
AUUOUST 1990
COMMUNICATIONS
OF THE ACM

CYC:
TOWARD
PROGRAMS

WITH
COMMON
SENSE

Douglas 6. Lenat
Ramanathan V Guha ok

Karen Pittman &)
Dexter Pratt

$0 ,I % r- 23 4
and Mary Shepherd see

Cyc is a bold attempt to assemble a
massive knowledge base [on the
order of IO* axioms] spanning human L
consensus knowledge. This article ex- =
amines the need for such an under-r
taking and reviews the authors’:
efforts over the past five years to:
begin its construction. The methodol- z
ogy and history of the project are i
briefly discussed, followed by a more Z
developed treatment of the current “,
state of the representation language :
used [epistemological level], tech- ;
niques for efficient inferencing and n
default reasoning [heuristic level], 3
and the content and organization of ;
the knowledge base. m

30 Augm 199O/Vol.33, No.~/COYYUNICITIONSOFTNL~~.~Y

N A T U R

Motlvatlon: The)
Brittleness Bottleneck

F
or three decades, Artifi-
cial Intelligence re-
searchers have grappled
with issues like control

of search in problem solving, organi-
zation of memory, logic for the
representation of knowledge, percep-
tion, and so on, driven by tasks rang-
ing from infants exploring their
“worlds” through experts perform-
ing some intricate reasoning task.
Despite many types of successes,
today’s AI software---and in many
ways non-AI software as well-has
reached a kind of bottleneck which is
limiting its competence and usability.
This article begins with a discussion
of the nature of that bottleneck, and
then describes the Cyc project: a
serious attempt, begtin in late 1984,
to overcome this limitation.

The Path to Artificial
Intelligence
One of the principle tenets of AI, is
that one can explicitly, declaratively
represent a body of knowledge, in a
way that renders it usable by a num-
ber of programs. This is in principle
no different from the way in which a
book “encodes” knowledge in tables
and English text on the assumption
that a wide audience will be able to
use that data in myriad, possibly
unanticipated ways. Since programs do
not (yet) read and understand natu-
ral language, the encodings we use
must be rather different, in particular
much less ambiguous.

So achieving an ‘41 comprises
three tasks:

i) Develop a language (actually a
logic) for expressing knowledge.
Since we would like to allow
many different programs to use
this knowledge, this “representa-
tion language” needs a declara-
tive semantics.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notia: and the title of the
publication and its date appear. and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
repubhsh, requres a fee and/or specific permission.

0 1990 ACM OOOl-0782/90/0800-0030 $1.50

A

ii)

iii)

Develop a set of procedures for
manipulating (i.e., using) knowl-
edge. Some of these will of neces-
sity be heuristic, some will be
strategic or meta-level, some will
be aimed at truth maintenance
and default reasoning, some will
be inductive rather than deduc-
tive, and so on.
Build the knowledge base(s). For
example, encode knowledge in
the language developed in i)
above, so that one (person or
machine) can apply to it the rea-
soning mechanisms of ii).

AI has largely concentrated on i)
and ii). This is unfortunate, since it
is task iii) that grounds the whole
enterprise in reality. McCarthy [21]
was the first to point out the impor-
tance of being able to represent
knowledge in a program and initi-
ated the task of devising representa-
tions for assorted topics such as time,
agenthood, etc. Feigenbaum was one
of the first to actually build programs
which depended upon a significant
amount of knowledge as their pri-
mary source of power. Later dubbed
“expert systems,” these programs
showed that impressive levels of per-
formance could be attained by taking
iii)-knowledge-even half-seri-
ously. For example, reasonable per-
formance in narrow task domains
may be achieved with modest-sized
knowledge bases (KBs) (10’ to 10’
domain-specific assertions or rules.)

The Source of Software
Brittleness
There is indeed a strong local max-
imum of cost-effectiveness: by in-
vesting one or two person-years of
effort, one can end up with a power-
ful expert system. The trouble is that
this is just a local maximum. Know-
ing an infinitesimal fraction as much
as the human expert, the program
has only the veneer of intelligence. Let
us illustrate what this means.

Programs often use names for con-
cepts such as predicates, variables,
etc., that are meaningful to humans
examining the code; however, only a
shadow of that rich meaning is ac-
cessible to the program itself. For ex-
ample, there might be some rules

that conclude assertions of the form
laysEggsInWater(x), and other rules
triggered off of that predicate, but
that is only a fragment of what a
human can read into “laysEggsIn-
Water.” Suppose an expert system
has the following four rules:

IF frog(x), THEN amphibian(x)
IF amphibian(x), THEN laysEggs-

InWater
IF laysEggsInWater(x), THEN lives-

NearLotsOf(x, Water)
IF livesNearLotsOf(x, Water),

THEN 1 livesInDesert(x)

Given the assertion frog(Freda),
those rules could be used to conclude
that various facts are true about
Freda: amphibian(Freda), laysEggs-
InWater(Freda), 1 livesInDesert-
(Freda), etc. Yet the program would
not “know” how to answer questions
like: Does Freda lay eggs? Is Freda
sometimes in water?

Humans can draw not only those
direct conclusions from laysEggsIn-
Water(Freda), but can also answer
slightly more complex queries which
require a modicum of “outside”
knowledge: Does Freda live on the
sun? Was Freda born live or from an
egg? Is Freda a person? Is Freda
larger or smaller than a bacterium?
Is Freda larger or smaller than the
Pacific Ocean? Or even: How is
Freda’s egg-laying like Poe’s story-
writing?

Thus, much of the “I” in these
“AI” programs is in the eye-and
“I’Lof the beholder. Carefully se-
lecting just the fragments of relevant
knowledge leads to adequate but brit-
tle performance: when confronted
by some unanticipated situation, the
program is likely to reach the wrong
conclusion. It is all too easy to find
examples of such brittle behavior: a
: kin disease diagnosis system is told
about a rusty old car, and concludes
it has measles; a car loan authoriza-
tion system approves a loan from
someone whose “years at the same
job” exceeds the applicant’s age; a
digitalis dosage system does not com-
plain when someone accidentally
types a patient’s age and weight in
reverse order (even though this
49-pound, 102-year-old patient was

Aug-ust 199O/Vo1.33, N~.~/COMMUWICATIOWS OF TRE ACM

$ lJ N D E R s T A N D I N 0

,>>

taken to the hospital by his mother);
and so on.

This, then, is the bottleneck of
which we spoke earlier: brittle re-
sponse to unexpected situations. It is
a characterization of software today: it
is the quality that separates it from
human cognition. The programs’
limitations are both masked and ex-
acerbated by the misleading sophisti-
cation of their templates for English
outputs, by the blind confidence their
users place in them, and by their
being labelled with pretentious gen-
eralizations of their functionality
(e.g., a “medical diagnosis expert sys-
tem” today does just a narrow slice of
differential diagnosis.)

Overcoming Brittleness
People are not brittle. Why? Because
they have many possible ways to re-
solve a novel situation when it arises:
asking someone for advice (this may
include reading some written mate-
rial), referring to increasingly general
knowledge (eventually “first prin-
ciples” or even “common sense”),
comparing to a similar but unrelated
situation. But each one of these paths
to flexibility is closed to today’s pro-
grams: they do not really understand
natural language very well, they do
not have general knowledge from
which to draw conclusions, and they
do not have far-flung knowledge to
use for comparisons. Not only are
programs vastly more narrow than
we humans are, they are not
equipped to dynamically grapple
with a situation when it exceeds their
current limitations. As we stated
earlier, even the so-called expert
systems, though they are the first at-
tempt at iii), are only a “half-serious”
attempt.

A serious attempt at iii) would en-
tail building a vast knowledge base,
one that is 10’ to lo5 larger than to-
day’s typical expert system, which
would contain general facts and
heuristics and contain a wide sample
of specific facts and heuristics for
analogizing as well. This KB would
be distinguished by its breadth even
more than by its size. Such a KB
would have to span human consen-
sus reality knowledge: the facts and

concepts that you and I know and
which we each assume the other
knows. Moreover, this would include
beliefs, knowledge of others’ (often
grouped by culture, age group, or
historical era) limited awareness of
what we know, various ways of rep-
resenting things, knowledge of which
approximations (micro-theories) are
reasonable in various contexts, and
so on.

L
ate in 1984, we began the
first serious attempt at
iii), and the bulk of this
article describes that ef-

fort. We have made significant pro-
gress since then, and anticipate a
kind of crossover (from primarily
manual knowledge entry to primarily
automatic entry via natural language
understanding (NLU)) later this de-
cade. As the next article in this issue,
“Knowledge and Natural Language
Processing” and [2] explain in detail,
one cannot expect to shortcut the
building of the large KB today-let
alone five years ago-by NLU,
because open-ended NLU itself
requires such a KB-for semantic
disambiguation of word senses,
resolving anaphora, inducing the
meaning of ellipses, and so on.

Interestingly, our work is spurring
progress in i) and ii): in i), because
the utility of various representation
language features can best be judged
by using the language; in ii), because
what is wanted is not the most effi-
cient inference procedure overall, but
rather those that are used most often,
so it is good to perform activity ii) in
the context of a large “task-indepen-
dent” test-bed KB.

Overview of the Cyc Project
Although our project Cyc empha-
sizes iii), building an immense KB
requires that we also cover i) and ii).
Namely, the KB must be built in some
representation language, hence we
have to include some of activity i).
We also have to worry about some of
ii) because the KB is going to be
vastly smaller than its deductive clo-
sure, (i.e., in order to answer most
queries, it will have to do some so-
phisticated inference). The next

three paragraphs-and, in much
more detail, the next three sections of
this article-discuss our approach to
i), ii), and iii): our representation
language (CycL), our inference en-
gine (actually many little ones), and
our ontology.

Representation L.an.ge. We developed
our representation language incre-
mentally as we progressed with task
iii). Each time we encountered some-
thing that needed saying but was
awkward or impossible to represent,
we augmented the language to han-
dle it. Every year or two we paused
and smoothed out the inevitable re-
cent “patchwork.” The latest lan-
guage has been stable for 18 months;
that is, its paradigm and “core” have
remained stable, even though we
have added many relatively minor
extensions to it. To summarize it in
a sentence, it is a frame-based lan-
guage embedded in a more expres-
sive predicate calculus framework
along with features for representing
defaults, for reification (allowing one
to talk about propositions in the KB)
and for reflection (allowing one to
talk about the act of working on some
problem.)

Inference Engine. The same “incre-
mental engineering approach” was
taken to building the inference en-
gine. As we identified frequently
used classes of inferences that could
be used more efficiently, we intro-
duced special mechanisms for this
purpose. Traditional computer sci-
ence has identified many problems
having varying levels of complexity
and has,devised special data struc-
tures and algorithms for solving
them. AI on the other hand, has
largely opted for single, very general
mechanisms (e.g., resolution) for
doing problem solving. We have
adopted the former paradigm and
are applying it to cover the kinds of
problems that a system such as Cyc
tries to solve. This approach is quite
similar to that advocated in [4].

Ontology of the KB. As for the KB, we
alternate bottom-up growth with top-
down design. The bulk of the effort

COYY”“ICIT,O”~OCT”ElCY/August 199O/Vo1.33, No.8 33

N A T U R

is currently devoted to identifying,
formalizing and entering “micro-
theories” of various topics (e.g.,
money, buying and shopping, con-
tainers, etc.) We follow a process that
begins with a statement, in English,
of the theory. On the way to our goal,
an axiomatization of the theory, we
identify and make precise those Cyc
concepts necessary to state the
knowledge in axiomatic form. To test
whether the topic ha.s been ade-
quately covered, stories dealing with
the topic are represented in Cyc, then
questions any human ought to be
able to answer after reading the story
are posed to Cyc.

T
here are currently be-
tween one and two mil-
lion assertions in our
KB. manv of which are , .

general rules, classifications, con-
straints, and so on; only a fraction (at
present) are specific facts dealing
with particular objects and events
(e.g., famous people and battles.)

