wildly 
cost-inefficient to try to store, let 
alone calculate, the answers to each 
such question ahead of time. The 
number of potentially useful short 
deductions from our current KB is in 
the trillions; so it is important to be 

able to quickly identify a small subset 
of sentences relevant to one’s current 
problem, and it is important to be 
able to efficiently reason using those 
sentences. 

The functionality of the Heuristic 
Level is defined in terms of a Func- 
tional Interface which consists of the 
following six operations which the 
HL must implement. 

a) Tell: (E x KB + KB). “Tell” is 
used to assert statements. Given a 
sentence o and a KB, after Tell 
(a, KB) we get a new (modified) 
KB ’ in which u is an axiom. 
Regardless of other arguments 
(multi-step “proofs”) of u, KB’ 
would contain a new argument for 
it, of the form “Primitively, be- 
cause the user told me so.” u can 
be any well-formed formula of the 
EL language. 

b) Unassert: (C x KB -+ KB). 
Given a sentence u and a KB, we 
get a KB ’ in which u is not an ax- 
iom. Nothing can be said about 
the truth-value of u in the resulting 
KB. For example, u might still be 
True (it still might be derivable 
from other axioms in KB ‘), it 
might be False ( 1 u might be de- 
rivable from axioms in KB ‘), or 
its truth-value might be unknown 
(neither u nor 1 u are supported 
by arguments in KB ‘). Unassert 
is the direct “undo” of Assert. 
Note that Tell( 1 u, KB) is quite 
different from Unassert(u, KB); 
the Tell would result in a KB ’ in 
which u was false, as justified by 
an explicit new axiom 1 u. 

c) Deny: (C x KB + KB). Given a 
sentence u and a KB, after 
Deny(u, KB) we get a KB ’ in 
which u is no longer true. It is 
common for neither u nor 1 u to 
be true in KB ’ (i.e., if there are no 
other arguments for 1 a). In other 
words, this squelches all positive 
arguments for a, and does not af- 
fect negative arguments (argu- 
ments for 1 a) in any way. Note 
that this is not the same thing as 
Unassert(u, KB), in which case u 
might still be true; and it is not the 
same as Tell( 1 u, KB), in which 
case u would have to be false. 
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d) Justify: (C x KB -+ sentences). 
Justify is used to obtain the argu- 
ment for a given proposition. If 
sentence u were true in KB, then 
Justify(a, KB) would return a sub- 
set of the KB from which u can be 
derived. (Actually, Justify returns 
a somewhat more complicated 
value, which specifies the various 
pro and con arguments about (T, 
and how they combine to produce 
the “net” truth-value of u in KB.) 

e) Ask: (C x KB -+ truth-value/ 
bindings). “Ask” is used to test 
the truth value of a statement, and 
to find which free-variable bind- 
ings make an expression true. 
Given any constraint language 
(CL) expression o (which may 
contain free variables) and a KB, 
the value of Ask(a, KB) is either 
the bindings for the free variables 
in u, or a truth-value. An optional 
argument turns Ask into agenera- 
tor; i.e., each repeated call yields a 
single distinct binding list. 

r> Bundle: (sequence of Functional 
Interface statements). This is a 
facility which performs a series of 
calls to the previous five FI func- 
tions as one atomic macro opera- 
tion. This is of great pragmatic 
benefit, in two ways: 
i) The operations may violate 

some integrity constraints and 
satisfy them again. For exam- 
ple, changing the domain of the 
predicate likes from Person to 
Animal requires one Assert and 
one Unassert. No matter in 
which order they are per- 
formed, after performing the 
first operation, there will be a 
violation to the integrity con- 
straint that says that each pred- 
icate has precisely one recorded 
domain. 

ii) The bundling allows the HL to 
be “smart” about which asser- 
tions it has to undo. For exam- 
ple, changing an inheritance 
rule from “Southerners speak 
with a drawl” to “Southerners 
over age 2 speak with a drawl” 
will result in n/35 retractions if 
they are Bundled together (as- 
suming an average lifespan of 
72 years, a uniform population 

distribution, etc.), rather than 
2.q if they are not. 

The concept of a Functional Inter- 
face, with functions such as Tell and 
Ask, has existed in Computer Sci- 
ence and AI for some time [5]. We 
have tailored it for our purposes, and 
increased its pragmatic usefulness by 
adding some new constructs (such as 
Bundle and Justify) and by teasing 
apart old ones (such as Unassertp, 
KB) versus Deny@, KB) versus 
Tell( 1 p, KB)). 

Default Reasoning Modules 
Most of the gain in speed of process- 
ing at the Heuristic Level comes 
about because of the way we imple- 
ment Ask. (Much of the complexily at 
the Heuristic Level is due to the need 
to do Deny properly.) 

Since most of the reasoning done 
is related to defaults, we first de- 
scribe how this is implemented.4 
The structure of the Heuristic Level 
is based around default reasoning 
and consists of these four modules: 

l Argument Generator: Given a sen- 
tence, this module tries to generate 
an argument for it. 

l Argument Comparator: Given a 
set of arguments for and against a 
sentence P, this module decides on 
a truth-value for P by comparing 
these statements. It then adds this 
sentence to the KB, with that “net” 
truth-value. Current truth-values 
include: monotonically true; true 
by default; unknown; false by de- 
fault; and monotonically false. 

l Conclusion Retractor: When the 
truth-value of a sentence x changes, 
this module ensures that truth- 
values of other sentences that de- 
pend on x are also updated. Not 
surprisingly, the module for the 
generation of arguments is, in 
practice, very tightly integrated 
with this module. 

l Contradiction Resolver: This 
module is responsible for detecting 
and resolving contradictions. 

Though the Epistemological Level 
has only two truth-values (true and 

false), the Heuristic Level uses 5 of 
them (true, default true, unknown, 
default false and false) to label sen- 

tences in the KB [ll]. “True/false” 
sentences are those that are “mono- 
tonically” true (i.e., the addition of 
new facts cannot cause them to be 
retracted). “Default true/false” sen- 
tences do not have this property. 
“Unknown” is used for sentences for 
which there are unresolved conflict- 
ing arguments, Deductions that re- 
quire making assumptions are only 
default true (or false) while those that 
do not require any assumptions are 
monotonically true. 

Given a sentence P, Ask first tries 
to find arguments for it. If it can, it 
then tries to find arguments against 
it. These are then checked for possi- 
ble invalidity, compared, and the 
final truth-value is decided on this 
basis. If there are unresolvable (in- 
commensurable) arguments for and 
against P, then P is labelled as 
Unknown. 

Since the Heuristic Level has these 
five truth-values, the Tell-Ask trans- 
lator is able to convert axioms from 
the Epistemological Level into sen- 
tences at the Heuristic Level that do 
not contain any “ab liter&” (assum- 
ing that no axiom has more than one 
negated ab literal). This makes the 
default reasoning both easier to en- 
code and faster. 

A number of the axioms (i.e., as- 
sertions that have been manually 
entered into the system) at the Epis- 
temological Level are of the form 
( 7 abi(...) > <ground-formula >). 
These are called “local defaults” (and 
simply translate to the ground- 
formula with a truth-value of default 
true at the Heuristic Level) and the 
Heuristic Level provides special sup- 
port to handle these efficiently. 

It should be noted that since com- 
paring two arguments could involve 
using axioms in the KB, the Argu- 
ment Comparator (or any of the 
other modules) can recursively use 
Ask or any of the other interface 
functions. 

‘The argumentation axiom is just like any other ax- 
iom at the Epistemological Level. However, since it 
is used very often, at the Heuristic Level, there are 
some special procedures for incorporating it. 

Speeding up the Argument- 
Generator Module 
The bulk of Cyc’s time spent infer- 
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encing is used by the Argument- 
Generator module. A number of 
techniques have been introduced to 
make the Argument-Generator (and 
Conclusion-Retractor) modules 
work more efficiently These tech- 
niques fall into three categories: 

l highly specialized inference rules, 
l domain-specific inference mod- 

ules, and 
. dependency analysis of the KB. 

Highly S’ecialized Inference Rules 
There are a number of groups of ax- 
ioms whose syntactic structure can 
be captured using .schemas that do 
not have any sentential variables. 
Each of these schemas is made into 
a rule of inference. 

