Conceptual Modeling CSC2507

i
¥ VI. The Unified Modeling Language

Use Case Diagrams
Class Diagrams
Attributes, Operations and Constraints
Generalization and Aggregation
Sequence and Collaboration Djagrams

[1 2004 John Mylopoulos UML -- 1
Conceptual Modeling CSC2507
\ 2 UML Diagrams

m UML was conceived as a language for modeling
software. Since this includes requirements, UML
supports world modeling (...at least to some extend).

m UML offers a variety of diagrammatic notations for
modeling static and dynamic aspects of an

application.
m The list of notations includes use case diagrams,
class diagrams, interaction diagrams -- describe

sequences of events, package diagrams, activity
diagrams, state diagrams, ...more...

[1 2004 John Mylopoulos UML -- 2

Conceptual Modeling CSC2507

L

V. Use Case Diagrams

m A use case [Jacobson92] represents “typical use
scenaria” for an object being modeled.

m Modeling objects in terms of use cases is consistent with
Cognitive Science theories which claim that every object
has obvious suggestive uses (or affordances) because
of its shape or other properties. For example,

v’ Glass is for looking through (...or breaking)

v’ Cardboard is for writing on...

v'Radio buttons are for pushing or turning...

v'Icons are for clicking...

v'Door handles are for pulling, bars are for pushing...

m Use cases offer a notation for building a coarse-grain,
first sketch model of an object, or a process.

[1 2004 John Mylopoulos UML -- 3
Conceptual Modeling CSC2507

) Use Cases for a
Meeting Scheduling System

Initiator Partici pant

i Val i dat eUser i
@ —

Use case

Provi de

Cenerat e Constraints

Schedul e

Schedul eM g Edi t
Constraints

[1 2004 John Mylopoulos UML -- 4

Conceptual Modeling CSC2507

o
\ 2 Use Cases for a Car
Driver GasAt t endant Mechani ¢
Fi xCar
Drive Fill
<<i nc\udes>>
<<extlends>>
Tur nOnEngi ne CheckQ |
Fi xCar Ont heRoad
[1 2004 John Mylopoulos UML -- 5
Conceptual Modeling CSC2507
o
V. Use Cases

m Use cases may represent user goals, or user
interactions; for example, Schedul eM g can be thought
as a goal (there are many ways to schedule a meeting),
but Val i dat eUser is probably not.

m Use cases make sense for usable things, such as
designed artifacts, including processes; they don’'t make
sense for unusable things (e.g., the sky).

m (Consequently) Use cases constitute a special-purpose
modeling construct for software or other artifacts.

m [The notion of scenario, as a typical course of actions or
events, is probably more appropriate for a general
purpose modeling language.]

[1 2004 John Mylopoulos UML -- 6

Conceptual Modeling CSC2507

L

v Features of Use Cases

m An actor is a role that a user plays with respect to the
object being described; don’t think of actors as either
users (e.g., Maria), or positions (e.g., department chair).

m (When do | stop??...) For any one software
development project, you probably don’t want more than
100 use cases.

[1 2004 John Mylopoulos UML -- 7
Conceptual Modeling CSC2507

¥ <<extends>>vs <<includes>>

B <<ext ends>> implies that one use case adds
behaviour to a base case; used to model a part of
a use case that the user may see as optional
system behavior; also models a separate sub-case
which is executed conditionally.

B <<i ncl udes>>: adds behavior to a base case
(like a procedure call); used to avoid describing the
same flow of events several times, by putting the
common behavior in a use case of its own.

<<ext ends>>

rint Canpaig

[1 2004 John Mylopoulos UML -- 8

Conceptual Modeling CSC2507

&
\ 4 Class Diagrams

m Class diagrams describe the kinds of objects found in
the application, and their inter-relationships.

m There are two types of inter-relationships: associations
and subtypes [Fowler97]

m Class diagrams are basically an adaptation of EER
diagrams, with some minor differences.

m UML class diagrams may model some part of the real
world (e.g., the world of meetings and schedulings), a
design specification (e.qg., for a system that does meeting
scheduling), or an implementation.