More significantly, we feel we have
found “solutions” for various repre-
sentation thorns that we might have
become caught on: time, space,
belief, hypotheticals and counterfac-
tuals, interval-based quantities, sub-
stances, composite tangible and
intangible entities, etc. By “solution”
we mean the following: a set of par-
tial solutions which work adequately
in the moderately common cases,
and which work very well in the very
common cases. For example, a signif-
icant amount of work on the problem
of representing aspects of agents such
as their beliefs, goals, etc., in AI and
philosophy, has focused on trying to
reduce the total number of these prop-
ositional attitudes to the barest mini-
mum and in trying to handle rather
esoteric problems such as the Prison-
ers Dilemma [28]. We, on the other
hand, have been quite promiscuous
about inventing new propositional
attitudes and have concentrated on
more mundane issues such as pre-
dicting what the driver of a car on an
American road probably intends
when he turns on his left turn signal.

What do we hope to get from our
efforts? Here are three possible levels

of success, in decreasing order of op-
timism. It is interesting to note that
we put the chance of the better result
at less than 5 percent in 1984, but-
due to our clipping of representation
thorns, and stabilizing of the repre-
sentation language, inference engine
suite, and high-level ontology-we
now place it as high as 60 percent:
l Good: While not directly built

upon and widely used, the Cyc
research does provide some insight
into issues involved in task iii).
Perhaps it gives us an indication as
to whether the symbolic paradigm
is flawed and, if so, how. It also
might yield a rich repertoire of
“how to represent it” heuristics,
and might at least motivate future
research issues in tasks i) and ii).

l Better: Cyc’s KB is used by the
next generation of AI research pro-
grams, and its size and breadth
help make them more than theo-
retical exercises. No one doing
research in symbolic AI in 1999
wants to be without a copy of Cyc,
any more than today’s researchers
want to be without EVAL and
ASSOC. Eventually, it empowers
the first full-fledged natural lan-
guage understanding systems,
non-brittle expert systems, and
machine learning systems.

l Best: Cyc, or something similar,
serves as the foundation for the first
true artificial intelligent agent.
Application programs routinely tie
into it, in effect letting it look over
their shoulder. No one in the early
twenty-first century even considers
buying a machine without com-
mon sense, any more than anyone
today even considers buying a PC
that cannot run spreadsheets, word
processing, and networking
software.

CycbTme eye
Representatlon
Lanmuame
CycL is the language in which the
Cyc KB is encoded. Let us first con-
sider some of the issues that heavily
influenced the design of CycL. As we
mentioned earlier, it is our aim that
the Cyc KB be usable by many dif-
ferent problem solvers. This implies

that the CycL should have a clear
(and hopefully simple) semantics. We
also want CycL to provide certain in-
ferential capabilities and these should
not be intolerably inefficient. Since
most of our commonsense knowledge
is in the form of defaults, CycL
should provide some scheme for
dealing with such knowledge. We
would like to have all the expressive-
ness of first-order predicate calculus
with equality, and we would also like
a means for handling propositional
attitudes (such as beliefs, goals,
dreads, etc.) [26]. And finally we
would also like to provide some facil-
ities for operations such as reifica-
tion, reflection, and so on. This, in
short, is the “wish list” for CycL.

Epistemological Level and Default
Reasoning
Two of the “wish-list” entries seem to
be at odds with each other: having a
clean and simple semantics, yet pro-
viding speedy inference. To improve
inferencing abilities, we want to
include special-purpose representa-
tions and inference routines, proce-
dural attachments, etc. But these
make it harder to provide a simple se-
mantics. Also, while it is reasonable
to expect the semantics of CycL to
remain unchanged, it is likely that
new constructs are going to be in-
crementally added to improve Cycles
inferencing. The addition of new
special-purpose constructs is likely to
prove bothersome to other programs
that use Cyc-for instance, programs
which were written before the new
constructs even existed and hence
could not take advantage of them.

We therefore would like users of
Cyc (either humans or application
programs) to interact with the system
at an epistemological level and not at a
heuristic level. These terms, and the
distinction between them, are used in
the sense as used by McCarthy and
Hayes in [23]. These observations
lead to the conclusion that the KB
should be constructed at two levels,
the Epistemological Level (EL) and
the Heuristic Level (HL)-and this
is exactly what we have done. The
Cyc KB exists at these two levels and
an external program (or human user)

,>>

U N P E R 8 T A N 0 I N 0

,>>

can interact with CycL at either of
these levels.

The Epistemological Level (EL)
uses a language that is essentially
first-order predicate calculus (with a
slightly different syntax) with aug-
mentations for reification [20] (i.e.,
having a name for propositions, and
being able to make statements about
other statements) and reflection [32]
(e.g., being able to refer to the facts
supporting the system’s beliefs in
another fact in axioms). The EL is
meant for giving an account of the
KB in a form that has a simple
semantics and is easy to use to
communicate.

The Heuristic Level (HL), by con-
trast, uses a variety of special-
purpose representations and proce-
dures for speedy inference. The HL
is used whenever any inference needs
to be done. It is best to think of the
HL just as an optimization; i.e., to
consider only the EL as “real,” as
containing all the knowledge.

CycL has a facility called Tell-Ask
(TA) for translating sentences from
the Epistemological Level into the
most appropriate representations in
the Heuristic Level and vice versa.
One can therefore type Epistemolog-
ical Level expressions (i.e., in some-
thing like first-order predicate
calculus) to TA, and they are con-
verted into whichever Heuristic
Level representation is most efficient
(inverse, transfersirhmugh, automatic clas-
sification, inheritance, etc.).

The actual First-Order Predicate
Calculus (FOPC)-like logic used by
the Epistemological Level is called
the “Cyc constraint language” (CL).
In addition to the expressiveness
provided by this, CycL also allows
sentences and function terms to be
reified into objects.’ The Constraint
Language also allows some amount
of reflection of the problem solver
into the language. It also uses a
number of modals (e.g., beliefs and
desires) to talk about the proposi-
tional attitudes of agents.

‘The reification of a function term is different from
the ualuc of that function term. For example, it might
then be referred to in a proposition about how costly
its evaluation might be, which proofs depend on
knowing the value, and other meta-level assertions.

Some of the assertions in Cyc’s KB
are monotonic (i.e., the addition of new
facts cannot cause them to be re-
tracted). But most (over 90 percent)
are non-monotonic: they are cur-
rently held default beliefs which can
quite possibly turn out to be invali-
dated. Very little that we believe
about the world is certain and abso-
lute; that is true not only for heuris-
tics (and conclusions derived using
them), but also for most common-
sense “facts” about the world. They
often turn out to be simplifications
(“Lincoln was a good President”),
approximations (“The earth goes
around the sun in an ellipse”), or,
more rarely, just plain wrong (e.g.,
over half of American high school
students believe that if you drop a
wrench on the moon, it will just hang
in mid-air there!). The monotonic
(absolutely true) assertions are usu-
ally those that are definitional (e.g.,
it is absolutely certain that tall peo-
ple are people) or provable (which
usually means mathematical facts,
such as “squares of odd numbers are
odd”).

Unlike many AI programs, most
of whose default reasoning facilities
are woven into the logic they use, Cyc
uses only minimal support from the
logic for doing its default reasoning,
with most of the knowledge associ-
ated with default reasoning being
represented as axioms in the KB [12].

The only non-monotonic con-
structs used are equivalent to the

Closed World Assumption and the
Unique Names Assumption. The
Closed World Assumption is used
only to provide the language with
non-monotonicity, and the default
reasoning abilities are designed using
this and the notion of arguments.
The syntactic structure of defaults is
following that suggested in [22].
Thus, the statement “birds usually
fly” is represented as follows?

Esa (x Bird) A 1 abl (x) > jlies (x)

To derive conclusions from this, we
use the concept of arguments, so we
have an argumentation axiom (instead of
the circumscription axiom.)

An argument for a proposition P is
similar to a proof for P, but is non-
monotonic. For example, later infor-
mation never invalidates a proof,
once one is found, but might very
well invalidate an argument. The
essential differences between a proof
and an argument are that, unlike in
proofs, the sentences in an argument
can be assumptions [25] and that
arguments are first-class objects
which can be referred to in axioms.
The assumptions that can be made
are sentences of the form 1 abi(...).

We then write more axioms that
allow us to conclude P (or 1 P), given

PThe “isa” predicate corresponds to the set-
membership relation; it is sometimes called ISA,
is-a, AKO, element-of, In Cyc’s KB we happen
to call this insfancLJf. Also, the “abt’ predicates are
short for abnoml infnrhion i; so abt corresponds to
being an exception in the sense of being a bird and
not being able to fly.

THUS, MUCH OF THE
Ecl” IN THE ccAl”
PROGRAMS IS IN
THE EYE-AND V”
-OF THE BEHOLDER.

N A T IJ R

a set of arguments for and against
P-i.e., axioms which conclude that
some argument is invalid, or con-
clude that one argument is stronger
than another. Here is the Argumen-
tation Axiom; it says to believe in a
proposition P:

i) if there is an argument for it,
ii) the argument is not known to be

invalid, and
iii) there is no preferred argument

for -IP (except perhaps some
which are known to be invalid):3

(V (ul,p) (argumentFor
A 1 invalidArg(ar) A

(V (4 (arpmentFor(al,‘(l,P))
> (invalidArg(a2)

V preferred(al, a~)))))
> True(P))

A closed-world assumption is
made for the predicates argumentFor
and invulidrlrg. This axiom uses the
truth-predicate True and in order to
avoid the possibility of paradoxes we
allow the truth-predicate to be par-
tial. (i.e., (True(‘p) V True(’ 1 p)) is
not a theorem).

The salient aspect of this approach
to doing default reasoning is that
most of the “work” is done using ax-
ioms in the language and not “wired
in” to the logic. The real core of the
default reasoning is a set of additional
axioms. The axioms in one group
specify when an argument is invalid:
if one of the assumptions made by an
argument is false, then the argument
is invalid. The axioms in the other
group specify when one argument is
preferred to another: In the former
group, if one of the assumptions
made by an argument is false, then
the argument in invalid. In the sec-
ond group, causal arguments are
preferred over reductio ad absurdurn
arguments. This provides greater
flexibility and control, and makes it
easier to fix things if inadequacies are

SNote that ‘p, read “quote p,” refers to the sentence
p, rather than to its truth-v.aluc. Normally, one
is free to substitute “equals for equals” in
mathematical or logical formula:, but think of the
trouble you would get into with “Fred believes
Mary’s age is 39” if it turns out that Mary is 40. We
certainly do not want to do the substitution and con-
clude “Fred believes 40 is 39.” ‘II?) prevent this sort
of problem, assertions and formulae (such as
“Mary’s age”) can be quoted in this fashion.

A L

,>>

L A N G U A G E

detected (i.e., adding/removing axi-
oms from the KB is strongly prefer-
able to changing the logic, especially
when a massive KB already exists
and assumes a certain logic).

This concludes the discussion of
the Epistemological Level. A short
description of some of the techniques
used at the Heuristic Level to speed
up inference follows.

The neurls+lcLevel:
InFerenclng In eye
The Heuristic Level (HL) is meant
for doing inferencing. As opposed to
the Epistemological Level, where we
tried to avoid superfluous constructs,
the HL incorporates a host of “logi-
cally” superfluous mechanisms for
improving efficiency.

M ost of the novelty
and power of
Cyc stems from
its rich, broad

knowledge base; so why all this treat-
ment of reasoning? Even though
most commonsense reasoning is
shallow, “shallow” still means one or
two deductions away from what is al-
ready there in the KB. For instance,
you have to make the following deci-
sions: what to cook for dinner to-
night; whether a wrench released on
the moon will hang there or fall to the
lunar surface; why someone just
laughed; whether X is likely to al-
ready be acquainted with Y, etc.
Most of the answerable queries are
not preconceived. Their answers are
not worth pre-computing and cach-
ing because tney are numerous and,
individually, each very unlikely ever
to be asked (e.g., “Did Aristotle know
about the Space Shuttle?” “Did
Jefferson’s right thumb have a
thumbnail?“). Cyc can answer those
questions correctly, giving “right”
arguments for its answers, and the
ability to answer those questions is
part of what it means to have com-
mon sense. .yet it would be wildly
cost-inefficient to try to store, let
alone calculate, the answers to each
such question ahead of time. The
number of potentially useful short
deductions from our current KB is in
the trillions; so it is important to be

able to quickly identify a small subset
of sentences relevant to one’s current
problem, and it is important to be
able to efficiently reason using those
sentences.