For instance, many rules we en- 
tered had the form (Vx, y, z) sl(x, J) A 
~20, .z) * sl(x, z). For example, (Vx, 
y, 2) own.r(x, y) A phpicalParts& 2) * 
own.+, 2). If you own a car, and one 
of its parts is a certain steering wheel, 
then you also own that steering 
wheel. We introduced a new infer- 
ence template, tran.sfkrsThmug~ so that 
one could express th.at rule simply as 
transfersThrough(owns, PhysicalParts). 
There are many other transfershmugh 
“rules” in Cyc, e.g., tram-fmsThrough 
(lastName, fathu), so that lastName 
(MichaelDouglas, Douglas) and father 
(MichaelDouglas, KirkDouglas) imply 
lastName(KirkDouglas, Douglas). An- 
other example of the use of this spe- 
c&purpose inference schema is 
transf~sThmugh(ca~~, agentof); for in- 
stance, ifX caused something to hap- 
pen, while X was acting as an agent 
of Y, then we can consider Y to have 
caused it as well. 

Associated with each inference 
schema-such as transfusThrough or 
inherits-are specialized procedures 
for speeding up that sort of inferenc- 
ing. For example, a certain amount 
of compilation can be done that cuts 
down drastically on unification at 
runtime. Also, the stack used by Lisp 
itself can be used instead of using 
binding lists. Many of these savings 
are similar to those obtained by 
Warren-Machine-like [31] compila- 
tions of Prolog programs. In par- 
ticular, each schema has specialized 
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procedures for: 

l Recognizing instances of the 
schema. For example, noticing 
when a constraint language sen- 
tence can be transformed into an 
instance of that schema. If the user 
Tells the system (Vu, v, w) owm(u, 
v) A physicalParts(v, w) * owns(u, w), 
that trivially matches the general 
transf~sThrough(sl,s2) template (Vx, 

J 2) sm Y) A 434 2) =a Jl@J z), so 
the %11&k translator converts 
that into transfmsThrough(owns, phys- 
ica1Part.r). 
Storing justifications. Each infer- 
ence mechanism is responsible for 
detecting when an argument it 
proposed becomes invalid, and (at 
that time) retracting the argument. 
Truth Maintenance Systems per- 
form two tasks: providing this kind 
of bookkeeping, and maintaining 
consistency. Though typically 
tightly interwoven, in Cyc we see 
that these are kept clearly sepa- 
rated. The bookkeeping is infer- 
ence mechanism-specific (the data 
structure used to represent the 
argument could be dependent on 
the inference mechanism that pro- 
posed it) while the consistency 
maintenance task (discussed in de- 
tail later, in the subsection on 
Denials) is inference mechanism- 
independent. 
Applying the schema. For exam- 
ple, suppose we assert these three 
sentences: 
tramfusThrough(owns, physicalparts) 
owns(Guha, TyotaO093) and 
physicalParts(TqotaOO93, 
W’heelRR009382015) 
Then a specialized procedure asso- 
ciated with transfersirhrough would 
detect the need to “fire the rule” (if 
it were forward-propagated, or if it 
were backward-propagated and 
someone asked whether Guha 
owned WheelRR009382015). 

We have also built a facility to help 
user add new inference rule 

schemas [1S]. For example, one spec- 
ifies a schema, and Cyc automati- 
cally generates the code needed to 
“implement” this schema as an in- 
ference rule-the types of specialized 
procedures itemized above. This fa- 

cility can only handle schemas not in- 
volving sentential variables. 

Domain-S’ecifk Inference Modules 
The first category of specialized 
mechanisms was based purely on the 
syntactic structure of the axioms, and 
had nothing to do with the domain 
with which the axioms dealt. 

T 
here are times when 
one can exploit some 
special properties of a 
set of domain-specific 

axioms, and/or domain-specific use 
of a set of general axioms-notably, 
information about “most frequently 
seen cases.” 

Some examples of such axiom clus- 
ten that Cyc currently optimizes in 
this way are those related to temporal 
reasoning [l], quantity arithmetic 
[33], equality, etc. 

It should be noted that while there 
may be nothing more than the pro- 
gram representing these axioms at 
the Heuristic Level, these axioms do 
exist declaratively, explicitly at the 
Epistemological Level. 

Dependency Analysis of the KB 
In the past, AI has developed a 
number of standalone modules (e.g., 
Truth Maintenance Systems [9] that 
can be used with anyproblem solver.) 
In order to make them problem 
solver-independent, their operation 
was usually made independent of the 
contents of the KB the problem solver 
operated upon. 

However, we have found that it is 
possible to obtain significant im- 
provements (in efficiency) by using 
an analysis of the structure of the ax- 
ioms in the KB. 

For example, a dependency anal- 
ysis of the axioms of the KB could 
reveal the circumstances in which 
there couldpa&ly be circular justifica- 
tions and identify the only sentences 
that may be involved in the circular 
justification. Having this informa- 
tion can vastly reduce the time re- 
quired to search for such circularities. 
(For example, it turns out, in Cyc’s 
KB, that only a handful of the four- 
thousand kinds of slots can even pos- 
sibly participate in circular lines of 
reasoning and such “garbage collect- 
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able” chains are usually rather short; 
these two KB-specific properties 
make the problem of detecting them 
computationally quite feasable, in 
practice, even though it requires a 
rather expensive procedure in theory.) 

Though on the one hand these 
modules are now making strong as- 
sumptions about the structure of the 
representation used by the problem 
solver, the resultant improvements in 
efficiency are worth it. 

Dealing with Multiple Specialized 
Inference Engines 
The two most critical issues that crop 
up in the presence of dozens of such 
specialized mechanisms are: 

l When should a particular inference 
scheme be used? To determine which 
mechanism to use when, we asso- 
ciate with each predicate the set of 
features that may be used to de- 
duce atomic formulae in which that 
predicate appears. Cyc also has a 
general-purpose inference mecha- 
nism that (though inefficient) is 
capable of a much larger (but still 
incomplete) category of inferences. 
This general inference engine is 
very similar to a unit preference 
resolution theorem prover. 

l How does one integrate the operation of 
the di&ent m&m&ms? Each infer- 
ence mechanism is expected to 
provide a set of functions (in addi- 
tion to one for deducing some class 
of sentences) for providing the ar- 
gument justifying an inference, 
providing a list of instances of the 
inference rule, etc. Given these 
facilities, integrating these infer- 
ence features is straightforward. 

Each inference module can itself 
call any of the interface functions. 
(Ask, Deny, Jus@, and lZl). For ex- 
ample, the mechanism for imple- 
menting the previously mentioned 
tran.sfgsThrough schema calls Ask to 
verify the truth (or to find bindings 
satisfying) a particular sentence. 
When dealing with mechanisms 
other than the domain-specific infer- 
ence mechanisms, a depth-first iter- 
ative deepening procedure [27] is 
used for the search. Resource-limited 
reasoning [3] is implemented by the 
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indexical function resources-available, 
which specifies a cut-off depth, 
elapsed real time, or other resource 
bounds for the search. (The usual 
cut-off depth used is about 25.) 

In addition, parts of these infer- 
ence mechanisms are represented in 
Cyc, and this reflection allows one to 
use an agenda to perform a best-first 
search using various heuristics to 
control the search strategy. The per- 
formance of the iterative deepening 
strategy has been so good, however, 
that this meta-level [7] mechanism is 
rarely used. 

Specaaing Control Znformution For 
Individual Assertions 
A number of pieces of control infor- 
mation can be associated with each 
assertion (sentence) P. Some of these 
include: 

i) Should the conclusions of the 
sentence P (the positive asser- 
tions, if any) be propagated in the 
forward direction? 

ii) If backward-propagated, at what 
inference “level of effort” should 
this rule P be run? 

iii) Should the sentence P be treated 
as an integrity constraint? 

Some of the motivation behind 
providing such annotations for axioms 
is to develop a set of cl&d meta-level 
(proof theoretic) sentences about 
what actions were preferred, so that 
problem solvers could be written to 
exploit these directly. That effort is 
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still under way. 