[1 2004 John Mylopoulos UML -- 9

Conceptual Modeling CSC2507
&

V. Comparison of EER

and Class Diagrams

m EER diagrams allow N-ary relationships, N>2; Class
diagrams only allow binary relationships.

m EER diagrams allow multi-valued attributes, class
diagrams do not.

m EER diagrams allow the specification of identifiers (an
often-encountered type of constraint), while class
diagrams do not.

m Class diagrams allow dynamic classification, but EER
diagrams do not.

[1 2004 John Mylopoulos UML -- 10

Conceptual Modeling

L

&

[1 2004 John Mylopoulos UML --

Class Diagram
for Meeting Scheduling

multiplicity role
attributes Meeting |atténds * Per son
At ne § nane
pl ace 0.7* “—2—F|emi
generalization —

—association

[spaceRen] B e)
Locat i onReq

composition

aggregation

CSsC2507

11

Conceptual Modeling

®
¥

Notes on Associations

B Associations represent semantic relationships. Each

[1 2004 John Mylopoulos UML --

association can have up to two roles for participating
objects. Each role can also have an associated
cardinality range (“multiplicity”).

Associations represented with directed arrows are
navigatable only in one direction; for example, if the
Meet i ng- Per son association was represented with an
arrow pointing towards Per son, this would indicate that
from a Meet i ng we can navigate to all meeting persons,
but given a person, we can't find all the meetings she
has participated in.

CSsC2507

12

Conceptual Modeling CSC2507

@
v Notes on Attributes

m Attributes are always single-valued.

m Attributes can have an associated type (a class), a
default value, and a visibility value of + (public), #
(protected) and - (private). They can also be derived
(/attr) ornot.

m There is no semantic difference in UML between
attributes and directional associations.
m Other models treat attributes as associations with an

existence constraint which says: if an object is deleted,
so are its attributes and their values.

&
\ 2 Notes on Operations

m These are “the processes a class knows how to carry
out” [Fowler97, p63]. They are specified in the third layer
of a class box.

m Specification includes a visibility value, name, parameter
list and returned value type.

m For conceptual modeling, Fowler argues -- rather
vaguely -- that operations should be used to define the
responsibilities of a class.

m It makes better sense to distinguish a subclass of objects
-- agents/positions/roles -- which can participate in
activities, and describe for each the activities they know
how to carry out.

[1 2004 John Mylopoulos UML -- 14

Conceptual Modeling CSC2507

L

v Operations and Constraints

Meet i ng
+ time: Time = 9am
+ place: Place = LP266

+ schedul e(ConstrLst): Meeting
+ cancel ()

pl ace=SF2201 then ti me¢12Bm
Meeting.initiator is Disabled
n

if
if
then place is Accessibl eRm

B How do you say that “If one of the participants is
disabled, then the place must be disabled-accessible??
B We need some sort of a First Order language for
constraints:
if (exists p:Meeting.participant) p is Disabled

then place is Accessibl eRm

[1 2004 John Mylopoulos UML -- 15
Conceptual Modeling CSC2507

W Object Constraint Language (OCL)

B Some constraints can be adequately expressed in the
graphical language (ex. cardinality of an association).

m Some can not. For example, constraints within
operation specifications (pre- and post-conditions)

m OCL expressions are constructed from a collection of
pre-defined elements and types.

m The language has a formal syntax and semantics and
supplements the expressiveness of UML.

[Warmer99] Warmer, J. Kleppe, A. The Object
Constraint Language: Precise Modeling with UML
Addison-Wesley 1999.