The functionality of the Heuristic
Level is defined in terms of a Func-
tional Interface which consists of the
following six operations which the
HL must implement.

a) Tell: (E x KB + KB). “Tell” is
used to assert statements. Given a
sentence o and a KB, after Tell
(a, KB) we get a new (modified)
KB ’ in which u is an axiom.
Regardless of other arguments
(multi-step “proofs”) of u, KB’
would contain a new argument for
it, of the form “Primitively, be-
cause the user told me so.” u can
be any well-formed formula of the
EL language.

b) Unassert: (C x KB -+ KB).
Given a sentence u and a KB, we
get a KB ’ in which u is not an ax-
iom. Nothing can be said about
the truth-value of u in the resulting
KB. For example, u might still be
True (it still might be derivable
from other axioms in KB ‘), it
might be False (1 u might be de-
rivable from axioms in KB ‘), or
its truth-value might be unknown
(neither u nor 1 u are supported
by arguments in KB ‘). Unassert
is the direct “undo” of Assert.
Note that Tell(1 u, KB) is quite
different from Unassert(u, KB);
the Tell would result in a KB ’ in
which u was false, as justified by
an explicit new axiom 1 u.

c) Deny: (C x KB + KB). Given a
sentence u and a KB, after
Deny(u, KB) we get a KB ’ in
which u is no longer true. It is
common for neither u nor 1 u to
be true in KB ’ (i.e., if there are no
other arguments for 1 a). In other
words, this squelches all positive
arguments for a, and does not af-
fect negative arguments (argu-
ments for 1 a) in any way. Note
that this is not the same thing as
Unassert(u, KB), in which case u
might still be true; and it is not the
same as Tell(1 u, KB), in which
case u would have to be false.

August 199O/Vol.33, No.8/COYYUNI~TIONSOFT”E~CM

,>>

U N 0 E R s T A N D I N 0

,>>

d) Justify: (C x KB -+ sentences).
Justify is used to obtain the argu-
ment for a given proposition. If
sentence u were true in KB, then
Justify(a, KB) would return a sub-
set of the KB from which u can be
derived. (Actually, Justify returns
a somewhat more complicated
value, which specifies the various
pro and con arguments about (T,
and how they combine to produce
the “net” truth-value of u in KB.)

e) Ask: (C x KB -+ truth-value/
bindings). “Ask” is used to test
the truth value of a statement, and
to find which free-variable bind-
ings make an expression true.
Given any constraint language
(CL) expression o (which may
contain free variables) and a KB,
the value of Ask(a, KB) is either
the bindings for the free variables
in u, or a truth-value. An optional
argument turns Ask into agenera-
tor; i.e., each repeated call yields a
single distinct binding list.

r> Bundle: (sequence of Functional
Interface statements). This is a
facility which performs a series of
calls to the previous five FI func-
tions as one atomic macro opera-
tion. This is of great pragmatic
benefit, in two ways:
i) The operations may violate

some integrity constraints and
satisfy them again. For exam-
ple, changing the domain of the
predicate likes from Person to
Animal requires one Assert and
one Unassert. No matter in
which order they are per-
formed, after performing the
first operation, there will be a
violation to the integrity con-
straint that says that each pred-
icate has precisely one recorded
domain.

ii) The bundling allows the HL to
be “smart” about which asser-
tions it has to undo. For exam-
ple, changing an inheritance
rule from “Southerners speak
with a drawl” to “Southerners
over age 2 speak with a drawl”
will result in n/35 retractions if
they are Bundled together (as-
suming an average lifespan of
72 years, a uniform population

distribution, etc.), rather than
2.q if they are not.

The concept of a Functional Inter-
face, with functions such as Tell and
Ask, has existed in Computer Sci-
ence and AI for some time [5]. We
have tailored it for our purposes, and
increased its pragmatic usefulness by
adding some new constructs (such as
Bundle and Justify) and by teasing
apart old ones (such as Unassertp,
KB) versus Deny@, KB) versus
Tell(1 p, KB)).

Default Reasoning Modules
Most of the gain in speed of process-
ing at the Heuristic Level comes
about because of the way we imple-
ment Ask. (Much of the complexily at
the Heuristic Level is due to the need
to do Deny properly.)

Since most of the reasoning done
is related to defaults, we first de-
scribe how this is implemented.4
The structure of the Heuristic Level
is based around default reasoning
and consists of these four modules:

l Argument Generator: Given a sen-
tence, this module tries to generate
an argument for it.

l Argument Comparator: Given a
set of arguments for and against a
sentence P, this module decides on
a truth-value for P by comparing
these statements. It then adds this
sentence to the KB, with that “net”
truth-value. Current truth-values
include: monotonically true; true
by default; unknown; false by de-
fault; and monotonically false.

l Conclusion Retractor: When the
truth-value of a sentence x changes,
this module ensures that truth-
values of other sentences that de-
pend on x are also updated. Not
surprisingly, the module for the
generation of arguments is, in
practice, very tightly integrated
with this module.

l Contradiction Resolver: This
module is responsible for detecting
and resolving contradictions.

Though the Epistemological Level
has only two truth-values (true and

false), the Heuristic Level uses 5 of
them (true, default true, unknown,
default false and false) to label sen-

tences in the KB [ll]. “True/false”
sentences are those that are “mono-
tonically” true (i.e., the addition of
new facts cannot cause them to be
retracted). “Default true/false” sen-
tences do not have this property.
“Unknown” is used for sentences for
which there are unresolved conflict-
ing arguments, Deductions that re-
quire making assumptions are only
default true (or false) while those that
do not require any assumptions are
monotonically true.

Given a sentence P, Ask first tries
to find arguments for it. If it can, it
then tries to find arguments against
it. These are then checked for possi-
ble invalidity, compared, and the
final truth-value is decided on this
basis. If there are unresolvable (in-
commensurable) arguments for and
against P, then P is labelled as
Unknown.

Since the Heuristic Level has these
five truth-values, the Tell-Ask trans-
lator is able to convert axioms from
the Epistemological Level into sen-
tences at the Heuristic Level that do
not contain any “ab liter&” (assum-
ing that no axiom has more than one
negated ab literal). This makes the
default reasoning both easier to en-
code and faster.

A number of the axioms (i.e., as-
sertions that have been manually
entered into the system) at the Epis-
temological Level are of the form
(7 abi(...) > <ground-formula >).
These are called “local defaults” (and
simply translate to the ground-
formula with a truth-value of default
true at the Heuristic Level) and the
Heuristic Level provides special sup-
port to handle these efficiently.

It should be noted that since com-
paring two arguments could involve
using axioms in the KB, the Argu-
ment Comparator (or any of the
other modules) can recursively use
Ask or any of the other interface
functions.

‘The argumentation axiom is just like any other ax-
iom at the Epistemological Level. However, since it
is used very often, at the Heuristic Level, there are
some special procedures for incorporating it.

Speeding up the Argument-
Generator Module
The bulk of Cyc’s time spent infer-

CCYW”~,CITICWICFT”EACM/August 199O/Vo1.33, No.8 37

N A T U R

encing is used by the Argument-
Generator module. A number of
techniques have been introduced to
make the Argument-Generator (and
Conclusion-Retractor) modules
work more efficiently These tech-
niques fall into three categories:

l highly specialized inference rules,
l domain-specific inference mod-

ules, and
. dependency analysis of the KB.

Highly S’ecialized Inference Rules
There are a number of groups of ax-
ioms whose syntactic structure can
be captured using .schemas that do
not have any sentential variables.
Each of these schemas is made into
a rule of inference.

For instance, many rules we en-
tered had the form (Vx, y, z) sl(x, J) A
~20, .z) * sl(x, z). For example, (Vx,
y, 2) own.r(x, y) A phpicalParts& 2) *
own.+, 2). If you own a car, and one
of its parts is a certain steering wheel,
then you also own that steering
wheel. We introduced a new infer-
ence template, tran.sfkrsThmug~ so that
one could express th.at rule simply as
transfersThrough(owns, PhysicalParts).
There are many other transfershmugh
“rules” in Cyc, e.g., tram-fmsThrough
(lastName, fathu), so that lastName
(MichaelDouglas, Douglas) and father
(MichaelDouglas, KirkDouglas) imply
lastName(KirkDouglas, Douglas). An-
other example of the use of this spe-
c&purpose inference schema is
transf~sThmugh(ca~~, agentof); for in-
stance, ifX caused something to hap-
pen, while X was acting as an agent
of Y, then we can consider Y to have
caused it as well.

Associated with each inference
schema-such as transfusThrough or
inherits-are specialized procedures
for speeding up that sort of inferenc-
ing. For example, a certain amount
of compilation can be done that cuts
down drastically on unification at
runtime. Also, the stack used by Lisp
itself can be used instead of using
binding lists. Many of these savings
are similar to those obtained by
Warren-Machine-like [31] compila-
tions of Prolog programs. In par-
ticular, each schema has specialized

A L

,j>

L A N 0 U A 0 E

procedures for:

l Recognizing instances of the
schema. For example, noticing
when a constraint language sen-
tence can be transformed into an
instance of that schema. If the user
Tells the system (Vu, v, w) owm(u,
v) A physicalParts(v, w) * owns(u, w),
that trivially matches the general
transf~sThrough(sl,s2) template (Vx,

J 2) sm Y) A 434 2) =a Jl@J z), so
the %11&k translator converts
that into transfmsThrough(owns, phys-
ica1Part.r).
Storing justifications. Each infer-
ence mechanism is responsible for
detecting when an argument it
proposed becomes invalid, and (at
that time) retracting the argument.
Truth Maintenance Systems per-
form two tasks: providing this kind
of bookkeeping, and maintaining
consistency. Though typically
tightly interwoven, in Cyc we see
that these are kept clearly sepa-
rated. The bookkeeping is infer-
ence mechanism-specific (the data
structure used to represent the
argument could be dependent on
the inference mechanism that pro-
posed it) while the consistency
maintenance task (discussed in de-
tail later, in the subsection on
Denials) is inference mechanism-
independent.
Applying the schema. For exam-
ple, suppose we assert these three
sentences:
tramfusThrough(owns, physicalparts)
owns(Guha, TyotaO093) and
physicalParts(TqotaOO93,
W’heelRR009382015)
Then a specialized procedure asso-
ciated with transfersirhrough would
detect the need to “fire the rule” (if
it were forward-propagated, or if it
were backward-propagated and
someone asked whether Guha
owned WheelRR009382015).

We have also built a facility to help
user add new inference rule

schemas [1S]. For example, one spec-
ifies a schema, and Cyc automati-
cally generates the code needed to
“implement” this schema as an in-
ference rule-the types of specialized
procedures itemized above. This fa-

cility can only handle schemas not in-
volving sentential variables.

Domain-S’ecifk Inference Modules
The first category of specialized
mechanisms was based purely on the
syntactic structure of the axioms, and
had nothing to do with the domain
with which the axioms dealt.

T
here are times when
one can exploit some
special properties of a
set of domain-specific

axioms, and/or domain-specific use
of a set of general axioms-notably,
information about “most frequently
seen cases.”

Some examples of such axiom clus-
ten that Cyc currently optimizes in
this way are those related to temporal
reasoning [l], quantity arithmetic
[33], equality, etc.

It should be noted that while there
may be nothing more than the pro-
gram representing these axioms at
the Heuristic Level, these axioms do
exist declaratively, explicitly at the
Epistemological Level.

Dependency Analysis of the KB
In the past, AI has developed a
number of standalone modules (e.g.,
Truth Maintenance Systems [9] that
can be used with anyproblem solver.)
In order to make them problem
solver-independent, their operation
was usually made independent of the
contents of the KB the problem solver
operated upon.

However, we have found that it is
possible to obtain significant im-
provements (in efficiency) by using
an analysis of the structure of the ax-
ioms in the KB.