Denials 
The interface function Deny, though 
useful, is by far the most tricky one to 
implement properly. As we remarked 
earlier, note that Deny(a, KB) is not 
the same as Tell( 1 a, KB); the for- 
mer will usually result in a KB in 
which u is unknown. For example, we 
might want to say that children of 
teachers typically go to college. But 
we might want to Deny that for chil- 
dren of gym teachers. This is not to 
say that we would guess that they 
very likely do not go to college, just 
that we do not want to bet one way or 
the other. Of course, there might be 
other arguments as to why those peo- 
ple (as a general rule) do or do not 
matriculate, and in any particular 
person’s case there might be other 
conclusive arguments for and/or 
against the assertion that they attend 
college. 

Though Deny can in principle be 
implemented by a combination of 
Ells and Unasserts, in practice we 
have found it useful to define a new 
operation corresponding to the func- 
tionality described below. 

If we write beliej(Cyc, a) to say that 
u is in the theory corresponding to 
the KB, then Deny(u, KB) is equiv- 
alent to asserting 1 beZief( Qc, a). We 
can also specify the meaning of deny 
without resorting to belief as follows. 

i) If the sentence u had been as- 
serted by Zill and is “monotoni- 

THE STRUCTURE OF A 
PHYSICAL OBJECT IS DE- 
FINED BY THE CONSTRAINTS 
ON ITS PARTS, AND THE 
STRUCTURE OF AN EVENT 
IS DEFINED BY CON- 
STRAINTS ON ITS SUBEVENTS. 
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tally true” and there is no other 
way to derive it (i.e. it is an axiom 
and not a theorem), then Deny 
just deletes it from the KB. So, in 
this case, Deny(a, KB) reduces to 
Unassert(a, KEI). 

ii) If the assertion cr follows from 
others in the K.B or is a “local 
defaults,” and is labelled “default 
true” (or “default false”), then we 
get the following two classes of 
denials. 

- Blanket Denial. This corre- 
sponds to introducing an 
axiom that invalidates any 
argument for u (i.e., argu- 
mentFor(cr, a) > inval- 
idArg(a)). A less dogmatic 
version of this kind of denial 
is also available where only 
those arguments that are 
present at the time of the 
denial are asserted to be 
invalid. 

-Constructive Denial. One or 
more of the assumptions 
(i.e., formulae of the form 
1 ab,(...)) is, chosen and as- 
serted to be false in order to 
“defeat” existing arguments 
for a. Control over which 
assumption gets “retracted)’ 
can be exerted by using the 
predicate morel&e&Than. If 
moreLikelrT,;an(‘pl, 32) is 
true, then if a choice be- 
tween retracting pl versus p2 
needs to be made, p2 is 
chosen as the likely one to 
retract. 

iii) If the assertion cr follows from 
others and has been labelled 
“monotonically true,” then at- 
tempting to deny it causes an 
error to be signalled. It is then 
adjudicated by the asserter, who 
has the option of retracting or 
reducing the truth-value (from 
monotonic to default true) of 
various assertions from the KB 
(which led to u being asserted as 
monotonically true), or (much 
more common if this is a “top- 
level” user operation) simply 
aborting the attempt to Deny cr, at 
least for the time being. 

We conclude the discussion of 
CycL and proceed to discuss the con- 
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tents of the KB. Further details of the 
CycL language may be found in [8, 
12-14, 16, 191. 

The Cyc Ontology 
Recall that the EL (Epistemological 
Level) is meant for communicating 
the contents of Cyc independent of 
the “inferencing hacks” which are 
used for efficiency down at the HL 
(Heuristic Level). Hence, most of the 
discussion of the ontology of Cyc’s 
KB in this article will be at the EL, 
not HL. 

We begin by introducing some of 
the basic concepts and distinctions 
used, and later proceed to “represen- 
tation issues” such as time, events, 
agents, causality, etc. This discussion 
is meant only to give a flavor for the 
kind of things that are present in the 
Cyc KB and is not a comprehensive 
overview of what it encompasses. 

Some Basic Concepts and 
Distinctions 
The ontology of Cyc is organized 
around the concept of categories. We 
shall also refer to these as classes or 
collections. Though we shall fre- 
quently use set-theoretic notions to 
talk about collections, these collec- 
tions are more akin to what Quine 
termed Natural Kinds [29] than they 
are to mathematical sets. This shall 
become apparent later as we start 
ascribing various intentional proper- 
ties to collections. The collections are 
organized in a generalizationlspecial- 
ization hierarchy (not a tree since 
each collection may have more than 
one direct generalization). The gen- 
eralizations and specializations of a 
collection (that is, its supersets and 
subsets) will often be referred to as its 
genls and specs. Elements or members 
of a category are usually referred to 
as its instances. 

Since this hierarchy is very impor- 
tant, we begin by discussing some of 
its important nodes and why they are 
in certain unintuitive genls/specs re- 
lations; we also discuss some of the 
partitions of categories (that is, divid- 
ing a category C into mutually dis- 
joint subsets whose union is C). 

The universal set is called Thing. 
One of its partitionings is into the two 

sets IntemalMachineThing and Repre- 
sentedThing. Instances of InternalMa- 
chineThing include the number ‘5,’ the 
string “foe,” etc.-i.e., things for 
which the representation is provided 
by the Lisp substrate upon which 
CycL is written. Instances of Repre- 
SentedThing are things like Table, for 
which only a representation is pro- 
vided by CycL. This distinction is of 
use when deciding whether to use 
model attachments. 

Another partition of Thing is into 
IndividunlObject and Collection. Indi- 
vidualobjects are things like Fred, 
ThWSiteHoure, ThFourthOfJuly1990, 
-i.e., the non-sets. They can have 
parts, but not elements (instances>. In- 
stances of Collection include Thing (the 
set of all things), Table (the set of all 
tables), Dining (the set of all dining 
events), and so on. 

Predicates are all strongly typed 
and a single category from the Cyc 
hierarchy has to be specified as the 
type for each argument. This was a 
conscious design decision, and has 
tremendous heuristic power as the 
KB is built. Namely, when a knowl- 
edge enterer has an urge to define a 
new kind of slot (i.e., binary relation), 
he or she must either select or define 
the domain (makz.s&nseFor) and range 
(entvIsA) of the slot. Usually, the slot 
is worth existing separately only if the 
domain is, and this frequently gives 
the knowledge enterer a well-needed 
doublecheck on what he was about 
to do. 

It should be noted that predicates 
such as age(x) and weight(x) cannot 
legally be applied to collections (such 
as Table). To rephrase: since Table is a 
set, a mathematical entity, it cannot 
have a weight or an age (it can of 
course have many other slots such as 
cardinality), that is, the domain of 
weight does not include collections 
such as Table. Of course we could 
discuss weight (Table905)-the weight 
of an element of the set Table-but 
that is quite different. Table is indeed 
a subset (specs) of IndividualObject, 
it is just not an element of (instanceOf) 
IndividualObject. 

In addition to collections of indi- 
viduals, we also have collections of 
collections. For example, PersonType 
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is a set whose elements include Person, 
Compute&&&t, lkan, etc., which 
themselves are collections whose ele- 
ments include Lenat, for example. 
The hierarchy folds into itself at this 
level and we do not have collections 
of collections of collections.5 

It should be noted that unlike 
many frame systems, a distinction 
is made between the relations, 
instances (elements) and specs (sub- 
sets). So the relation between Com- 
puterscientist and Fred (instances) is 
very different from that between Per- 
son and ComputerScientist (specs). 

The predicates themselves are 
first-class objects in the language and 
can be used as arguments to other 
predicates (this is a second-order like 
construct that can be easily first 
orderized). Although some of our 
editing tools (and internal data struc- 
tures) gather together into “frames” 
the set of assertions that are binary 
predicates sharing a common first 
argument, that is merely a Heuristic 
Level (and user interface) distinc- 
tion-there is nothing special about 
binary versus other-arity predicates 
at the Epistemological Level. 

We are now ready to discuss some 
of the “representation issues.” First 
we discuss the distinction between 
Substances and Individuals [18], and 
then proceed to how we represent ob- 
jects with temporal aspects to them. 

Substances and Processes vs. 
Individuals and Events 
If you take a piece of wood, and 
smash it into ten pieces, each piece is 
still a (albeit smaller) piece of wood. 
But if you do the same for a table, 
each piece is not a (smaller) table. 
Substances are usually referred to in 
English as mass nouns; some of them 
are obvious (sand, air, peanut butter) 
and some less so (time, walking). We 
view the concept PeanutButter as the 
collection of all pieces of peanut 
butter. 