[1 2004 John Mylopoulos UML -- 16

Conceptual Modeling

&
V. OCL Examples

OCL expression Interpretation
Parson In the context of a specific person,
self age the value of the property 'age’ of that
person—i.e. a person’s age.
Pargon The property ‘income’ of the person
self . income == 5,000 under consideration must be greater
than or equal to 5 000.
Person If the set ‘'wife’ associated with a
gelf wife-=notEmpty implies person is not empty, then the value of
gelf wife.gex = female the property "sex’ of the wife must be

female. The boldface denoctes an
OCL keyword, but has no semantic

import in itself.
Company The =ize of the set of the property
self emploves-sgizae == 50 ‘employes” of a company must be

less than or equal to 50. That is, a
company cannot have more than 50

CSsC2507

employees.
Company This specifies the set of employees of
salf employes-sselact [age = 50) | a company whose age is greater than
S50.
[1 2004 John Mylopoulos UML -- 17
Conceptual Modeling CSC2507

L

. Multiple and Dynamic Classification

m Classification refers to the relationship between an

object and the classes it is an instance of.

m Traditional object models (e.g., Smalltalk, C++,...)

assume that classification is single and static.

m Multiple classification allows an object to be an instance
of several classes that are not is-a-related to each other;
for example, Maria may be an instance of

G adSt udent and Enpl oyee at the same time.

m If you allow multiple classification, you want to be able to
specify which combinations of instantiations are allowed.

This is done through discriminators.

m Dynamic classifications allows an object to change its

type during its lifetime.

[1 2004 John Mylopoulos

UML -- 18

Conceptual Modeling CSC2507

W Multiple Classification
TA
Mal e
Person Pr of essor
Sex ﬂ]/ e
{ mandat or y} $<<dynam' s
Eenal e st udent
St udent
St af f

B Mandat ory means that every instance of Person
must be an instance of Mal e or Fenal e.

B <<Dynam c>> means that an object can cease to be a
TA and may become a Pr of essor.

[1 2004 John Mylopoulos UML -- 19

Conceptual Modeling CSC2507
o

\ 2 Generalization

m Multiple generalization involves a class which has two or
more superclasses that are not is-a related. For
example, TA is a specialization of Student and
Employee.

m In UML multiple generalization is allowed. Inheritance
conflicts are resolved by predefined order of
superclasses; renaming of attributes or operations is
also allowed.

m For each discriminator, the associated collection of
classes can be declared to be conpl et e/ i nconpl et e,
also di sj oi nt/ over-| appi ng

[1 2004 John Mylopoulos UML -- 20

Conceptual Modeling CSC2507

®
L2 Stereotypes

m Stereotypes offer “a high level classification of an
object...tell you the kind of object it is” [Fowler97].

m Stereotypes define the types of constructs that can be
used in a UML diagram. You can think of them as
offering a metamodel of UML diagrams, or as giving the
graphical syntax of UML diagrams.

m In UML, stereotypes are shown delimited by <<..>>.

m Note that the stereotypes shown in class diagrams (such
as <<incl udes>>, <<extends>>) are metaclasses
which define the UML metamodel.

m One can extend UML by creating new stereotypes as
specializations of built-in ones.

[1 2004 John Mylopoulos UML -- 21
Conceptual Modeling CSC2507

v Stereotypes as Metaclasses

<<net acl ass>>
Act or

user

A
<<net acl ass>> <<net acl ass>>
UM Class { Use Case

<<net acl ass>>
Boundary

uses extends

<<met acl ass>> <<met acl ass>>
d ass ‘] Cont r ol

<<net acl ass>>
— Entity

[1 2004 John Mylopoulos UML -- 22

Conceptual Modeling CSC2507

®

Aggregation
composition 1" Engi ne *; =~
7 1.1 0..1
Car CI <>‘ Train
> 0..1 0..1
. 1.1
aggregation =g es? Person | 1..1
~ drives
[1 2004 John Mylopoulos UML -- 23
Conceptual Modeling CSC2507
o
¥ Notes on Aggregation

m Aggregation represents the par t O relationship.

m Composition is a strong form of aggregation, where a
part can only participate in one composition relationship.

m Aggregation has been formalized in [Motschnig93].
Every aggregation relationship can be classified along
two dimensions:

* Dependent /| ndependent -- if an aggregation
relation is dependent, then when you remove the
whole you also remove the part;

» Shar ed/ Excl usi ve -- if an aggregation relationship
is exclusive, a part can’t be part of several wholes.

m So, composition amounts to a dependent , excl usi ve
aggregation relationship.