For example, a dependency anal-
ysis of the axioms of the KB could
reveal the circumstances in which
there couldpa&ly be circular justifica-
tions and identify the only sentences
that may be involved in the circular
justification. Having this informa-
tion can vastly reduce the time re-
quired to search for such circularities.
(For example, it turns out, in Cyc’s
KB, that only a handful of the four-
thousand kinds of slots can even pos-
sibly participate in circular lines of
reasoning and such “garbage collect-

August 1990/Vo1.33,No.8ICOYuUWICITIOWSOCTRL~~,CY

,i>
U N 0 E

able” chains are usually rather short;
these two KB-specific properties
make the problem of detecting them
computationally quite feasable, in
practice, even though it requires a
rather expensive procedure in theory.)

Though on the one hand these
modules are now making strong as-
sumptions about the structure of the
representation used by the problem
solver, the resultant improvements in
efficiency are worth it.

Dealing with Multiple Specialized
Inference Engines
The two most critical issues that crop
up in the presence of dozens of such
specialized mechanisms are:

l When should a particular inference
scheme be used? To determine which
mechanism to use when, we asso-
ciate with each predicate the set of
features that may be used to de-
duce atomic formulae in which that
predicate appears. Cyc also has a
general-purpose inference mecha-
nism that (though inefficient) is
capable of a much larger (but still
incomplete) category of inferences.
This general inference engine is
very similar to a unit preference
resolution theorem prover.

l How does one integrate the operation of
the di&ent m&m&ms? Each infer-
ence mechanism is expected to
provide a set of functions (in addi-
tion to one for deducing some class
of sentences) for providing the ar-
gument justifying an inference,
providing a list of instances of the
inference rule, etc. Given these
facilities, integrating these infer-
ence features is straightforward.

Each inference module can itself
call any of the interface functions.
(Ask, Deny, Jus@, and lZl). For ex-
ample, the mechanism for imple-
menting the previously mentioned
tran.sfgsThrough schema calls Ask to
verify the truth (or to find bindings
satisfying) a particular sentence.
When dealing with mechanisms
other than the domain-specific infer-
ence mechanisms, a depth-first iter-
ative deepening procedure [27] is
used for the search. Resource-limited
reasoning [3] is implemented by the

R E T A N

indexical function resources-available,
which specifies a cut-off depth,
elapsed real time, or other resource
bounds for the search. (The usual
cut-off depth used is about 25.)

In addition, parts of these infer-
ence mechanisms are represented in
Cyc, and this reflection allows one to
use an agenda to perform a best-first
search using various heuristics to
control the search strategy. The per-
formance of the iterative deepening
strategy has been so good, however,
that this meta-level [7] mechanism is
rarely used.

Specaaing Control Znformution For
Individual Assertions
A number of pieces of control infor-
mation can be associated with each
assertion (sentence) P. Some of these
include:

i) Should the conclusions of the
sentence P (the positive asser-
tions, if any) be propagated in the
forward direction?

ii) If backward-propagated, at what
inference “level of effort” should
this rule P be run?

iii) Should the sentence P be treated
as an integrity constraint?

Some of the motivation behind
providing such annotations for axioms
is to develop a set of cl&d meta-level
(proof theoretic) sentences about
what actions were preferred, so that
problem solvers could be written to
exploit these directly. That effort is

P I N 0

,>>

still under way.

Denials
The interface function Deny, though
useful, is by far the most tricky one to
implement properly. As we remarked
earlier, note that Deny(a, KB) is not
the same as Tell(1 a, KB); the for-
mer will usually result in a KB in
which u is unknown. For example, we
might want to say that children of
teachers typically go to college. But
we might want to Deny that for chil-
dren of gym teachers. This is not to
say that we would guess that they
very likely do not go to college, just
that we do not want to bet one way or
the other. Of course, there might be
other arguments as to why those peo-
ple (as a general rule) do or do not
matriculate, and in any particular
person’s case there might be other
conclusive arguments for and/or
against the assertion that they attend
college.

Though Deny can in principle be
implemented by a combination of
Ells and Unasserts, in practice we
have found it useful to define a new
operation corresponding to the func-
tionality described below.

If we write beliej(Cyc, a) to say that
u is in the theory corresponding to
the KB, then Deny(u, KB) is equiv-
alent to asserting 1 beZief(Qc, a). We
can also specify the meaning of deny
without resorting to belief as follows.

i) If the sentence u had been as-
serted by Zill and is “monotoni-

THE STRUCTURE OF A
PHYSICAL OBJECT IS DE-
FINED BY THE CONSTRAINTS
ON ITS PARTS, AND THE
STRUCTURE OF AN EVENT
IS DEFINED BY CON-
STRAINTS ON ITS SUBEVENTS.

COYY”YlCITlO”~OPT”~~O,CY,Augus, 199O/Vol.33, No.8 39

N A T U R

tally true” and there is no other
way to derive it (i.e. it is an axiom
and not a theorem), then Deny
just deletes it from the KB. So, in
this case, Deny(a, KB) reduces to
Unassert(a, KEI).

ii) If the assertion cr follows from
others in the K.B or is a “local
defaults,” and is labelled “default
true” (or “default false”), then we
get the following two classes of
denials.

- Blanket Denial. This corre-
sponds to introducing an
axiom that invalidates any
argument for u (i.e., argu-
mentFor(cr, a) > inval-
idArg(a)). A less dogmatic
version of this kind of denial
is also available where only
those arguments that are
present at the time of the
denial are asserted to be
invalid.

-Constructive Denial. One or
more of the assumptions
(i.e., formulae of the form
1 ab,(...)) is, chosen and as-
serted to be false in order to
“defeat” existing arguments
for a. Control over which
assumption gets “retracted)’
can be exerted by using the
predicate morel&e&Than. If
moreLikelrT,;an(‘pl, 32) is
true, then if a choice be-
tween retracting pl versus p2
needs to be made, p2 is
chosen as the likely one to
retract.

iii) If the assertion cr follows from
others and has been labelled
“monotonically true,” then at-
tempting to deny it causes an
error to be signalled. It is then
adjudicated by the asserter, who
has the option of retracting or
reducing the truth-value (from
monotonic to default true) of
various assertions from the KB
(which led to u being asserted as
monotonically true), or (much
more common if this is a “top-
level” user operation) simply
aborting the attempt to Deny cr, at
least for the time being.

We conclude the discussion of
CycL and proceed to discuss the con-

40

tents of the KB. Further details of the
CycL language may be found in [8,
12-14, 16, 191.

The Cyc Ontology
Recall that the EL (Epistemological
Level) is meant for communicating
the contents of Cyc independent of
the “inferencing hacks” which are
used for efficiency down at the HL
(Heuristic Level). Hence, most of the
discussion of the ontology of Cyc’s
KB in this article will be at the EL,
not HL.

We begin by introducing some of
the basic concepts and distinctions
used, and later proceed to “represen-
tation issues” such as time, events,
agents, causality, etc. This discussion
is meant only to give a flavor for the
kind of things that are present in the
Cyc KB and is not a comprehensive
overview of what it encompasses.

Some Basic Concepts and
Distinctions
The ontology of Cyc is organized
around the concept of categories. We
shall also refer to these as classes or
collections. Though we shall fre-
quently use set-theoretic notions to
talk about collections, these collec-
tions are more akin to what Quine
termed Natural Kinds [29] than they
are to mathematical sets. This shall
become apparent later as we start
ascribing various intentional proper-
ties to collections. The collections are
organized in a generalizationlspecial-
ization hierarchy (not a tree since
each collection may have more than
one direct generalization). The gen-
eralizations and specializations of a
collection (that is, its supersets and
subsets) will often be referred to as its
genls and specs. Elements or members
of a category are usually referred to
as its instances.

Since this hierarchy is very impor-
tant, we begin by discussing some of
its important nodes and why they are
in certain unintuitive genls/specs re-
lations; we also discuss some of the
partitions of categories (that is, divid-
ing a category C into mutually dis-
joint subsets whose union is C).

The universal set is called Thing.
One of its partitionings is into the two

sets IntemalMachineThing and Repre-
sentedThing. Instances of InternalMa-
chineThing include the number ‘5,’ the
string “foe,” etc.-i.e., things for
which the representation is provided
by the Lisp substrate upon which
CycL is written. Instances of Repre-
SentedThing are things like Table, for
which only a representation is pro-
vided by CycL. This distinction is of
use when deciding whether to use
model attachments.

Another partition of Thing is into
IndividunlObject and Collection. Indi-
vidualobjects are things like Fred,
ThWSiteHoure, ThFourthOfJuly1990,
-i.e., the non-sets. They can have
parts, but not elements (instances>. In-
stances of Collection include Thing (the
set of all things), Table (the set of all
tables), Dining (the set of all dining
events), and so on.

Predicates are all strongly typed
and a single category from the Cyc
hierarchy has to be specified as the
type for each argument. This was a
conscious design decision, and has
tremendous heuristic power as the
KB is built. Namely, when a knowl-
edge enterer has an urge to define a
new kind of slot (i.e., binary relation),
he or she must either select or define
the domain (makz.s&nseFor) and range
(entvIsA) of the slot. Usually, the slot
is worth existing separately only if the
domain is, and this frequently gives
the knowledge enterer a well-needed
doublecheck on what he was about
to do.

It should be noted that predicates
such as age(x) and weight(x) cannot
legally be applied to collections (such
as Table). To rephrase: since Table is a
set, a mathematical entity, it cannot
have a weight or an age (it can of
course have many other slots such as
cardinality), that is, the domain of
weight does not include collections
such as Table. Of course we could
discuss weight (Table905)-the weight
of an element of the set Table-but
that is quite different. Table is indeed
a subset (specs) of IndividualObject,
it is just not an element of (instanceOf)
IndividualObject.

In addition to collections of indi-
viduals, we also have collections of
collections. For example, PersonType

August 199O/Vd.33, No.8ICOMMUNICITIONSOIT”EACY

$ U N P E

is a set whose elements include Person,
Compute&&&t, lkan, etc., which
themselves are collections whose ele-
ments include Lenat, for example.
The hierarchy folds into itself at this
level and we do not have collections
of collections of collections.5

It should be noted that unlike
many frame systems, a distinction
is made between the relations,
instances (elements) and specs (sub-
sets). So the relation between Com-
puterscientist and Fred (instances) is
very different from that between Per-
son and ComputerScientist (specs).

The predicates themselves are
first-class objects in the language and
can be used as arguments to other
predicates (this is a second-order like
construct that can be easily first
orderized). Although some of our
editing tools (and internal data struc-
tures) gather together into “frames”
the set of assertions that are binary
predicates sharing a common first
argument, that is merely a Heuristic
Level (and user interface) distinc-
tion-there is nothing special about
binary versus other-arity predicates
at the Epistemological Level.

We are now ready to discuss some
of the “representation issues.” First
we discuss the distinction between
Substances and Individuals [18], and
then proceed to how we represent ob-
jects with temporal aspects to them.

Substances and Processes vs.
Individuals and Events
If you take a piece of wood, and
smash it into ten pieces, each piece is
still a (albeit smaller) piece of wood.
But if you do the same for a table,
each piece is not a (smaller) table.
Substances are usually referred to in
English as mass nouns; some of them
are obvious (sand, air, peanut butter)
and some less so (time, walking). We
view the concept PeanutButter as the
collection of all pieces of peanut
butter.

Every individual is made of some
substance or the other. If we do not
have a single type of substance of
which that individual is composed,

‘We used to, but they were never much use. Collec-
tions of collections, however--such as Pmoflype and
Su6stance~pe and Euentqpe-have proven vital.

R 8 T A N

we can define a new one (Bertrand-
RusselStuff? ugh!), use a more general
substance (AnimalMatter), or even fall
back on the most general kind of sub-
stance of all, Substance.

Conversely, every piece of any sub-
stance-say this particular piece of
peanut butter over here-is an indi-
vidual. This gives us some interesting
relations between substances and
individuals.

other hand, any particular piece of
any substance is an individual and,
since the category corresponding to
a type of substance is nothing but the
set of its pieces, Substance C In-
dividualobject.