Every individual is made of some 
substance or the other. If we do not 
have a single type of substance of 
which that individual is composed, 

‘We used to, but they were never much use. Collec- 
tions of collections, however--such as Pmoflype and 
Su6stance~pe and Euentqpe-have proven vital. 
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we can define a new one (Bertrand- 
RusselStuff? ugh!), use a more general 
substance (AnimalMatter), or even fall 
back on the most general kind of sub- 
stance of all, Substance. 

Conversely, every piece of any sub- 
stance-say this particular piece of 
peanut butter over here-is an indi- 
vidual. This gives us some interesting 
relations between substances and 
individuals. 

other hand, any particular piece of 
any substance is an individual and, 
since the category corresponding to 
a type of substance is nothing but the 
set of its pieces, Substance C In- 
dividualobject. 

So, rather surprisingly, the two sets 
are extensionally equivalent. We still 
choose to distinguish between them 
since they have different intensional 
descriptions. More specifically, one 
of the differences in their intensional 
descriptions is as follows. The differ- 
ent substances (such as plastic, pea- 
nut butter, air, etc.) are all instances 
of the collection SubstanceType while 
the collections of individuals (Table, 
Person, Number) are instances of 
ObjectType. We shortly describe how 
this difference in intensional descrip- 
tion is used. 

There are certain properties that 
are intrinsic in that if an individual has 
them, parts of individuals also have 
them (at least as a default), while 
there are other properties that are ex- 
trinsic (i.e., parts of individuals do 
not have this property even if the in- 
dividual does.) The notion of intrin- 
sicness is closely related to that of 
substances in the following way. Con- 
sider a particular table made entirely 
of wood-Table103. It inherits vari- 
ous default properties from Wood, 
the kind of substance it is an instance 
of (properties such as density, flash 
point, etc.) and it inherits other prop- 
erties from Table, the kind of indi- 
vidual object it is an instance of 
(properties such as number of legs, 
cost, size, etc.) The former properties 
are intrinsic, the latter are extrinsic. 
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This is no coincidence! An object X 
(typically) inherits its intrinsic properties 

yrom whichever instances of Substanceqpe 
X is an instance oJ and X inherits extrin- 
sic properties)om whichever instances of 
Object@e it is an instance o$ 

So we now have a way of pre- 

dicting, for any known predicate, 
whether or not it will be intrinsic: 
determine whether its domain 
(makesSenseFor) is an instance of 
SubstanceType or ObjectType. This 
explains our earlier remark about 
how vital collections of collections 
are-we could actually dispense with 
the concepts Substance and Individ- 
ualobject (since they are coexten- 
sional), but we cannot do without 
SubstanceType and ObjectType. 

Strictly speaking, it is always pos- 
sible to carve up a substance so that 
the resulting parts are not instances 
of what the whole was an instance of. 
For example, one could take a glob of 
peanut butter and separate out all the 
peanut chunks, and these alone do 
not form a glob of peanut butter. So 
there is some restriction on how we 
may cut up a piece of some substance 
for the substancehood principle to 
apply. We associate a granule size 
with each kind of substance and the 
substancehood principle applies only 
to pieces larger than the granule of 
that substance. This allows us to deal 
with strange kinds of substance like 
military hardware which is usually 
considered a substance even though 
it consists of items like guns which 
are surely not substance-like. 

Events and Persistent Objects 
So far we have used the terms “piece” 
and “cutting up” in a very loose 
manner. There are actually two 
senses in which these terms can be 
used-spatially and temporally- 
and we shall now examine them 
both. This examination will lead to 
a discussion of more general issues 
concerning events and objects that 
occur and exist over some time 
interval. 

We can cut up something spatially 
(as we did with the piece of peanut 
butter). We can also cut it up tem- 
porally. For instance, consider the 
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process of walking: in Cyc’s ontology 
we have the collection FGlking, which 
is the set of all walking events. Con- 
sider one of its instances, a particular 
event in which you walk ‘to the corner 
mailbox and back home again. 
Imagine a videotape of that event, 
and now consider some contiguous 
one-minute segment of the tape-say 
the third minute of it. If someone 
watched just that minute, he or she 
would report that the minute was it- 
self a (albeit shorter) walking event, 
that is, an instance of VValking 

In the last subsection, we noted 
that the class Woodhad an interesting 
property: when a member of the class 
is physically carved into pieces each 
piece is still an instance of Wood. We 
then said that Wood was a type of 
substance (an instance of Substance 
Tpe), and we could use such “sub- 
stance-like” categoriz.ation to decide 
on intrinsicness of properties. Here, 
we are seeing an analogous phenom- 
enon: Walking, a class of events has 
the property that, when a number of 
the class is temporally carved into 
pieces, each piece is still an instance 
of Walking. We say that Walking is a 
type of temporal substance-what 
we will call a Process (that is, Walking 
is an instance of Procew@e). This 
turns out to be more ‘than a superfi- 
cial analogy. Indeed, Walking is an 
instance of Substance?jlbe. We now 
divide Substanceqfre into Tangible- 
Substance$?e and ProcessType. Wood, for 
example, is an instance of Tangible- 
Substance@e. 

Similarly, Object@e is now divided 
into TangibleObject @e and Event @e. 
Even though Walking is a type of 
process, Walking~heMailboxAndBack 
is not. If you imagine that third min- 
ute of the ten-minute Walkingmhe- 
MailboxAndBack event, it is still an 
instance of Walking, but a stranger 
watching just that minute would not 
say that it was an instance of someone 
walking to a mailbox and back home 
-neither your home nor the mail- 
box might be anywhere visible on the 
tape during that minute! The rela- 
tionship here between Walking and 
WalkinglZheMailboxAndI~k is indeed 
the same as the one between Wood 
and Table. Table is an instance of 
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TangibleObjectij$e and WalkingIZhe- 
MailboxAndBack is an instance of 
Event qpe. 

Earlier it was illustrated that, sur- 
prisingly, Substance and Individual- 
Object were coextensional; as a special 
case, it turns out that Pmcess and Event 
are coextensional. That is why Process- 
qpe and Event@e are actually more 
useful collections to have explicitly 
represented than Process and Event. 

T 
here are now two types 
of intrinsicness as well: 
a property can be 
spatiallyIntrinsic and/or 

temporallyIntrinsic. If you imagine the 
particular event in which someone 
walked to the mailbox and back 
home, it is an instance of Walking 
(from which it inherits default values 
for the average velocity, step-size, 
amount of attention required, etc.), 
and an instance of WalkingZTheMail- 
boxAndBack (from which it inherits 
default values for destination, dura- 
tion, etc.). Sure enough, that third 
minute of the videotape would agree 
with the entire video on properties 
like average velocity, but would differ 
radically on properties such as 
duration. 

Consider TableOOI-a particular 
table, an instance of the category 
Table. It persists for a “lifetime,” an 
interval of time before and after which 
it does not exist. Consider a temporal 
“slice” of TableOOl, such as the decade 
it was owned by Fred. This too is an 
instance of Table. This is interesting 
since it means that the category Table 
is an instance of Processsqpe! Actually 
there exist a number of categories in 
our ontology whose instances are 
space-time chunks that have tem- 
poral aspects and which exhibit suf- 
ficiently persistent properties so that 
it makes sense to associate a notion of 
identity with these objects. The 
category of such things is called 
SomethingExisting and this is an in- 
stance of ProcessTfie. Since all physical 
objects (which have any persistent 
identity) exhibit this property, both 
TangibleSubsturue~pe and Tang&Object- 
qpe are specs of ProcessT@e! Conse- 
quently, anything that is spatially 
substance-like is also temporally substance- 

0 U A 0 E 

like, though the conuerse is not true. 
This is an interesting view of con- 

cepts such as Lenat or TableOOl. We 
view these objects as space-time 
chunks and we call the temporal 
pieces of these (e.g., LenatDuringl990, 
Table001 Whi~BeingEatenOn) subAbstnw 
tions of the larger piece. SubAbstractions 
can of course have further subrlbstrac- 
tions. The maximal subAbstration (e.g., 
Lenat, TableOOl) is called an Entity. 
Entities cannot have superAbstractions. 
Being space-time chunks these sub- 
Abstractions have temporal properties 
such as duration (the duration of 
Lenat is his lifespan), StartingTime, 
endingTime, and so on.‘j 