[1 2004 John Mylopoulos UML -- 24

Conceptual Modeling CSC2507

®
V. Objects vs Values

m Values are mathematical objects, such as numbers,
tuples, lists and sets. They come with their own equality
predicate so that they can be compared. Values are
immutable.

m (Reference) objects, on the other hand, have equality
defined by their internal identifier. This means that two
processes which have been running independently can
never generate the same object, but may well be using
the same values.

m Some conceptual models do make the distinction,
[Fowler97] appears not to.

m The presence of values can influence (positively!) the
semantics of attributes.

[1 2004 John Mylopoulos UML -- 25
Conceptual Modeling CSC2507

v Qualified Associations

Idea is that when you have a multi-valued role, you may
have a key for all the values of that role. For instance:

Uni versity enpl # o *en’pl oyedBy Per son
Conputer ———user uses
System | userld | 0..* Person

[1 2004 John Mylopoulos UML -- 26

Conceptual Modeling CSC2507

$
==} Association Classes
m Association classes allow you to treat associations like
classes:
Uni ver si ty 0 * : enpl OyedBy Per son

Enpl oyrent
hi reD: Dat e
sal : Amount

In UML you can only have a single instance of an
association class for every pair of objects; this doesn’t
allow, for instance, several employments of the same
person by the same employer.

[1 2004 John Mylopoulos UML -- 27

Conceptual Modeling CSC2507
$

V. Template Classes

Template classes are parameterized classes; this
construct is useful if you want to model groups or lists
whose elements are all of the same type:

Make(T)
Del et e(T)
<<bi nd>>
<T, <<bi nd>>
<TA>
1 G oup<TA>
G oup<TA>

[1 2004 John Mylopoulos UML -- 28

Conceptual Modeling CSC2507

$
v Visibility

m Private/public attributes and operations have obvious
semantics.

m Protected attributes and operations can only be used by
the owner class and its specializations.

m Question is: can one instance of a class see protected
attributes of another instance of the same class?

m C++ allows this, Smalltalk does_.not. Smalltalk is
obviously right...

[1 2004 John Mylopoulos UML -- 29

Conceptual Modeling CSC2507
$

V. Object Diagrams

m These are like class diagrams, except now we model
instances of the classes defined in class diagrams.

m Object diagrams are mentioned in [Gogolla98], but not in

[Fowler97].
M a: participates| Jack:
Schedul edM g Person
tinme: 12pm
pl ace: LP266
partici es
Jeff:
Person

[1 2004 John Mylopoulos UML -- 30

Conceptual Modeling CSC2507

L

V. Interaction Diagrams

m Interaction diagrams capture interactions among objects.

m Typically, an interaction diagram models what happens
for a single use case.

m An interaction diagram shows a number of example
objects and the messages that are passed between
them during the execution of the use case.

m There are two (comparable) types of interaction
diagrams: sequence diagrams , and collaboration
diagrams .

m Use icons to denote the objects participating in an
interaction diagram (sequence or collaboration).

[1 2004 John Mylopoulos UML -- 31

Conceptual Modeling CSC2507

1 .
w.Sequence Diagram for Schedul eM g

XA e A2

Initiator St af f Partici pant
: Person : Person : Person : Person
1. call() _
2 what’s up?() pa/_ ticipating
< - object
3. give ntg L 4. *[for all
:! details() par ti ci pant s] .
3 i nform() 5. acknow edge()
@ 6. *[for all 5
o participants] remnd()
condition _ 7. giveTinetabl ef)
8. pronpt (tinetables)
. 9. show schedul e()
‘10. [‘deci si on=CK] %
schedul e’ ed()
v 11. *[for all _
partici pants]
infornm(ntg)

[1 2004 John Mylopoulos UML -- 32

Conceptual Modeling CSC2507

&
¥ Concurrency and Synchronization

B Some of the features of

initiator staff .
-Person _ person sequence diagrams are
giveDetails() = .
'—r useful for modeling
. / / concurrent computer
actvation . aeynchfonous
% nou I processes, rather than for
communication .
L world modeling
| / B Statecharts are much
object more elegant for modeling
inactive
concurrency.
[T v~ u l_lumbenng messages is
~scheduleck ed()’| |schedule() gptional for sequence
diagrams in UML.