So, rather surprisingly, the two sets
are extensionally equivalent. We still
choose to distinguish between them
since they have different intensional
descriptions. More specifically, one
of the differences in their intensional
descriptions is as follows. The differ-
ent substances (such as plastic, pea-
nut butter, air, etc.) are all instances
of the collection SubstanceType while
the collections of individuals (Table,
Person, Number) are instances of
ObjectType. We shortly describe how
this difference in intensional descrip-
tion is used.

There are certain properties that
are intrinsic in that if an individual has
them, parts of individuals also have
them (at least as a default), while
there are other properties that are ex-
trinsic (i.e., parts of individuals do
not have this property even if the in-
dividual does.) The notion of intrin-
sicness is closely related to that of
substances in the following way. Con-
sider a particular table made entirely
of wood-Table103. It inherits vari-
ous default properties from Wood,
the kind of substance it is an instance
of (properties such as density, flash
point, etc.) and it inherits other prop-
erties from Table, the kind of indi-
vidual object it is an instance of
(properties such as number of legs,
cost, size, etc.) The former properties
are intrinsic, the latter are extrinsic.

0 I N G

,>>

This is no coincidence! An object X
(typically) inherits its intrinsic properties

yrom whichever instances of Substanceqpe
X is an instance oJ and X inherits extrin-
sic properties)om whichever instances of
Object@e it is an instance o$

So we now have a way of pre-

dicting, for any known predicate,
whether or not it will be intrinsic:
determine whether its domain
(makesSenseFor) is an instance of
SubstanceType or ObjectType. This
explains our earlier remark about
how vital collections of collections
are-we could actually dispense with
the concepts Substance and Individ-
ualobject (since they are coexten-
sional), but we cannot do without
SubstanceType and ObjectType.

Strictly speaking, it is always pos-
sible to carve up a substance so that
the resulting parts are not instances
of what the whole was an instance of.
For example, one could take a glob of
peanut butter and separate out all the
peanut chunks, and these alone do
not form a glob of peanut butter. So
there is some restriction on how we
may cut up a piece of some substance
for the substancehood principle to
apply. We associate a granule size
with each kind of substance and the
substancehood principle applies only
to pieces larger than the granule of
that substance. This allows us to deal
with strange kinds of substance like
military hardware which is usually
considered a substance even though
it consists of items like guns which
are surely not substance-like.

Events and Persistent Objects
So far we have used the terms “piece”
and “cutting up” in a very loose
manner. There are actually two
senses in which these terms can be
used-spatially and temporally-
and we shall now examine them
both. This examination will lead to
a discussion of more general issues
concerning events and objects that
occur and exist over some time
interval.

We can cut up something spatially
(as we did with the piece of peanut
butter). We can also cut it up tem-
porally. For instance, consider the

COMMUNlCATlONSOFTNEACM/A~~~~~ 19901Vo1.33, No 8

N A T LJ R

process of walking: in Cyc’s ontology
we have the collection FGlking, which
is the set of all walking events. Con-
sider one of its instances, a particular
event in which you walk ‘to the corner
mailbox and back home again.
Imagine a videotape of that event,
and now consider some contiguous
one-minute segment of the tape-say
the third minute of it. If someone
watched just that minute, he or she
would report that the minute was it-
self a (albeit shorter) walking event,
that is, an instance of VValking

In the last subsection, we noted
that the class Woodhad an interesting
property: when a member of the class
is physically carved into pieces each
piece is still an instance of Wood. We
then said that Wood was a type of
substance (an instance of Substance
Tpe), and we could use such “sub-
stance-like” categoriz.ation to decide
on intrinsicness of properties. Here,
we are seeing an analogous phenom-
enon: Walking, a class of events has
the property that, when a number of
the class is temporally carved into
pieces, each piece is still an instance
of Walking. We say that Walking is a
type of temporal substance-what
we will call a Process (that is, Walking
is an instance of Procew@e). This
turns out to be more ‘than a superfi-
cial analogy. Indeed, Walking is an
instance of Substance?jlbe. We now
divide Substanceqfre into Tangible-
Substance$?e and ProcessType. Wood, for
example, is an instance of Tangible-
Substance@e.

Similarly, Object@e is now divided
into TangibleObject @e and Event @e.
Even though Walking is a type of
process, Walking~heMailboxAndBack
is not. If you imagine that third min-
ute of the ten-minute Walkingmhe-
MailboxAndBack event, it is still an
instance of Walking, but a stranger
watching just that minute would not
say that it was an instance of someone
walking to a mailbox and back home
-neither your home nor the mail-
box might be anywhere visible on the
tape during that minute! The rela-
tionship here between Walking and
WalkinglZheMailboxAndI~k is indeed
the same as the one between Wood
and Table. Table is an instance of

42

A L

,,>

L A N

TangibleObjectij$e and WalkingIZhe-
MailboxAndBack is an instance of
Event qpe.

Earlier it was illustrated that, sur-
prisingly, Substance and Individual-
Object were coextensional; as a special
case, it turns out that Pmcess and Event
are coextensional. That is why Process-
qpe and Event@e are actually more
useful collections to have explicitly
represented than Process and Event.

T
here are now two types
of intrinsicness as well:
a property can be
spatiallyIntrinsic and/or

temporallyIntrinsic. If you imagine the
particular event in which someone
walked to the mailbox and back
home, it is an instance of Walking
(from which it inherits default values
for the average velocity, step-size,
amount of attention required, etc.),
and an instance of WalkingZTheMail-
boxAndBack (from which it inherits
default values for destination, dura-
tion, etc.). Sure enough, that third
minute of the videotape would agree
with the entire video on properties
like average velocity, but would differ
radically on properties such as
duration.

Consider TableOOI-a particular
table, an instance of the category
Table. It persists for a “lifetime,” an
interval of time before and after which
it does not exist. Consider a temporal
“slice” of TableOOl, such as the decade
it was owned by Fred. This too is an
instance of Table. This is interesting
since it means that the category Table
is an instance of Processsqpe! Actually
there exist a number of categories in
our ontology whose instances are
space-time chunks that have tem-
poral aspects and which exhibit suf-
ficiently persistent properties so that
it makes sense to associate a notion of
identity with these objects. The
category of such things is called
SomethingExisting and this is an in-
stance of ProcessTfie. Since all physical
objects (which have any persistent
identity) exhibit this property, both
TangibleSubsturue~pe and Tang&Object-
qpe are specs of ProcessT@e! Conse-
quently, anything that is spatially
substance-like is also temporally substance-

0 U A 0 E

like, though the conuerse is not true.
This is an interesting view of con-

cepts such as Lenat or TableOOl. We
view these objects as space-time
chunks and we call the temporal
pieces of these (e.g., LenatDuringl990,
Table001 Whi~BeingEatenOn) subAbstnw
tions of the larger piece. SubAbstractions
can of course have further subrlbstrac-
tions. The maximal subAbstration (e.g.,
Lenat, TableOOl) is called an Entity.
Entities cannot have superAbstractions.
Being space-time chunks these sub-
Abstractions have temporal properties
such as duration (the duration of
Lenat is his lifespan), StartingTime,
endingTime, and so on.‘j

Not all objects that have temporal
extents exhibit enough persistence to
warrant according them a persistent
identity. Consider Roger dining at a
restaurant. We can consider a system
consisting of Roger, the waitress, the
table, cutlery, food, etc., interesting
enough to create an explicit object for
this system. However, this object has
no temporally persistent properties
and is of little interest after Roger
walks out (except perhaps as an ex-
ample in an article). Such objects are
instances of SomethingOccurring, which
is another important instance of Pro-
cessqpe; they correspond to reifica-
tions of what usually goes by the
name of actions, scripts, or processes.
The parts of such an object are re-
ferred to as its actors (though there are
useful specializations (specSlots> of uc-
tors, such aspe$onner, objectActedUpon,
instrumentInAction, etc.). The various
actors in an event usually undergo
some change either during or after its
occurrence (i.e., the subAbstractions of
the actors during or immediately
following the event are different from
the subAbstractions immediately
preceding). It should be noted how-
ever that no ad hoc distinction is
made about what kinds of events can
cause changes in the properties of in-
stances of SomethingExisting. In fact,
since some of the properties of objects
change simply by their existing (e.g.,
age), it could well be the case that the

6This is superficially similar to the “histories”
framework [17] but is different in a very important
way: there is no relation between the intersection of
these histories and the frame problem.

August 199O/Vo1.33, No.8ICOYMUNlWTIONSOFT”EliCY

,>>

U N 0 E R 8 T A N D I N 0

,>>

AN EXAMPLE OF WHAT CYC KNOWS,
AND WHAT Dl- CAN DO WITH IT

Hera are a dozen of the assertions about “Buying”
which have been entered into Cyc. They exemplify
several types of knowledge. including specific facts,
general implications, integrity constraints, meta-level
knowledge, metonomicity of relations, and so on.

l You give someone money in return for a product
or a service [including the service of having loaned
you money], or as a gift (including charities].

l Each agent is associated with various amounts of
money: his net worth, liquid worth [which includes
bank accounts], spendable money [cash plus credit
cards], and actual cash-on-hand.

l Payments of less than ten dollars are usually made
with cash: those over fifty dollars are usually made
via check or credit card. Adults typically carry
IO-100 dollars [when dressed and away from their
residence].

l Payments made through the mail are not generally
made using cash.

l The previous assertion overrides the one before
it. (This is a met&level “rule.“]

l Candy bars cost approximately a dollar.
l Candy costs approximately twice as much at movie

theaters.
l Seeing a movie at a theater costs appmximataly

five dollars these days.
l Many individual objects may be aggregated into a

substance-like “mob” [hence summarized by
weight, volume, etc.] for purposes of buying, sell-
ing, creating, or destroying them.

l When you buy only a few consumable items, it is
likely that you are going to consume them soon.

l Buying is a purposeful activity, and demands at
least linguistic-level attention.

l Agents need to own items they consume.
l Agents own items by buying them or [in decr-eas-

ing order of likelihood] making them, renting them,
or stealing them.

l If you own something, you can do anything with it
unless it is likely to harm other people.

l Agents own items that are of some use to them
(i.e., are required for some action they went to
perform].

l A mugh absolute measure of the value of an object
is its cost, or the objects or services it can be ex-
changed for

l If you buy something, one of the sub-events in-
volves you paying the seller.

Here is the internal [epistemological level] form of the
final one:

[implies
[LogAnd

[al/lnstanceOf E Buying]
[pat%rmedSy E X]
[objectlnvolved E Y]
[seller E Z]
[holdsOuring Y cost N SO]

CCYY”IIICITIC”~CFT”EACCY/August 19901Vo1.33, No.8

[occursIn E SO]
[LogAnd

[eiFygyOf [Skoem Function [X Y Z] ‘PAYING]

[jwformadEly [Skolem Function [X Y Z] ‘PAYING]

[o&ln&ved[Skolem Function [X YZ] ‘PAYING]

[ez!wnt Given [Skolem Function [X Y Z] ‘PAYING]

[sz’&nts E[Skolem Function [X YZj ‘PAYING]]]]

The knowledge enterer did not have to type all
that, fortunately. It is required in the context of full-
blown discrete time, but often for doing everyday
reasoning we just use a formalism for time called
generic time (in which, for example, all the objects
being referred to are assumed to be coTemporal].
Therefore, the knowledge enterer indicates that they
are typing a generic time assertion, and just enters
the following expression:

[sub-actions[SuyingXYZ][cost YL][PayingXZL]]

While not 100 percent use-neutral, these asser-
tions can be used in many disparate ways. For exam-
ple, if Cyc is told that “on July 14, 1990, Fred
Johnson went to the movies and bought candy:’ it
can answer queries about whether he paid for it or
not, whether he paid by cash or check or credit card,
how much he paid for it, who owned it when, what
Fred did with it, at least how much cash he had on
him when he went to the movies, whether he knew
he was buying the candy just before/during/after he
bought it, whether he was sleeping while buying it,
etc.

These are precisely the sorts of queries which, for
example, are required when trying to understand
English sentences involving buying. For example,
deciding that the following is talking about a company
and not a particular piece of candy: ‘LJack thinks it
will pmbably require ten million dollars to by Nestle’s
Crunch.”