Not all objects that have temporal 
extents exhibit enough persistence to 
warrant according them a persistent 
identity. Consider Roger dining at a 
restaurant. We can consider a system 
consisting of Roger, the waitress, the 
table, cutlery, food, etc., interesting 
enough to create an explicit object for 
this system. However, this object has 
no temporally persistent properties 
and is of little interest after Roger 
walks out (except perhaps as an ex- 
ample in an article). Such objects are 
instances of SomethingOccurring, which 
is another important instance of Pro- 
cessqpe; they correspond to reifica- 
tions of what usually goes by the 
name of actions, scripts, or processes. 
The parts of such an object are re- 
ferred to as its actors (though there are 
useful specializations (specSlots> of uc- 
tors, such aspe$onner, objectActedUpon, 
instrumentInAction, etc.). The various 
actors in an event usually undergo 
some change either during or after its 
occurrence (i.e., the subAbstractions of 
the actors during or immediately 
following the event are different from 
the subAbstractions immediately 
preceding). It should be noted how- 
ever that no ad hoc distinction is 
made about what kinds of events can 
cause changes in the properties of in- 
stances of SomethingExisting. In fact, 
since some of the properties of objects 
change simply by their existing (e.g., 
age), it could well be the case that the 

6This is superficially similar to the “histories” 
framework [17] but is different in a very important 
way: there is no relation between the intersection of 
these histories and the frame problem. 
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AN EXAMPLE OF WHAT CYC KNOWS, 
AND WHAT Dl- CAN DO WITH IT 

Hera are a dozen of the assertions about “Buying” 
which have been entered into Cyc. They exemplify 
several types of knowledge. including specific facts, 
general implications, integrity constraints, meta-level 
knowledge, metonomicity of relations, and so on. 

l You give someone money in return for a product 
or a service [including the service of having loaned 
you money], or as a gift (including charities]. 

l Each agent is associated with various amounts of 
money: his net worth, liquid worth [which includes 
bank accounts], spendable money [cash plus credit 
cards], and actual cash-on-hand. 

l Payments of less than ten dollars are usually made 
with cash: those over fifty dollars are usually made 
via check or credit card. Adults typically carry 
IO-100 dollars [when dressed and away from their 
residence]. 

l Payments made through the mail are not generally 
made using cash. 

l The previous assertion overrides the one before 
it. (This is a met&level “rule.“] 

l Candy bars cost approximately a dollar. 
l Candy costs approximately twice as much at movie 

theaters. 
l Seeing a movie at a theater costs appmximataly 

five dollars these days. 
l Many individual objects may be aggregated into a 

substance-like “mob” [hence summarized by 
weight, volume, etc.] for purposes of buying, sell- 
ing, creating, or destroying them. 

l When you buy only a few consumable items, it is 
likely that you are going to consume them soon. 

l Buying is a purposeful activity, and demands at 
least linguistic-level attention. 

l Agents need to own items they consume. 
l Agents own items by buying them or [in decr-eas- 

ing order of likelihood] making them, renting them, 
or stealing them. 

l If you own something, you can do anything with it 
unless it is likely to harm other people. 

l Agents own items that are of some use to them 
(i.e., are required for some action they went to 
perform]. 

l A mugh absolute measure of the value of an object 
is its cost, or the objects or services it can be ex- 
changed for 

l If you buy something, one of the sub-events in- 
volves you paying the seller. 

Here is the internal [epistemological level] form of the 
final one: 

[implies 
[LogAnd 

[al/lnstanceOf E Buying] 
[pat%rmedSy E X] 
[objectlnvolved E Y] 
[seller E Z] 
[holdsOuring Y cost N SO] 
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[occursIn E SO] 
[LogAnd 

[eiFygyOf [Skoem Function [X Y Z] ‘PAYING] 

[jwformadEly [Skolem Function [X Y Z] ‘PAYING] 

[o&ln&ved[Skolem Function [X YZ] ‘PAYING] 

[ez!wnt Given [Skolem Function [X Y Z] ‘PAYING] 

[sz’&nts E[Skolem Function [X YZj ‘PAYING]]]] 

The knowledge enterer did not have to type all 
that, fortunately. It is required in the context of full- 
blown discrete time, but often for doing everyday 
reasoning we just use a formalism for time called 
generic time (in which, for example, all the objects 
being referred to are assumed to be coTemporal]. 
Therefore, the knowledge enterer indicates that they 
are typing a generic time assertion, and just enters 
the following expression: 

[sub-actions[SuyingXYZ][cost YL][PayingXZL]] 

While not 100 percent use-neutral, these asser- 
tions can be used in many disparate ways. For exam- 
ple, if Cyc is told that “on July 14, 1990, Fred 
Johnson went to the movies and bought candy:’ it 
can answer queries about whether he paid for it or 
not, whether he paid by cash or check or credit card, 
how much he paid for it, who owned it when, what 
Fred did with it, at least how much cash he had on 
him when he went to the movies, whether he knew 
he was buying the candy just before/during/after he 
bought it, whether he was sleeping while buying it, 
etc. 

These are precisely the sorts of queries which, for 
example, are required when trying to understand 
English sentences involving buying. For example, 
deciding that the following is talking about a company 
and not a particular piece of candy: ‘LJack thinks it 
will pmbably require ten million dollars to by Nestle’s 
Crunch.” 

The same knowledge is also useful in enelogicel 
reasoning [for example, finding ways in which buying 
is like learning, and then using that analogy to pm- 
cess some sentence or make a guess at the answer 
to some pmblem] and, more generally, in other sorts 
of abductive reasoning [for example, guessing why 
Fred might have written a check for fifty cents]. 

It is difficult to give a brief example of Cyc’s knowl- 
edge and inferencing, since locallyit appears almost 
indistinguisheble fmm any other Al pmgram. Hope- 
fully, though, this has et least provided the flavor of 
what we say to Cyc. how we say it, and what Cyc 
does with it. What distinguishes Cyc is not merely 
the breadth of topics acmss which it can exhibit 
reasonable competence, but, more significantly, the 
breedth of topics across which it can draw 
knowledge to use in answering s single query. 
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properties of something change even 
though it was not an actor in any in- 
stance of SomethingOc,curring. 

Any instance of Event can have 
temporal properties (duration, e&s- 
AfierTheStartOf, etc.) We use two ab- 
stractions of time to specify these 
temporal properties: interval-based 
and set-based [l], [24]. 

Let us first discuss the interval- 
based abstraction of events. We can 
define a number of relations between 
events using the two primitives before 
and simultaneousWith that can hold 
between the starting and/or ending 
times of these (possib1.y concave) in- 
tervals. For example, we define the 
binary temporal relation startsBefore- 
StartOf by stating the following asser- 
tion to Cyc: 

(Vxiy) (start.&tkeStartOf(x~) 
= Before(startingTime(x), 

startingTim+j)) 
Why do we need a second abstrac- 

tion of time? The int.erval-based 
abstraction of time makes it awkward 
to say things like “people do not eat 
and sleep at the same time” since we 
are not dealing with a single convex 
interval. In such cases, it is easier to 
abstract “the times when x is eating” 
and “the times when x is sleeping” as 
sets of points. Then, based on this set- 
based abstraction we use set theoretic 
relations such as intersects, disjoint, 
etc., to state axioms like the one 
above. In this case, the sentence 
would just be an assertion that two 
intervals-viewed as a set of points 
-have empty intersection. 

It is interesting to note that by 
associating temporal extents with 
objects as opposed to reifications of 
propositions, we get a certain added 
expressiveness. For example, it is easy 
to express statements of the form 
“Fred when he was 35 liked his house 
as it had been 20 years earlier” in this 
formalism, while it is difficult to do 
so with formalisms that associate 
time with propositions (or their reifi- 
cations). There is, however a high 
cost associated with this. Given n en- 
tities and m intervals we can have up 
to n-m subAbstracti0n.s (O(n.m) ob- 
jects) while using the other formalism 
we need only O(n +m) objects. 

A vast majority of the statements 
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we would like to make relate co- 
Tmporal objects, and we would like to 
exploit this. We do so by having a 
predicate holo3During. So instead of 
having to create two concepts never 
again needed, and asserting livesIn- 
(FredFrom 965 To1 9 75, House1 From 
1965%1975), we can now just assert 
holdsDuring(Fred, lives, HouseI, 2965- 
1975). It turns out to be notation& 
much simpler to write complex ax- 
ioms (where specific instances of 
SomethingExisting are replaced by 
variables) using the SubAbstractions 
formalism, but it is more efficient 
to do inference using the hol&During 
predicate. 