[1 2004 John Mylopoulos UML -- 33
Conceptual Modeling CSC2507
& Selecting a Course to Teach
r....,l.“"_‘,..E
i :Professor | | :Course | | | :Coursﬂ | L
CourseOption| SelectionMgr : Courselnfo Offering :ProfessorlInf
: Professor _
M enterid(“lochov"zJ’ : = = =
enterPassword(“ghcxyz”) :

>

validate(“lochov”, “abcxyz”)
enterSemester(“9Bwi") :

enterCourseOptign(“add”)

enterCourseName(“Software Engineq:ring")
enterCourseNurrE e SE403") I

" getoffering:ﬁ“CS‘EiﬁlOS”,“98wi")
g getoﬁering$“C§ EX03”, “98wi")

" *get(“98wi")

selectCourseOffarind101)

addoffering(‘lochov”)
" addoffering(“lochgv™)

get(lochov”)

[Lochovsky98] P IinkprofeSjorO
u

[1 2004 John Mylopoulos UML -- 34

Conceptual Modeling CSC2507

% Collaboration Diagram
for Meeting Scheduling

% 7: sendSchedul e()
«—

schedul er

initiator
: Person +Person
6: pronpt ()
1: gi veDetail s()
8: appr oveSchedul
3: acknow edge()
5: sendDet ai | s()
«—
staff [participant
- Person 2:inform) Person
4:rem nd()
9:inform()
[1 2004 John Mylopoulos UML -- 35
Conceptual Modeling CSC2507

@
W How to Use Collaboration Diagrams

m Collaboration diagrams model scenaria; each scenario
describes a possible sequence of events and actions.

m For a complex process, use several collaboration
diagrams; make sure each collaboration diagram is
simple and easy to understand.

m A special designation is available for objects which are
created or destroyed during a collaboration:

» Created during execution of the collaboration
- Enpl oyee{ new}

» Destroyed during execution
: Enpl oyee{dest royed}

» Created and destroyed
: Enpl oyee{transi ent}

[1 2004 John Mylopoulos UML -- 36

Conceptual Modeling CSC2507

b o
V. Select Courses to Teach
—
1: Inform(courseList)
: Professor :Administrator
3:Propose(courseList’)
\L 2: *[for each professor]
Inf List
4:Agree(coursm o form{(courseList)
5 Update(coursej’st’) AssociateChairProfessor
<<entity>> <<entity>> . <<entity>>
: Courselnfo— | CourseOfferquil — | Professorinfo
6: *[For each course] 7: *[For each professor]
Update() Update()
[1 2004 John Mylopoulos UML -- 37
Conceptual Modeling CSC2507
b o
V. Packages

m Packages allow one to define useful subsets of a model
to facilitate understanding and other modeling tasks.

m There are many criteria to use in defining the subsets:
v"Ownership -- who is responsible for which diagrams;

v Application -- each application has its own obvious
partitions; e.g., a university department model may be
partitioned into staff, courses, degree programmes,...

v'Use -- clusters of classes used together, e.g., course,
course description, instructor, student,...

v Perspectives -- Maria’s vs Peter’s.
V..

[1 2004 John Mylopoulos UML -- 38

Conceptual Modeling CSC2507

L

X 4 A Package Diagram

m A dependency means

— _
5 that if you change a
ersons class in one package,

* — you may have to
Constrai nt s change something in

. i the other.
1 o m The concept is similar
Meet i ngsi to compilation

dependency dependencies.

mt's desirable to
minimize dependency
cycles, if at all

possible.