The same knowledge is also useful in enelogicel
reasoning [for example, finding ways in which buying
is like learning, and then using that analogy to pm-
cess some sentence or make a guess at the answer
to some pmblem] and, more generally, in other sorts
of abductive reasoning [for example, guessing why
Fred might have written a check for fifty cents].

It is difficult to give a brief example of Cyc’s knowl-
edge and inferencing, since locallyit appears almost
indistinguisheble fmm any other Al pmgram. Hope-
fully, though, this has et least provided the flavor of
what we say to Cyc. how we say it, and what Cyc
does with it. What distinguishes Cyc is not merely
the breadth of topics acmss which it can exhibit
reasonable competence, but, more significantly, the
breedth of topics across which it can draw
knowledge to use in answering s single query.

43

N A T u R

properties of something change even
though it was not an actor in any in-
stance of SomethingOc,curring.

Any instance of Event can have
temporal properties (duration, e&s-
AfierTheStartOf, etc.) We use two ab-
stractions of time to specify these
temporal properties: interval-based
and set-based [l], [24].

Let us first discuss the interval-
based abstraction of events. We can
define a number of relations between
events using the two primitives before
and simultaneousWith that can hold
between the starting and/or ending
times of these (possib1.y concave) in-
tervals. For example, we define the
binary temporal relation startsBefore-
StartOf by stating the following asser-
tion to Cyc:

(Vxiy) (start.&tkeStartOf(x~)
= Before(startingTime(x),

startingTim+j))
Why do we need a second abstrac-

tion of time? The int.erval-based
abstraction of time makes it awkward
to say things like “people do not eat
and sleep at the same time” since we
are not dealing with a single convex
interval. In such cases, it is easier to
abstract “the times when x is eating”
and “the times when x is sleeping” as
sets of points. Then, based on this set-
based abstraction we use set theoretic
relations such as intersects, disjoint,
etc., to state axioms like the one
above. In this case, the sentence
would just be an assertion that two
intervals-viewed as a set of points
-have empty intersection.

It is interesting to note that by
associating temporal extents with
objects as opposed to reifications of
propositions, we get a certain added
expressiveness. For example, it is easy
to express statements of the form
“Fred when he was 35 liked his house
as it had been 20 years earlier” in this
formalism, while it is difficult to do
so with formalisms that associate
time with propositions (or their reifi-
cations). There is, however a high
cost associated with this. Given n en-
tities and m intervals we can have up
to n-m subAbstracti0n.s (O(n.m) ob-
jects) while using the other formalism
we need only O(n +m) objects.

A vast majority of the statements

44

A L

,,>

L A N a U A 0 E

we would like to make relate co-
Tmporal objects, and we would like to
exploit this. We do so by having a
predicate holo3During. So instead of
having to create two concepts never
again needed, and asserting livesIn-
(FredFrom 965 To1 9 75, House1 From
1965%1975), we can now just assert
holdsDuring(Fred, lives, HouseI, 2965-
1975). It turns out to be notation&
much simpler to write complex ax-
ioms (where specific instances of
SomethingExisting are replaced by
variables) using the SubAbstractions
formalism, but it is more efficient
to do inference using the hol&During
predicate.

In addition to persistent objects
such as Fred and nonpersistent objects
such as FredGoingToWendysForDinner-
OnJulylth1990, we also recognize
changes in properties of persistent
objects as first-class events. If Fred
was hungry before going to the res-
taurant and not hungry afterward,
we can consider this change as an ob-
ject. Formally this corresponds to re-
ifying a sentence that specifies he was
hungry at some time and not hungry
at some later time into an object, and
making this resultant object an event
(since one can associate temporal
properties with it).

Temporal ProjectIon
When one of the properties of an in-
stance of SomethingExkting changes, it
is not likely to affect all (or even
many) of its other properties [23]. For
example, when Guha gets a haircut,
it does not affect his aa&.ss, langw.zges-
Spokzn, birthDate, etc. This is not
surprising, since a useful set of prop-
erties is useful partly became they are
largely independent.

Associated with each ground for-
mula are intervals of persistence. So
if we knew that a gun was loaded at
time t0 and the persistence interval of
this was 11, then, given any point in
time between t0 and t0 + 11, we can
conclude that the gun was loaded at
that time point. Usually we associate
default periods of persistence with
classes of propositions by using ax-
ioms, which are called Temporal Pro-
jection Axioms. These enable us to
project (infer a good guess for) Fred’s

name and gender years in the future
or past, his hair style months in the
future or past, his mood seconds in
the future or past, etc., based on the
values of those attributes at any given
time.

These temporal projections are
only defaults. If there is evidence
contrary to these projections based
on particular actions that have taken
place, this contrary evidence usually
overrides these projections.

Associating specific finite periods
of persistence with propositions is
much better than using a frame ax-
iom [22] to allow for extended projec-
tion, but introduces the following
problem. If our knowledge that the
gun was loaded at t0 was derived
from a source other than temporal
projection, we are willing to say that
up until time t0 +I1 it is loaded.
However, we do not want to carry on
and say that at time (to + 11) + 11 it is
still loaded. That is, we want to pro-
ject only from a base time point
where we had that “other” source of
information (i.e., a justification other
than temporal projection) about the
fact in which we are. interested.
Notice how we escape from this
classic problem by making use of the
ability to refer to justifications for
facts (which we obtained using reflec-
tion) to state this dependence.

Caurallty
Most treatments of causality (in AI)
proceed by labelling some appropri-
ate subset of occurrences of material
implication as causal. We do this by
using a relation causal whose argu-
ment is the reification of a sentence
involving a material implication. For
convenience, we shall refer to ((p >
q) A causal ‘(p 3 q))) as (caures p q). Let
us take a closer look at the axioms
that specify the meaning of causes.

So suppose that we assert (causesp
q). Then:
a) We have an inference rule that

allows us to conclude that p im-
plies (material implication) q from
the above statement. Hence causes
is a strictly stronger notion than
material implication. That is, if p
causes q, then p > q.

b) If p and q are ground sentences

August 199O/Vo1.33, No.8ICOYYUNI~TIONSOCT”L~Y

R s T A N D I N G

,>>

and true, they must refer to events
(which in Cyc is anything which
can have temporal attributes).
That is, p and q must have at least
one object constant that is an
event. More importantly, every
single event referred to in p must
StartBeforeTheEndingOf every event
in q.

c) Given any atomic ground sen-
tence q that refers to an event,
either q should be “basic” or there
should be some sentence p so that
(causes p q) is true. Intuitively, q
being classified as basic corre-
sponds to the notion of it being
“unexplainable.”

d) Given a statement of the form
(causes p q), either this is basic or
there exists a sequence of sen-
tences of the form (LogCause p
a),(LogCame a b) . . . (causes m q),
i.e., some “mechanism” that im-
plements this causal relation.
Both c) and d) are extremely

strong statements to make, which is
why the notion of “basic sentences”
has been included. It would be nice
to have a stronger definition of
causality that makes sentences such
as (caures False p) false and we are
working on this. No commitment is
made as to which occurrences of im-
plication are to be labelled as causal.
The aim of the above formalism is to
provide a facility to state and experi-
ment with various heuristics for ac-
complishing that purpose.

ACtIOnS Und Concurrent
Procerres
Each action (i.e., instance of
SomethingOccurring) has associated
with it a set of axioms specifying the
preconditions for the action, the
postconditions of the action, and
other axioms specifying the con-
straints on the actors during the
event. Each action also may (and
usually does) have a set of subEvents,
the composition of which is the
overall event. This decomposition of
an event into subEvents (which are
also actions) is identical to the
decomposition of an instance of
SomethingExisting into its parts. In
other words, the breaking down of a
table into physical parts such as its

legs, top, etc. is similar to the break-
ing down of having a meal at a
restaurant into ordering food, eating,
paying the bill, etc.

The structure of a physical object
is defined by the constraints on its
parts, and the structure of an event is
defined by constraints on its
subEvents.

Just as there may be orthogonal
ways of breaking down a physical ob-
ject, there may be orthogonal ways of
breaking down an action into
subEvents.

Given a physical object and its
parts, it is often possible to dis-
tinguish between different classes of
parts. For example, the parts of most
tables can be classified into parts
meant for providing support to the
top, the top itself, parts for decora-
tion, etc. We usually associate a pred-
icate (which is an instance of Part
Slot) with each of these classes and
use these to relate the parts to the
overall object (rather than using a
single predicate such as parts or
physicalParts).

A similar approach is taken to
relating the parts of an action to the
action. When dealing with actions
there are two important categories of
parts-two specSlots of parts, namely
actors and subEvents-and there are
separate categories of slots that are
used to relate the actors to the par-
ticular action (the ActorSlots) and to
relate the subEvents to the particular
event (the SubEventSlots). The actor
slots define the “roles” played by the
different actors in the event (pe$~
victim, instrument.) Given an action
and a participant actor, there are
three subAbstractions of the actor
related to that action, namely, the
subAbstraction of the actor just before,
during and after the action. In prac-
tice we associate the entities of the ac-
tors with the action (through the
ActorSlots) and then use three ternary
predicates (subAbsOfActorBefore, sub-
AbsOfActorDuring, and SubAbsOf-
ActorAfter) to specify the exact
subAbstractions of the actors.

It should be noted that there are
no “primitive” actions into which all
actions are broken down. That is, the
actions are not merely macros intro-

duced for notational convenience,
for use instead of more complex
sequences of primitive actions. This
approach is motivated by two rea-
sons: we wish to be able to reason
at different levels of abstraction and
a priori assigning of a set of actions
as primitives goes against this; often
one might be able to provide only
descriptions and not definitions of the
more complex actions in terms of
their sub-Events. In such cases, the
more complex actions are not merely
for notational convenience but are
an epistemological necessity

One of the problems that arises
with predicting the effects of actions
on the participating actors is the
possibility of concurrent events
[lo, 23, 241. A solution for this is
obtained by collecting all overlap-
ping events Ei (cutting up events if
required) that affect a particular
property into a single event E and
computing the net effect of E on the
property from the subEvents (sup-
pressing the direct “updating” of the
property by the subEvents). The basic
idea is to agglomerate the various
concurrent processes that affect some
property into a single process which
has no concurrent process that affects
that property, The effects of this pro-
cess are computed from those of the
subEvents and the net change in the
value of that property is that specified
by this agglomeration process. It
should be noted that the resulting
agglomeration is necessarily a non-
monotonic process since a closed-
world assumption has to be made
while collecting the set of processes
that affect our property.

When dealing with subAbstractions
of reasonable durations, it becomes
very difficult to specify values for
most temporally instrinsic numeric
attributes because of the (often slight)
changes in the value of the attribute
over the period of the subAbstraction.
lb overcome this difficulty, we intro-
duced a new class of terms corre-
sponding to intervals in the quantity
space (of the attribute). These inter-
vals may be named (e.g., “around
180 pounds”) and explicitly repre-
sented as Cyc units e.g., #%Around-
1801bs). The intervals may be open

COYYUNICITIONSOFTNLAC,CYIAugust 19901Vo1.33, No.8 45

N A T U R

(unbounded) in one direction. A
calculus for performing simple
mathematical operations with these
intervals (provided by CycL) makes
it relatively easy to use both qualita-
tive and quantitative specifications
for attributes, switch between them,
etc. [33]. Another use for these
interval-based quantity terms is to
specify defaults for numeric attri-
butes (e.g., height, weight, etc.) for
categories which exhibit some but
not too much variation in the value
of these attributes (e.g., Fred’s weight
during September of 11990).

Interval-based quantity slots are
also useful for dealing with quantities
for which no acceptable measurable
scale, or measuring instruments, have
yet (or perhaps ever will) be defined:
happiness, alertness, level of frustra-
tion, attractiveness, etc. Despite the
lack of absolute units of measure,
reified “mileposts” for these attri-
butes’ values can be defined, and
partial orders and even crude calculi
developed.

Composite Objects and
Agents
In addition to purely physical objects
(such as tables and rocks) there exist
objects like books and people with
whom we would like to associate an
intangible aspect such as a message
or a mind (which also would have a
temporal aspect).