In addition to persistent objects 
such as Fred and nonpersistent objects 
such as FredGoingToWendysForDinner- 
OnJulylth1990, we also recognize 
changes in properties of persistent 
objects as first-class events. If Fred 
was hungry before going to the res- 
taurant and not hungry afterward, 
we can consider this change as an ob- 
ject. Formally this corresponds to re- 
ifying a sentence that specifies he was 
hungry at some time and not hungry 
at some later time into an object, and 
making this resultant object an event 
(since one can associate temporal 
properties with it). 

Temporal ProjectIon 
When one of the properties of an in- 
stance of SomethingExkting changes, it 
is not likely to affect all (or even 
many) of its other properties [23]. For 
example, when Guha gets a haircut, 
it does not affect his aa&.ss, langw.zges- 
Spokzn, birthDate, etc. This is not 
surprising, since a useful set of prop- 
erties is useful partly became they are 
largely independent. 

Associated with each ground for- 
mula are intervals of persistence. So 
if we knew that a gun was loaded at 
time t0 and the persistence interval of 
this was 11, then, given any point in 
time between t0 and t0 + 11, we can 
conclude that the gun was loaded at 
that time point. Usually we associate 
default periods of persistence with 
classes of propositions by using ax- 
ioms, which are called Temporal Pro- 
jection Axioms. These enable us to 
project (infer a good guess for) Fred’s 

name and gender years in the future 
or past, his hair style months in the 
future or past, his mood seconds in 
the future or past, etc., based on the 
values of those attributes at any given 
time. 

These temporal projections are 
only defaults. If there is evidence 
contrary to these projections based 
on particular actions that have taken 
place, this contrary evidence usually 
overrides these projections. 

Associating specific finite periods 
of persistence with propositions is 
much better than using a frame ax- 
iom [22] to allow for extended projec- 
tion, but introduces the following 
problem. If our knowledge that the 
gun was loaded at t0 was derived 
from a source other than temporal 
projection, we are willing to say that 
up until time t0 +I1 it is loaded. 
However, we do not want to carry on 
and say that at time (to + 11) + 11 it is 
still loaded. That is, we want to pro- 
ject only from a base time point 
where we had that “other” source of 
information (i.e., a justification other 
than temporal projection) about the 
fact in which we are. interested. 
Notice how we escape from this 
classic problem by making use of the 
ability to refer to justifications for 
facts (which we obtained using reflec- 
tion) to state this dependence. 

Caurallty 
Most treatments of causality (in AI) 
proceed by labelling some appropri- 
ate subset of occurrences of material 
implication as causal. We do this by 
using a relation causal whose argu- 
ment is the reification of a sentence 
involving a material implication. For 
convenience, we shall refer to ((p > 
q) A causal ‘(p 3 q))) as (caures p q). Let 
us take a closer look at the axioms 
that specify the meaning of causes. 

So suppose that we assert (causesp 
q). Then: 
a) We have an inference rule that 

allows us to conclude that p im- 
plies (material implication) q from 
the above statement. Hence causes 
is a strictly stronger notion than 
material implication. That is, if p 
causes q, then p > q. 

b) If p and q are ground sentences 
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and true, they must refer to events 
(which in Cyc is anything which 
can have temporal attributes). 
That is, p and q must have at least 
one object constant that is an 
event. More importantly, every 
single event referred to in p must 
StartBeforeTheEndingOf every event 
in q. 

c) Given any atomic ground sen- 
tence q that refers to an event, 
either q should be “basic” or there 
should be some sentence p so that 
(causes p q) is true. Intuitively, q 
being classified as basic corre- 
sponds to the notion of it being 
“unexplainable.” 

d) Given a statement of the form 
(causes p q), either this is basic or 
there exists a sequence of sen- 
tences of the form (LogCause p 
a),(LogCame a b) . . . (causes m q), 
i.e., some “mechanism” that im- 
plements this causal relation. 
Both c) and d) are extremely 

strong statements to make, which is 
why the notion of “basic sentences” 
has been included. It would be nice 
to have a stronger definition of 
causality that makes sentences such 
as (caures False p) false and we are 
working on this. No commitment is 
made as to which occurrences of im- 
plication are to be labelled as causal. 
The aim of the above formalism is to 
provide a facility to state and experi- 
ment with various heuristics for ac- 
complishing that purpose. 

ACtIOnS Und Concurrent 
Procerres 
Each action (i.e., instance of 
SomethingOccurring) has associated 
with it a set of axioms specifying the 
preconditions for the action, the 
postconditions of the action, and 
other axioms specifying the con- 
straints on the actors during the 
event. Each action also may (and 
usually does) have a set of subEvents, 
the composition of which is the 
overall event. This decomposition of 
an event into subEvents (which are 
also actions) is identical to the 
decomposition of an instance of 
SomethingExisting into its parts. In 
other words, the breaking down of a 
table into physical parts such as its 

legs, top, etc. is similar to the break- 
ing down of having a meal at a 
restaurant into ordering food, eating, 
paying the bill, etc. 

The structure of a physical object 
is defined by the constraints on its 
parts, and the structure of an event is 
defined by constraints on its 
subEvents. 

Just as there may be orthogonal 
ways of breaking down a physical ob- 
ject, there may be orthogonal ways of 
breaking down an action into 
subEvents. 

Given a physical object and its 
parts, it is often possible to dis- 
tinguish between different classes of 
parts. For example, the parts of most 
tables can be classified into parts 
meant for providing support to the 
top, the top itself, parts for decora- 
tion, etc. We usually associate a pred- 
icate (which is an instance of Part 
Slot) with each of these classes and 
use these to relate the parts to the 
overall object (rather than using a 
single predicate such as parts or 
physicalParts). 

A similar approach is taken to 
relating the parts of an action to the 
action. When dealing with actions 
there are two important categories of 
parts-two specSlots of parts, namely 
actors and subEvents-and there are 
separate categories of slots that are 
used to relate the actors to the par- 
ticular action (the ActorSlots) and to 
relate the subEvents to the particular 
event (the SubEventSlots). The actor 
slots define the “roles” played by the 
different actors in the event (pe$~ 
victim, instrument. ) Given an action 
and a participant actor, there are 
three subAbstractions of the actor 
related to that action, namely, the 
subAbstraction of the actor just before, 
during and after the action. In prac- 
tice we associate the entities of the ac- 
tors with the action (through the 
ActorSlots) and then use three ternary 
predicates (subAbsOfActorBefore, sub- 
AbsOfActorDuring, and SubAbsOf- 
ActorAfter) to specify the exact 
subAbstractions of the actors. 

It should be noted that there are 
no “primitive” actions into which all 
actions are broken down. That is, the 
actions are not merely macros intro- 

duced for notational convenience, 
for use instead of more complex 
sequences of primitive actions. This 
approach is motivated by two rea- 
sons: we wish to be able to reason 
at different levels of abstraction and 
a priori assigning of a set of actions 
as primitives goes against this; often 
one might be able to provide only 
descriptions and not definitions of the 
more complex actions in terms of 
their sub-Events. In such cases, the 
more complex actions are not merely 
for notational convenience but are 
an epistemological necessity 

One of the problems that arises 
with predicting the effects of actions 
on the participating actors is the 
possibility of concurrent events 
[lo, 23, 241. A solution for this is 
obtained by collecting all overlap- 
ping events Ei (cutting up events if 
required) that affect a particular 
property into a single event E and 
computing the net effect of E on the 
property from the subEvents (sup- 
pressing the direct “updating” of the 
property by the subEvents). The basic 
idea is to agglomerate the various 
concurrent processes that affect some 
property into a single process which 
has no concurrent process that affects 
that property, The effects of this pro- 
cess are computed from those of the 
subEvents and the net change in the 
value of that property is that specified 
by this agglomeration process. It 
should be noted that the resulting 
agglomeration is necessarily a non- 
monotonic process since a closed- 
world assumption has to be made 
while collecting the set of processes 
that affect our property. 