[1 2004 John Mylopoulos UML -- 39

Conceptual Modeling CSC2507

&
\ 2 State Diagrams

m These are state transition diagrams and describe the
lifetime of some object (a person, a student,...)

m Transitions are supposed to represent actions which
occur quickly and are not interruptible. States represent
longer-running activities.

m A transition can have an associated event [guard]
act i on, all of which are optional.

m When a transition has no associated event, it fires as
soon as its source state activity is done.

m State diagrams can have superstates, consisting of
several states. This is basically the statechart notation
[Harel87].

[1 2004 John Mylopoulos UML -- 40

Conceptual Modeling CSC2507

L

State Diagram for Purchase Order

/m‘

Dispatching
Dol/package items

Checking [all items in stock]

Do/check items

L

Start
[some item not /deliver
In StOCk] package
em received
Item received [all items in stock]
[some item not i
In stock] (
Waiting Delivered
[1 2004 John Mylopoulos UML -- 41
Conceptual Modeling CSC2507

L

. Events

UML distinguishes four different types of events:
m Change events designate when a condition becomes
true
E.g., when(bal ance < 0)
m Signal events designate the receipt of an explicit (real-
time) signal from one object to another
m Call events indicate the receipt of a call for an operation
by an object (request events would be more appropriate
for non-software modeling)
m Time events mark the passage of a designated period
of time from some time point
E.g.,,after (10 seconds, <event >)

[1 2004 John Mylopoulos UML -- 42

Conceptual Modeling CSC2507

&
L2 Course Lifetimes

.\" Initialization]

of f er NewCour se/
count =0; cr eat e(Cour seRost er)

I: @en [count :10] R

addSt udent[count <10]
count =count +1;

cancel

get St udent | nfo(i nfo); Cancel quarterStarted

addst udent ()
Cancel ed »(@
/ del et e(Cour seRost er
[Lochovsky98]

[1 2004 John Mylopoulos UML -- 43
Conceptual Modeling CSC2507

$

o States

m A state represents a time period in the life of an object
during which the object satisfies some condition,
performs some action or waits for an event.

m In general a state can be characterized by a predicate
which is true while the state is “on”.

m Such a predicate may be defined in terms of:

* The value(s) of one or more attributes of the class
E.g., a person’s address
» The existence of a link to another object

m (In OO folklore...) The interval between two messages

sent by an object typically represents a state

[1 2004 John Mylopoulos UML -- 44

Conceptual Modeling CSC2507

&
v Activities

B Some states represent the lifetime of an activity that
takes time to complete

» starts when a state is entered

» either completes or is interrupted by an event that
causes an outgoing transition

m Special activity constructs:

do/ st at eDi agr amNane(par anet erLi st) -- “calls”
another state diagram;

entry/ action -- carry out the action when entering
the activity;

exit/action --carry out the action when exiting.

[1 2004 John Mylopoulos UML -- 45
Conceptual Modeling CSC2507
i e .
& Course Lifetimes, Again
m\ addCourse/ count=0;
‘ > do / Initiali CourseRoster.Create()
o / Initialize OpenNew

~ 1 /

addStudent [CW(
addStudenfcount<10]

) open]
entry /RegisterStudent(Student)
exit / CourseRoster.AddStudent(student)

[count=10]
cancel

Cancelled cancel Closed]
do / FinalizeCourse J

CourseRoster.Delete()
quarterStarted

[1 2004 John Mylopoulos UML -- 46

Conceptual Modeling CSC2507

L <
") Superstates

m State transition diagrams can be very hard to read once
they grow to more than a few dozen states.

m For UML activity diagrams, states can be composed into
superstates. Such compositions make it possible to view
an activity at different levels of abstraction.

m For example, the Cl osed state of the last activity
diagram may have its own state transition diagram which
describes what happens while this state is “on”.

m There are two types of superstates:

* OR superstate -- when the superstate is “on”, one of
its component states is “on”;

* AND superstate -- when the superstate is “on”, all of
its component states are “on”;

[1 2004 John Mylopoulos UML -- 47

Conceptual Modeling CSC2507

-
ﬂ An OR Superstate

Neutral Reverse

[1 2004 John Mylopoulos UML -- 48

Conceptual Modeling CSC2507

State Diagram for Purchase Order

Dispatching
Do/package items

Checking
Do/check items

Item recelyv|
[some item
In stock]

Waiting

cancel
OR Superstate ¢

Delivered

Cancelled

[1 2004 John Mylopoulos UML -- 49

Conceptual Modeling CSC2507

é State Diagram for

= (Auto) Transmission

Transmission

selectR
@ | Neutral Reverse

select N

select N select F

v

d Earward \

stop upshift ———— upshift
® First < Second < Third
k\ downshift— " downshift /

[1 2004 John Mylopoulos UML -- 50

Conceptual Modeling CSC2507

L

ancel

\ An AND Superstate
~ [
Fork

Join (unlabelled

outgoing transition)
[1 2004 John Mylopoulos UML -- 51

Conceptual Modeling CSC2507

L

v Complex State Diagram Transitions

m Transition to superstate boundary = transition to initial

state of the superstate.
+ entry actions of all regions entered are performed
m There may also be transitions directly into a complex
state region (like program “gotos”).
m Unlabelled transition from a superstate boundary =

transition from the final state of the superstate
+ exit actions of all regions exited are performed
M Labelled transition from a superstate boundary means
transition from any one substate.
m There may be transitions directly from within a complex
state region to an outside state

[1 2004 John Mylopoulos UML -- 52

Conceptual Modeling CSC2507

L

L 2 Bridge Vulnerability Rules

Playing Bridge Rubber
N-S vulnerability

N-S game N-S game
o Nt \ulnerable 9AME | N-S wins
vulnerable

E-W vulnerability

E-W game E-W game
o e

[1 2004 John Mylopoulos UML -- 53

Conceptual Modeling CSC2507

L

v Taking a Course
/ Taking a Course \

Incomplete

labd
N g Aoy E

o—> Term | Project done
Project

fail
> Failed/

[1 2004 John Mytopoutos YUML -- 54

Conceptual Modeling CSC2507

* - -
Auto Transmission

4 Ignition)
turn key to start
[Transmission release
in Neutral]
o— Off Startlng
turn key off
- = J
turn key off v

Transmission

select R
@ Neutral 4—

select N
select NT select F
v

4 Forward
_upshift | shift upshift
. , Flrst . Second . Third
downshift downshift
[1 2004 John Mylopoulos UML -- 55
Conceptual Modeling CSC2507

L

"‘\'._.__, (]

m Like Perti nets, activity diagrams allow transitions with several input
and output states:

Activity Diagrams

[1 2004 John Mylopoulos UML -- 56

Conceptual Modeling CSC2507

An Example

[1 2004 John Mylopoulos UML -- 57

Conceptual Modeling CSC2507

L

" Another Example: Order Processing

m The Process Order use case:

“When we receive an order, we check each line item on
the order to see if we have the goods in stock. If we do,
we assign the goods to the order. If this assignment
sends the quantity of those goods in stock below the
reorder level, we reorder the goods. While we are doing
this, we check to see if the payment is O.K. If the
payment is O.K. and we have the goods in stock, we
dispatch the order. If the payment is O.K. but we do not
have the goods, we leave the order waiting. If the
payment is not O.K., we cancel the order.”