Given such a composite tangi-
ble/intangible object, we can separate
out the purely tangible and the
purely intangible parts, and repre-
sent both of them separately and
explicitly as well as representing the
composite. The purely intangible
parts are instances ofiIntangible0bject;
the purely physical parts are in-
stances of TangibleObject; and the
composition is an instance of Com-
positeTangiblelntangibl,eObject.

The most important subset of
CompositeXingibleObject is Agent-the
set of intelligent agents-and this
subsection considers some aspects of
representing agents. Hut first, con-
sider why we want this distinction
between the physical and nonphysi-
cal aspects of agents. Consider repre-
senting the Frankenstein monster at

A L

,j>

L A N G U A G E

some point in time. We would like to
be able to say that his body was n
years old, his mind was m years old
and the composition was k years old.
Rather than introduce new predi-
cates such as ageOfMyMind ageOf
MyBody, amountOfrimeSinceMyMind
AndBody WereJoined, . . . , we would
much rather use the existing pred-
icate age; besides being simpler and
cleaner, this also lets us fully util-
ize the already-available axioms
involving age.

To do this, we need to be able to
explicitly talk about the physical and
mental extents of a composite. Hav-
ing done this (via the predicates
PhysicalExtent and mentalExtent) we
associate weight not with the mental
part of the Frankenstein monster nor
with the composite part, but only
with the physical part; similarly, ZQ
is associated only with the mental
part; and age makes sense for all three
aspects-and has a different value for
all three.

This scheme gives the advantage
of separating the physical aspects of
composites from their mental aspects
and allows us to talk about aspects
that might apply to both with dif-
ferent values (age, interestingness, liked-
By, . . .) However, in most cases, there
is no predicate that can be used for
both the physical and mental extents
that has different values and we would
like to make use of this regularity.

In other words, we do not mind
having three separate concepts for
Frankstein’s monster-he was rather
unusual, after all-but we should not
need to have three separate concepts
for every composite if there is nothing
“conflicting” among them. We ac-
complished this by adding the cate-
gories PartiallyTangible (a spec (subset)
of SomethingExisting, and a genl (super-
set) of TangibleObject) and Partially-
Intangible (a spec of SomethingExisting
and a gem of IntangibleObject). So Com-
positeTangibleIntangibleObject is now a
spec of both of these new Partially.
collections. Having done this, we can
use a single unit, say Fred, to state
both mental and physical properties
of Fred. IQ, now makes sense for
Partial~IntangibleObjects, weight makes
sense for PartiallyTangible0bject.s; and

Fred is an instance of both those col-
lections and hence can legally have
both an ZQand a weight. If we happen
to be representing an exception, like
the Frankenstein monster, in which
some property has a different value
for the physical- or mental- extent,
then we can create the appropriate
instances of TangibleObject and Intan-
gibleobject, just as we did earlier.

As a default, we inherit the prop-
erties that talk about physical/men-
tal properties to the physical/mental
extents. This gives both the ex-
pressiveness of the separation of
physical and mental parts and the
efficiency of not doing this when it is
not required.

Since a full description of the
various issues related to agenthood
(that have been/are being) considered
in Cyc would require more space
than is available here we will mention
only a few of them. One of our recent
technical reports [15] deals exclu-
sively with this topic.

Agents can be collective (such as
organizations and institutions) or in-
dividual (such as people). Each Agent
can have one or more propositional at-
titudes toward any given proposition.
The fundamental propositional atti-
tudes currently used are believes and
desires. From these two, using time
and other concepts, a variety of other
modals are described and used (e.g.,
dreads, purposes, expects).

A primitive notion of awareness is
incorporated as follows. Each agent
has a set of terms and predicates of
which he is aware. An agent may
have an attitude only toward sen-
tences that involve only terms of
which be is aware. This restriction is
introduced to keep us from doing
things like talking about Aristotle’s
beliefs about the Space Shuttle. We
now consider some issues related to
these propositional attitudes.

A
ttributing our own
beliefs to other
agents (with whom
we might never have

directly communicated) is something
done quite frequently. Sometimes
this is good-(e.g., when the traffic
light in front of you turns green, you

46

a U N 0 E

assume that the drivers on the cross
street share your beliefs about what
that means!)-and sometimes it is
bad (e.g., cross-cultural “mirror-
imaging” has led to innumerable
political disasters.) There is a class of
axioms called the belief projection
axioms (analogous to temporal pro-
jection axioms) that enable Cyc to
efficiently do this sort of mirror-
imaging, yet explicitly record sepa-
rate beliefs when they are known.
The belief projection rules them-
selves are moderately interesting,
since they describe what it means to
be a public figure, what it means to
be commonsense knowledge, etc.
CycL provides special support to
handle these efficiently at the
Heuristic Level.

Agents can be in control of (the
truth of) propositions. That means
that the controlling agent can per-
form the requisite actions that deter-
mine the proposition’s truth-value.
For example, a robber holding a gun
is in control of whether the gun fires,
and at whom. The truth-value chosen
by the controlling agent is assumed
to be based on his/her/its desires.

This notion of agents controlling
propositions is sometimes an expedi-
ent way of computing the truth-value
of certain propositions. If there is an
agent in control of a proposition P,
and he or she desires P, then we can
assume that P is true (modulo limited
resources, conflicting goals, etc.).

The concept of control provides us
an abstraction layer that allows us to
skip the details of the agent planning
to make P true, executing that plan,
monitoring it, repairing it, etc. Just
knowing that you control the time
you go home from work, and that
you want to sleep at home tonight,
gives me enough information that I
will call you first at home at midnight
if I have to reach you then; that is, I
do not have to worry about the plan
you made to get home, the details of
the execution, etc., in order to believe
that (by midnight, at least) you would
have arrived at home.

Agents may participate in Events
(actually in instances of SomethingOc-
curring) in one of two modes: volun-
tarily or involuntarily. If an agent

R 8 T A N

participates in an event voluntarily,
he usually has a purpose (usually a
propositional that is also one of his
desires) that he believes will be true
as a result of that event. The concept
of purpose allows us to (write axioms
which will) decide when an agent will
participate in (or pull out of) an
event.

Agents can enter into Agreements
with other agents; some of the parties
to an agreement may be individual
agents, and some may be collective.
An agreement defines a set of prop-
ositions that all the participants share
(though they may have quite differ-
ent propositional attitudes toward the
various clauses of the agreement!)

In addition, the agreement might
also assign certain responsibilities
(logically, these are also propositions)
to specific participants. Agreements
usually also specify certain punitive
andfor remedial actions to be taken
in the case of these responsibilities
not being fulfilled. If the agent per-
forming these “punitive” actions is a
LegalSystem (such as a Government or
GovernmentalAgency) then the agree-
ment is a LegalAgremnt. .

We distinguish between agree-
ments in which the event that “en-
rolled” a particular agent was one in
which he or she voluntarily partici-
pated and ones in which he did not
participate voluntarily. For agree-
ments an agent involuntarily partic-
ipates in, the constraint that he or she
shares the common beliefs of the
agreement is slightly relaxed.

As a default, collective agents have
one or more special types of agree-
ments associated with them, such as
their charter, articles of incorpora-
tion, etc. Often an organization or in-
stitution will itself have (or at least act
as if it has) certain desires, dreads,
purposes for its actions, authority,
etc., that are not obtainable by a
simple combination of those of the
participants.

ConelusIon
This article began by explaining the
need for a large, general KB: to over-
come the brittleness (in the face of
unanticipated situations) that limits
software today. The need for a Cyc-

0 I N 0

,>>

like KB is critical not only in expert
system-like applications, but also for
doing semantic processing for natu-
ral language understanding, and for
enabling realistic machine learning
by far-flung analogizing.

We then focused on criteria for an
adequate representation language,
which drove us to the bifurcated ar-
chitecture of having both an expres-
sive epistemological level (EL) and
an eflicient heuristic level (HL). One
of the Cyc project’s most interesting
accomplishments has been the con-
struction of the T&Ask translator,
which can convert back and forth
between general EL (first-order
predicate calculus-like) expressions
and special-purpose HL template
instances.

Finally, we discussed some of the
unexpected aspects of the Cyc KB’s
organization and contents, such as
the relationships between Individual-
Object, Substance, Process, and Event.
And we gave the flavor of some of our
recent research by sketching our still
very incomplete treatment of Agents
and Agreements.

Perhaps the most important theme
from all these aspects of the project is
that of eschewing the “single general
solution” dream, and rather assem-
bling a set of partial solutions that
work most of the time, and work very
efficiently in the most common situa-
tions. We have seen that tenet apply
to representation language design,
knowledge entry methodology, con-
trol of search during inferencing,
truth maintenance, and throughout
the contents of the KB. The emerg-
ent global behavior of the system
should hopefully be fairly “use-
neutral.”

The reader may have noticed sev-
eral aspects of the Cyc effort which
we have not touched on in this arti-
cle. While interesting in their own
right, these are not our main topic for
research, and in each case we have
done what we felt was necessary to
maximize the rate of construction of
Cyc. Here is a list of a few such inten-
tional omissions from the article:

l The Knowledge Server: This sub-
system accepts everyone’s KB op-

CCYY"lllWTlCWICFT"~ACCY/August 1990/Vo1.33,No.8 47

N A T U R

erations, serializes t.hem, and, if
constraint violations appear, adju-
dicates the resolution of the con-
flict. In cases of no conflict, it then
broadcasts the operations to every-
one else. The connections today are
generally thin-wire, though we ex-
pect this to change in the coming
year.

l The User Interface: This collection
of tools includes various textual
and graphical tools for browsing,
querying, and editing the KB.
Some of the graphical tools are
semantic-net-based; one is an
Escher-esque recursive birdseye
view of a museum floor plan. Some
of the editing tools are ideal for
making “point mutations” and
corrections, some #are oriented to-
ward sketching some brand new
area and gradually making the
sketch more precise.

l The Machine-Lea.rning Module:
This subsystem roams over the
KB, typically at night, looking for
unexpected symmetries and asym-
metries. These in turn often turn
out to be bugs, usually crimes of
omission of one sort or another. In
very rare cases today, but, more
frequently we hope: in future years,
these will turn out to be genuine lit-
tle discoveries of useful but hitherto
unentered knowledge.

l Digitized Images: Yt:s, often it is
much easier to just grab a picture
of an object and ~oz’fzt to the part
you mean, rather than trying to
figure out what its name is. Cyc
contains such images (from the
Viwal Dictionary [Ei]), but experi-
enced knowledge enterers rarely
use them.

l Other Nonpropositional Knowl-
edge: Some Cyc researchers are
building neural nets that we can
use at the very earliest (pre-
heuristic) and very latest (reduction
to instinct) stages of understanding
of some task. One example of this
development, training a net on ex-
amples of good and bad analogies,
and then letting it make “hunches”
about potentially good new anal-
ogies, hunches wh.ich the rest of
Cyc can investigate and flesh out
symbolically.

A L

,>>

L A N G U A G E

l The Copy and Edit Mechanism:
Most knowledge entry in Cyc in-
volves finding similar knowledge
and copying it, and modifying the
copy. Increasingly over the years,
Cyc has helped in this process, and
as a result knowledge entry can be
done more rapidly than we had
originally estimated. This is good
since the number of assertions be-
fore reaching the NLU crossover
point also appears to be larger than
our 1984 estimate. These two dis-
crepancies are not unrelated: many
of the extra assertions deal with
overcoming ambiguities, with be-
ing precise about a cluster of closely
related concepts, and that means
that Cyc can help the user copy a
whole cluster of related “thin’ con-
cepts in approximately the time we
expected it to take to copy one of
our original “fat” concepts.

How are we to judge where we are
going? How do we make sure that we
do not go through these 10 years of
labor, only to learn in 1994 that the
assumptions upon which we based
our efforts were fundamentally mis-
taken all along? We do this by getting
others to actually use our system. In
the past 18 months, as the Cyc Rep-
resentation Language and Ontology
stabilized, we began to encourage
collaborations both with academic
researchers and with industrial re-
searchers and developers; we held
workshops and panel sessions; and
we have begun once again (after a
purposeful several-year hiatus to
focus solely on research) to write
books and technical reports and jour-
nal articles, such as this one, to in-
form and interest the greater artificial
intelligence and computer science
communities.