When dealing with subAbstractions 
of reasonable durations, it becomes 
very difficult to specify values for 
most temporally instrinsic numeric 
attributes because of the (often slight) 
changes in the value of the attribute 
over the period of the subAbstraction. 
lb overcome this difficulty, we intro- 
duced a new class of terms corre- 
sponding to intervals in the quantity 
space (of the attribute). These inter- 
vals may be named (e.g., “around 
180 pounds”) and explicitly repre- 
sented as Cyc units e.g., #%Around- 
1801bs). The intervals may be open 
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(unbounded) in one direction. A 
calculus for performing simple 
mathematical operations with these 
intervals (provided by CycL) makes 
it relatively easy to use both qualita- 
tive and quantitative specifications 
for attributes, switch between them, 
etc. [33]. Another use for these 
interval-based quantity terms is to 
specify defaults for numeric attri- 
butes (e.g., height, weight, etc.) for 
categories which exhibit some but 
not too much variation in the value 
of these attributes (e.g., Fred’s weight 
during September of 11990). 

Interval-based quantity slots are 
also useful for dealing with quantities 
for which no acceptable measurable 
scale, or measuring instruments, have 
yet (or perhaps ever will) be defined: 
happiness, alertness, level of frustra- 
tion, attractiveness, etc. Despite the 
lack of absolute units of measure, 
reified “mileposts” for these attri- 
butes’ values can be defined, and 
partial orders and even crude calculi 
developed. 

Composite Objects and 
Agents 
In addition to purely physical objects 
(such as tables and rocks) there exist 
objects like books and people with 
whom we would like to associate an 
intangible aspect such as a message 
or a mind (which also would have a 
temporal aspect). 

Given such a composite tangi- 
ble/intangible object, we can separate 
out the purely tangible and the 
purely intangible parts, and repre- 
sent both of them separately and 
explicitly as well as representing the 
composite. The purely intangible 
parts are instances ofiIntangible0bject; 
the purely physical parts are in- 
stances of TangibleObject; and the 
composition is an instance of Com- 
positeTangiblelntangibl,eObject. 

The most important subset of 
CompositeXingibleObject is Agent-the 
set of intelligent agents-and this 
subsection considers some aspects of 
representing agents. Hut first, con- 
sider why we want this distinction 
between the physical and nonphysi- 
cal aspects of agents. Consider repre- 
senting the Frankenstein monster at 
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some point in time. We would like to 
be able to say that his body was n 
years old, his mind was m years old 
and the composition was k years old. 
Rather than introduce new predi- 
cates such as ageOfMyMind ageOf 
MyBody, amountOfrimeSinceMyMind 
AndBody WereJoined, . . . , we would 
much rather use the existing pred- 
icate age; besides being simpler and 
cleaner, this also lets us fully util- 
ize the already-available axioms 
involving age. 

To do this, we need to be able to 
explicitly talk about the physical and 
mental extents of a composite. Hav- 
ing done this (via the predicates 
PhysicalExtent and mentalExtent) we 
associate weight not with the mental 
part of the Frankenstein monster nor 
with the composite part, but only 
with the physical part; similarly, ZQ 
is associated only with the mental 
part; and age makes sense for all three 
aspects-and has a different value for 
all three. 

This scheme gives the advantage 
of separating the physical aspects of 
composites from their mental aspects 
and allows us to talk about aspects 
that might apply to both with dif- 
ferent values (age, interestingness, liked- 
By, . . . ) However, in most cases, there 
is no predicate that can be used for 
both the physical and mental extents 
that has different values and we would 
like to make use of this regularity. 

In other words, we do not mind 
having three separate concepts for 
Frankstein’s monster-he was rather 
unusual, after all-but we should not 
need to have three separate concepts 
for every composite if there is nothing 
“conflicting” among them. We ac- 
complished this by adding the cate- 
gories PartiallyTangible (a spec (subset) 
of SomethingExisting, and a genl (super- 
set) of TangibleObject) and Partially- 
Intangible (a spec of SomethingExisting 
and a gem of IntangibleObject). So Com- 
positeTangibleIntangibleObject is now a 
spec of both of these new Partially. 
collections. Having done this, we can 
use a single unit, say Fred, to state 
both mental and physical properties 
of Fred. IQ, now makes sense for 
Partial~IntangibleObjects, weight makes 
sense for PartiallyTangible0bject.s; and 

Fred is an instance of both those col- 
lections and hence can legally have 
both an ZQand a weight. If we happen 
to be representing an exception, like 
the Frankenstein monster, in which 
some property has a different value 
for the physical- or mental- extent, 
then we can create the appropriate 
instances of TangibleObject and Intan- 
gibleobject, just as we did earlier. 

As a default, we inherit the prop- 
erties that talk about physical/men- 
tal properties to the physical/mental 
extents. This gives both the ex- 
pressiveness of the separation of 
physical and mental parts and the 
efficiency of not doing this when it is 
not required. 

Since a full description of the 
various issues related to agenthood 
(that have been/are being) considered 
in Cyc would require more space 
than is available here we will mention 
only a few of them. One of our recent 
technical reports [15] deals exclu- 
sively with this topic. 

Agents can be collective (such as 
organizations and institutions) or in- 
dividual (such as people). Each Agent 
can have one or more propositional at- 
titudes toward any given proposition. 
The fundamental propositional atti- 
tudes currently used are believes and 
desires. From these two, using time 
and other concepts, a variety of other 
modals are described and used (e.g., 
dreads, purposes, expects). 

A primitive notion of awareness is 
incorporated as follows. Each agent 
has a set of terms and predicates of 
which he is aware. An agent may 
have an attitude only toward sen- 
tences that involve only terms of 
which be is aware. This restriction is 
introduced to keep us from doing 
things like talking about Aristotle’s 
beliefs about the Space Shuttle. We 
now consider some issues related to 
these propositional attitudes. 

A 
ttributing our own 
beliefs to other 
agents (with whom 
we might never have 

directly communicated) is something 
done quite frequently. Sometimes 
this is good-(e.g., when the traffic 
light in front of you turns green, you 
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assume that the drivers on the cross 
street share your beliefs about what 
that means!)-and sometimes it is 
bad (e.g., cross-cultural “mirror- 
imaging” has led to innumerable 
political disasters.) There is a class of 
axioms called the belief projection 
axioms (analogous to temporal pro- 
jection axioms) that enable Cyc to 
efficiently do this sort of mirror- 
imaging, yet explicitly record sepa- 
rate beliefs when they are known. 
The belief projection rules them- 
selves are moderately interesting, 
since they describe what it means to 
be a public figure, what it means to 
be commonsense knowledge, etc. 
CycL provides special support to 
handle these efficiently at the 
Heuristic Level. 

Agents can be in control of (the 
truth of) propositions. That means 
that the controlling agent can per- 
form the requisite actions that deter- 
mine the proposition’s truth-value. 
For example, a robber holding a gun 
is in control of whether the gun fires, 
and at whom. The truth-value chosen 
by the controlling agent is assumed 
to be based on his/her/its desires. 

This notion of agents controlling 
propositions is sometimes an expedi- 
ent way of computing the truth-value 
of certain propositions. If there is an 
agent in control of a proposition P, 
and he or she desires P, then we can 
assume that P is true (modulo limited 
resources, conflicting goals, etc.). 

The concept of control provides us 
an abstraction layer that allows us to 
skip the details of the agent planning 
to make P true, executing that plan, 
monitoring it, repairing it, etc. Just 
knowing that you control the time 
you go home from work, and that 
you want to sleep at home tonight, 
gives me enough information that I 
will call you first at home at midnight 
if I have to reach you then; that is, I 
do not have to worry about the plan 
you made to get home, the details of 
the execution, etc., in order to believe 
that (by midnight, at least) you would 
have arrived at home. 

Agents may participate in Events 
(actually in instances of SomethingOc- 
curring) in one of two modes: volun- 
tarily or involuntarily. If an agent 
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participates in an event voluntarily, 
he usually has a purpose (usually a 
propositional that is also one of his 
desires) that he believes will be true 
as a result of that event. The concept 
of purpose allows us to (write axioms 
which will) decide when an agent will 
participate in (or pull out of) an 
event. 

Agents can enter into Agreements 
with other agents; some of the parties 
to an agreement may be individual 
agents, and some may be collective. 
An agreement defines a set of prop- 
ositions that all the participants share 
(though they may have quite differ- 
ent propositional attitudes toward the 
various clauses of the agreement!) 