[1 2004 John Mylopoulos UML -- 58

Conceptual Modeling CSC2507

&
W. Order Processing Activity Diagram

Receive
Order

—

for each line
item on order

v 3
[failed]@ (e)
Payment Item
Cancel [succeeded] | [in stock]
Order

*

[stock assigned to
all line items and —% [need to

payment authorized] ! reorder]

Dispatch Reorder
Order Item
[1 2004 John Mylopoulos

UML -- 59

Conceptual Modeling CSC2507

L

V. Activities

m An activity state represents an action in the execution of
the activity. An activity state normally contains an action
expression and usually has no associated name

m Actions may be described by:

* Natural language

» Structured English

* Pseudo-code

* Programming language
» Another activity diagram

m An action expression may only use attributes and links of
the owning object

[1 2004 John Mylopoulos UML -- 60

Conceptual Modeling CSC2507

L
-Q’ More About Activity Diagrams

m Decision points:

() cost < $50 < Charge)
g?;?lgg;? > [1, customer’s
[cost = $50] R Get
authorization

m Dead ends: there may be transitions in an activity
diagram with no destination state; this can mean that:

» Not all processing has been specified,
 Or, that another activity diagram will take over.

[1 2004 John Mylopoulos UML -- 61

Conceptual Modeling CSC2507

Swimlanes swimlane

Get Order

Waiting
Checking Dispatching

Authorizing Authorized

[1 2004 John Mylopoulos UML -- 62

Conceptual Modeling CSC2507

T More Swimlanes
W Finance Order Stock
rocessing Manager
N for each line

+ item on order

|

|

|

|

|

|

|

|

|

|

|

|

|

Choose |

< Check > Outstanding)|
Line Qrde |
Iltem :
|

|

|

|

|

|

|

|

|

|

Authorize
Payment

for each chosen

[succeeded] order item

A4
Assign
Goods to

Bl e ajd’ XY ¥ [needto [all outstandinig 1
payment authorized] reorder] order items filled]
| A4 Y : A 4
: Dispatch Reorder | Add
: Order Item ! Remainder
[J 2004 John Mylopoulos I } UML - 63
Conceptual Modeling CSC2507

(For comparison purposes) To model with UML you need
to answer the following kinds of questions:

v'What are the users doing? -- use cases (Jacobson)
v"What are the objects in the real world? (Rumbaugh)

v"What objects are needed for each use case?
(Jacobson)

v"How do objects collaborate? (Jacobson, Booch)

v'What are allowable sequences of actions and
activities?

v'What are allowable lifelines for objects?

v [How will we implement real-time control?

v"How are we going to build this system? (Booch)]

[1 2004 John Mylopoulos UML -- 64

Conceptual Modeling CSC2507

@ -
%] Conclusions

m UML amounts to a combination of EER diagrams,
statecharts and other diagrammatic notations.

m Much of this is useful for conceptual modeling. Some
diagrams, however, are appropriate for software
modeling only.

m The great contribution of UML is that for the first time
ever, there is a modeling standard; this has led to
compatibility and portability of conceptual models.

m The great weakness of UML is that it was designed by
committee, and some design decisions were based on
political, rather than technical considerations.

m Another major weakness of UML is that it is (still largely)
informal. Informal models are not scalable!

[1 2004 John Mylopoulos UML -- 65

Conceptual Modeling CSC2507
$

V. References

m [Booch97] Booch, G., Rumbaugh, J., Jacobson, |., The Unified Modeling
Language User Guide, Addison-Wesley, 1997.

m [Fowler97] Fowler, M., Scott, K., UML Distilled, Addison-Wesley, 1997.

m [Gogolla98] Gogolla, M., “UML for the Impatient’, technical report 3-98,
Fachberiech Mathematik und Informatik, Universitaet Bremen, 1998.

m [Harel87] Harel, D., “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, 1987.

m [Jacobson92] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard,
G., Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

m [Lochovsky98] Lochovsky, F., Lecture Notes on Software Engineering,
Department of Computer Science, University of Washington, 1998,
http://www.cs.washington.edu/education/courses/403/

m [Motschnig93] Motschnig-Pitrik, R., “The Semantics of Parts versus
Aggregates in Data/Knowledge Modeling”, Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAISE’93), Paris, June 1993.

m [UML97] http://www.rational.com.

[1 2004 John Mylopoulos UML -- 66