C
yc is still too small to
have more than an
anecdotal chance of
improving the per-

formance of application programs
using it, but the early results are
promising. At DEC, for example,
John McDermott, David Marques,
Renata Bushko, and others have built
a Cyc-based computer-sizing appli-

cation. Serving as a pre-processing
step for XCON [30], its job is to ask
questions about a potential DEC
customer and come up with a very
rough computer sizing. The trouble
with having standard expert systems
do this task is they tend to ask too
many questions, questions which can
often be answered by common sense,
questions for which Cyc is able to
guess answers. (For example, given
that toy manufacturers have
stringent government safety regula-
tions, and adult clothing manufac-
turers do not, which is more likely to
be the proper “match” or “prece-
dent” for this new potential customer
who is a manufacturer of children’s
clothing? Or: given that the basic
business unit in a hotel is “the room,”
and at a car rental agency is “the
car:’ use relatively deep understand-
ing of what goes on at each kind of
place to decide that for a new poten-
tial customer which is a hospital the
right business unit is the bed, not the
room.)

Numerous other Cyc-based ap-
plications are under way at NCR,
Bellcore, US West, and Apple.
Academic collaborations include
coupling with large engineering
knowledge bases (with Ed Feigen-
baum and Tom Gruber at Stanford),
large data bases (with Stuart Russell
and Mike Stonebraker at Berkeley),
standardizing knowledge inter-
change formats (with Mike Genese-
reth at Stanford), axiomatizing
human emotions (with John McCar-
thy at Stanford), machine learning
by analogy (with Devika Subrama-
nian at Cornell), and qualitative
physics reasoning in the service of
understanding children’s stories
(with Ken Forbus at Illinois). And of
course one vital collaboration is with
Elaine Rich and Jim Barnett at
MCC, namely the natural language
understanding project which is de-
scribed in [2].

Acknowledgments
We thank Mark Derthick, John
Huffman, Wei-Min Shen, Nick
Siegel, David Wallace, and the other
members of the Cyc group, past and
present, for their help in building and

48

,>>

U N 0 E R a T A N P I N a

,>>

testing the system. We also thank Ed
Feigenbaum, Pat Hayes, John
McCarthy, John McDermott, and
Marvin Minsky, who have in almost
orthogonal ways helped us to think
more clearly about the material pre-
sented herein. We thank Bobby
Inman and Woody Bledsoe for set-
ting up MCC, the only place in the
US where a high-risk high-labor
long-term project like Cyc could be
done; conversely, we appreciate our
shareholders’ sticking with us in the
five first, riskiest years. Finally, we
wish to acknowledge our significant
debt to the AI community in general;
Cyc is built upon a rich foundation of
three decades of CS and AI research
results, only a small fraction of which
we have explicitly cited in the
References. q

References
1. Allen, J. Maintaining knowledge about tem-

poral intervals. In Readings In KnowMgcReptzxn-
t&ion, H. Levesque and R. Brachman, Eds.,
Morgan Kaufmann, Los Altos, CA, 1986.

2. Barnett, J,, Knight, K., Mani, I. and Rich, E.
Knowledge and natural language processing.
Tech. Rep. ACTNL-104-90, MCC, March

1990 (Also appears in this issue of CACM).
3. Bobrow, D.G. and Winograd, T. An overview

of krl, a knowledge representation language. In
Readings In Knowledge Repnsmtation, H. Lwesque
and R. Brachman, Eds., Morgan Kaufmann,
Los Altos, CA, 1986.

4. Bledsoe, W.W. Non-resolution theorem prov-
ing. In Readings In Artificial Intelligcncc, B.L.
Webber and NJ. Nilsson, Eds., Morgan Kauf-
mann, Los Altos, CA, 1981.

5. Brachman, RJ., Fikes, R.E. and Levesque,
HJ. Krypton: A functional approach to
knowledge representation. In Readings In
Knowlcdgc Rxpresent&m, H. Levesque and R.
Brachman, Eds., Morgan Kaufmann, Los
Altos, CA, 1986.

6. Corbel& J.-C. Tlu VirualDic~ionaly. Facts on File,
New York, 1987.

7. Davis, R. and Buchanan, BG. Meta-level
knowledge: Overview and applications. In
Rmdings In Knmh&e Repmmtation, H. Levcsque
and R. Brachman, Eds., Morgan Kaufmann,
Los Altos, CA, 1986.

8. Derthick, M. An epistemological level interface
for cyc. Tech. Rep. ACT-CYC-084-90, MCC,
February 1990.

9. Doyle, J. A truth maintenance system. In
Readings In Nonmonotonic Reasoning, M.
Ginsberg, Ed., Morgan Kaufmann, Los Altos,

CA, 1987.
10. Forbus, K. Qualitative physics: Past, present

and future. In ExploringArtificial In&lligcncc, H.
Shrobe, Ed., Morgan Kaufmann, Los Altos,
CA 1988.

11. Ginsberg, M. Multivalued logic. In Readings In
Nonmonotonic Rxawning, M. Ginsberg, Ed.,
Morgan Kaufmann, Los Altos, CA, 1987.

12. Guha, R.V. The representation of defaults in
cyc. Tech. Rep. ACT-CYC-083-90, MCC, Feb-
ruary 1990.

13. Guha, R.V. and Lenat, D.B. Cycl: The cyc

representation language, part 2. Tech. Rep.

COYYUNlCATlONSOFTHS AOWAugust 199O/Vo1.33, No.8

ACT-CYC-452-89, MCC, December 1989.

14. Guha, R.V. and Lenat, D.B. Cycl: The cyc
representation language, part 3. Tech. Rep.
ACT-CYC-454-89, MCC, December 1989.

15. Guha, R.V. and Lenat, D.B. The world accord-
ing to cyc, part 2: Agents and institutions. Tech.
Rep. AC’IXYC-453-89, MCC, December 1989.

16. Guha, R.V. and Lena, D.B. Cycl: The cyc
representation language, part 4. Tech. Rep.,
MCC, April 1990.

17. Hayes, P.J., Naive physics 1: Ontology for liq-
uids. In Formal Thewia of thL Common Smc wOr4
J.R. Hobbs and RC. Moore, Eds., Ablex, Nor-
wood, NJ., 1985.

18. Hayes, PJ. Some problems and non-problems
in representation theory. In Readings In
Knowledge Representation, H. Levcsquc and R.
Brachman, Eds., Morgan Kaufmann, Los
Altos, CA, 1986.

19. Lenat, D.B. and Guha, R.V. Building Large
Knowledge Bases. Addison-Wesley, Reading,
Mass., 1990.

20. McCarthy, J. First order theories of individual
concepts and propositions. In Readings In Knowl-
edge Repwscnkation, H. Levesque and R.
Brachman, Eds., Morgan Kaufmann, Los
Altos, CA, 1986.

21. McCarthy, J. Programs with common scnsc. In
Readings In Knomlzdge Reprexntalion, H. Levesque
and R. Brachman, Eds., Morgan Kaufmann,
Los Altos, CA, 1986.

22. McCarthy, J. Applications of circumscription
to formalizing common scnsc knowledge. In
Readings In Nonmonolonic Reasoning, M.
Ginsberg, Ed., Morgan Kaufrnann, Los Altos,
CA, 1987.

23. McCarthy, J. and Hayes, P.J. Some
philosophical problems from the standpoint of
artificial intelligence. In Readings In Non-
monotonic Reasoning, M. Ginsberg, Ed., Morgan
Kaufmann, Los Altos, CA, 1987,

24. McDermott, D. A temporal logic for reasoning
about proccsscs and plans. Cognitive Science, 6
(1982), 101-155.

25. McDermott, D. and Doyle, J. Nonmonotonic
logic. In h!eadings In Nonmonotonic Reasoning, M.
Ginsberg, Ed., Morgan Kaufmann, Los Altos,
CA, 1987.

26. Moore, R.C. The role of logic in knowledge
representation and cmnmonsense reasoning. In
Readings In Knowledge Reprermtution, H. Levcsquc
and R. Brachman, Eds., Morgan Kaufmann,
Los Altos, CA, 1986.

27. Pearl, J. and Korf, R. Search techniques. Annual
Review of Compur. Sci., (1987).

28. Poundstone, W. Lnbyrintk of Rearon Doubleday,
1988.

29. Quint, W.V. Natural kinds. In Ontological
R&&i& and other cslays. Columbia University
Press, New York, 1969.

30. Soloway, E., Bachant, J. and Jensen, K. Assess-
ing the maintainability of xcon-in-rime: Cop-
ing with the problem of a very large rule-base.
In Pmceedings of AAAI-87 (1987 pp. 824-829.

31. Warren, D.H.D. Anabstract prolog instruction
set. Tech. Rep. 309, SRI, Artificial Intclligcncc
Center, Computer Science and Technology
Center, October 1983.

32. Wcyhrauch, R.W. Prolegmena to a theory of
mechanized formal reasoning. In Readings In
Knowledge Reprexmfation, H. Lcvcsque and R.
Brachman, Eds., Morgan Kaufmann, Los
Altos, CA, 1986.

33. Williams, B. Minima: A symbolic approach to
qualitative algebraic reasoning. In Pmccedingsof
AAAI-68, 1988.

CR Categories and Subject Descriptors: C.5
[Computer Systems Organization]: Computer

System Implementation; D.3.3 [Programming
Languages]: Language Constructs-Contml shut-
tures, Darn qpes andS&ucturcs; F.4.1 [Mathematical
Logic and Fmmal Languages]: MathcmaticaJ Logic;
H.2.8 [Information Systems]: Database Man-
agement-Databnrc applications; 1.2.1 [Artificial
Intelligence]: Applications and Expert Systems-
Natural language in&fazes; 1.2.3 [Artificial Intclli-
gcnce]: Deduction and Theorem Proving-
Deduclion (e.g., nnlural, rule-bared); 1.2.4 [Artificial
Intelligence]: Knowlcdgc Representations and
Formalisms-R&ion @zms, npresentation languogcs
semantic ndmorks

General Terms: Design, Human Factors

Additional Key Words and Phrases: CYC,
knowledge bases

About the Authors:

DOUGLAS B. LENAT is Principal Scientist at
MCC and Consulting Professor of Computer
Science at Stanford University. His pioneering work
in Machine Learning led him to chafe at the “brit-
tleness bottleneck,” and in 1984 he established the

Cyc project. He has authored more than 50 pub-
lished papers and has written and edited several
books, including Knowledge BawdSysti in Arrificial
Intclligmcc and Building Expert Systzms.

R.V. GUHA is a mechanical engineer and computer
scientist who is pursuing a Ph.D. in Computer
Science at Stanford University. He has authored

several papers and technical reports, and (with
coauthor Doug Lenat) a recent book: BuikSng Large
Knowledge Bawd$Mmr: Representation and Inference in
th Cyc Aojcct. Guha is interested in investigating the
role that contexts play in everyday reasoning.

KAREN PITTMAN is a botanist who has spent
the last three years adding knowledge to Cyc. Ini-
tially, she was involved in the construction ofthe UT
Computer Science Department’s Botany Knowl-
edge Base. She has authored papers in the American
Journal ofBotany and in the Biotechnology and Ecology
of Ibllm.

DEXTER PRATT is a chemist and reformed en-
trcpreneur (prior to joining MCC, he was president
of Red Shark Software). Before that, he was along-
time employee of Lisp Machine, Inc. (LMI), per-
forming a variety of tasks including processor
design, software development, and technical

management.

MARY SHEPHERD is a sociologist and engineer,

and has worked on the Cyc project since its inccp-
don. She has authored articles on interface tools for
browsing and editing large KBs. Prior to her
involvement in Cyc, she worked at Thinking
Machines, Inc. (TMI) and was assistant to the Vice-
President for Information Technology at Harvard.

Authors’ Present Address: All authors are mem-
bers ofthe Cyc Project technical staff at Microelec-
tronics and Computer Technology Corporation
(MCC), 3500 W. B&ones Center Dr., Austin,
Texas 78759. Their email addresses arc ai. <last-
name> @mcc.com (e.g., ai.Lenat@mcc.com).

49