In addition, the agreement might 
also assign certain responsibilities 
(logically, these are also propositions) 
to specific participants. Agreements 
usually also specify certain punitive 
andfor remedial actions to be taken 
in the case of these responsibilities 
not being fulfilled. If the agent per- 
forming these “punitive” actions is a 
LegalSystem (such as a Government or 
GovernmentalAgency) then the agree- 
ment is a LegalAgremnt. . 

We distinguish between agree- 
ments in which the event that “en- 
rolled” a particular agent was one in 
which he or she voluntarily partici- 
pated and ones in which he did not 
participate voluntarily. For agree- 
ments an agent involuntarily partic- 
ipates in, the constraint that he or she 
shares the common beliefs of the 
agreement is slightly relaxed. 

As a default, collective agents have 
one or more special types of agree- 
ments associated with them, such as 
their charter, articles of incorpora- 
tion, etc. Often an organization or in- 
stitution will itself have (or at least act 
as if it has) certain desires, dreads, 
purposes for its actions, authority, 
etc., that are not obtainable by a 
simple combination of those of the 
participants. 

ConelusIon 
This article began by explaining the 
need for a large, general KB: to over- 
come the brittleness (in the face of 
unanticipated situations) that limits 
software today. The need for a Cyc- 
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like KB is critical not only in expert 
system-like applications, but also for 
doing semantic processing for natu- 
ral language understanding, and for 
enabling realistic machine learning 
by far-flung analogizing. 

We then focused on criteria for an 
adequate representation language, 
which drove us to the bifurcated ar- 
chitecture of having both an expres- 
sive epistemological level (EL) and 
an eflicient heuristic level (HL). One 
of the Cyc project’s most interesting 
accomplishments has been the con- 
struction of the T&Ask translator, 
which can convert back and forth 
between general EL (first-order 
predicate calculus-like) expressions 
and special-purpose HL template 
instances. 

Finally, we discussed some of the 
unexpected aspects of the Cyc KB’s 
organization and contents, such as 
the relationships between Individual- 
Object, Substance, Process, and Event. 
And we gave the flavor of some of our 
recent research by sketching our still 
very incomplete treatment of Agents 
and Agreements. 

Perhaps the most important theme 
from all these aspects of the project is 
that of eschewing the “single general 
solution” dream, and rather assem- 
bling a set of partial solutions that 
work most of the time, and work very 
efficiently in the most common situa- 
tions. We have seen that tenet apply 
to representation language design, 
knowledge entry methodology, con- 
trol of search during inferencing, 
truth maintenance, and throughout 
the contents of the KB. The emerg- 
ent global behavior of the system 
should hopefully be fairly “use- 
neutral.” 

The reader may have noticed sev- 
eral aspects of the Cyc effort which 
we have not touched on in this arti- 
cle. While interesting in their own 
right, these are not our main topic for 
research, and in each case we have 
done what we felt was necessary to 
maximize the rate of construction of 
Cyc. Here is a list of a few such inten- 
tional omissions from the article: 

l The Knowledge Server: This sub- 
system accepts everyone’s KB op- 
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erations, serializes t.hem, and, if 
constraint violations appear, adju- 
dicates the resolution of the con- 
flict. In cases of no conflict, it then 
broadcasts the operations to every- 
one else. The connections today are 
generally thin-wire, though we ex- 
pect this to change in the coming 
year. 

l The User Interface: This collection 
of tools includes various textual 
and graphical tools for browsing, 
querying, and editing the KB. 
Some of the graphical tools are 
semantic-net-based; one is an 
Escher-esque recursive birdseye 
view of a museum floor plan. Some 
of the editing tools are ideal for 
making “point mutations” and 
corrections, some #are oriented to- 
ward sketching some brand new 
area and gradually making the 
sketch more precise. 

l The Machine-Lea.rning Module: 
This subsystem roams over the 
KB, typically at night, looking for 
unexpected symmetries and asym- 
metries. These in turn often turn 
out to be bugs, usually crimes of 
omission of one sort or another. In 
very rare cases today, but, more 
frequently we hope: in future years, 
these will turn out to be genuine lit- 
tle discoveries of useful but hitherto 
unentered knowledge. 

l Digitized Images: Yt:s, often it is 
much easier to just grab a picture 
of an object and ~oz’fzt to the part 
you mean, rather than trying to 
figure out what its name is. Cyc 
contains such images (from the 
Viwal Dictionary [Ei]), but experi- 
enced knowledge enterers rarely 
use them. 

l Other Nonpropositional Knowl- 
edge: Some Cyc researchers are 
building neural nets that we can 
use at the very earliest (pre- 
heuristic) and very latest (reduction 
to instinct) stages of understanding 
of some task. One example of this 
development, training a net on ex- 
amples of good and bad analogies, 
and then letting it make “hunches” 
about potentially good new anal- 
ogies, hunches wh.ich the rest of 
Cyc can investigate and flesh out 
symbolically. 
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l The Copy and Edit Mechanism: 
Most knowledge entry in Cyc in- 
volves finding similar knowledge 
and copying it, and modifying the 
copy. Increasingly over the years, 
Cyc has helped in this process, and 
as a result knowledge entry can be 
done more rapidly than we had 
originally estimated. This is good 
since the number of assertions be- 
fore reaching the NLU crossover 
point also appears to be larger than 
our 1984 estimate. These two dis- 
crepancies are not unrelated: many 
of the extra assertions deal with 
overcoming ambiguities, with be- 
ing precise about a cluster of closely 
related concepts, and that means 
that Cyc can help the user copy a 
whole cluster of related “thin’ con- 
cepts in approximately the time we 
expected it to take to copy one of 
our original “fat” concepts. 

How are we to judge where we are 
going? How do we make sure that we 
do not go through these 10 years of 
labor, only to learn in 1994 that the 
assumptions upon which we based 
our efforts were fundamentally mis- 
taken all along? We do this by getting 
others to actually use our system. In 
the past 18 months, as the Cyc Rep- 
resentation Language and Ontology 
stabilized, we began to encourage 
collaborations both with academic 
researchers and with industrial re- 
searchers and developers; we held 
workshops and panel sessions; and 
we have begun once again (after a 
purposeful several-year hiatus to 
focus solely on research) to write 
books and technical reports and jour- 
nal articles, such as this one, to in- 
form and interest the greater artificial 
intelligence and computer science 
communities. 

C 
yc is still too small to 
have more than an 
anecdotal chance of 
improving the per- 

formance of application programs 
using it, but the early results are 
promising. At DEC, for example, 
John McDermott, David Marques, 
Renata Bushko, and others have built 
a Cyc-based computer-sizing appli- 

cation. Serving as a pre-processing 
step for XCON [30], its job is to ask 
questions about a potential DEC 
customer and come up with a very 
rough computer sizing. The trouble 
with having standard expert systems 
do this task is they tend to ask too 
many questions, questions which can 
often be answered by common sense, 
questions for which Cyc is able to 
guess answers. (For example, given 
that toy manufacturers have 
stringent government safety regula- 
tions, and adult clothing manufac- 
turers do not, which is more likely to 
be the proper “match” or “prece- 
dent” for this new potential customer 
who is a manufacturer of children’s 
clothing? Or: given that the basic 
business unit in a hotel is “the room,” 
and at a car rental agency is “the 
car:’ use relatively deep understand- 
ing of what goes on at each kind of 
place to decide that for a new poten- 
tial customer which is a hospital the 
right business unit is the bed, not the 
room.) 

Numerous other Cyc-based ap- 
plications are under way at NCR, 
Bellcore, US West, and Apple. 
Academic collaborations include 
coupling with large engineering 
knowledge bases (with Ed Feigen- 
baum and Tom Gruber at Stanford), 
large data bases (with Stuart Russell 
and Mike Stonebraker at Berkeley), 
standardizing knowledge inter- 
change formats (with Mike Genese- 
reth at Stanford), axiomatizing 
human emotions (with John McCar- 
thy at Stanford), machine learning 
by analogy (with Devika Subrama- 
nian at Cornell), and qualitative 
physics reasoning in the service of 
understanding children’s stories 
(with Ken Forbus at Illinois). And of 
course one vital collaboration is with 
Elaine Rich and Jim Barnett at 
MCC, namely the natural language 
understanding project which is de- 
scribed in [2]. 
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