
UML -- 1 2004 John Mylopoulos

Conceptual Modeling CSC2507

Use Case DiagramsUse Case Diagrams
Class Diagrams Class Diagrams

Attributes, Operations and ConstraintsAttributes, Operations and Constraints
Generalization and AggregationGeneralization and Aggregation

Sequence and Collaboration DiagramsSequence and Collaboration Diagrams
State and Activity DiagramsState and Activity Diagrams

VI. The Unified Modeling LanguageVI. The Unified Modeling Language

UML -- 2 2004 John Mylopoulos

Conceptual Modeling CSC2507

UML DiagramsUML Diagrams

� UML was conceived as a language for modeling
software. Since this includes requirements, UML
supports world modeling (...at least to some extend).

� UML offers a variety of diagrammatic notations for
modeling static and dynamic aspects of an
application.

� The list of notations includes use case diagrams,
class diagrams, interaction diagrams -- describe
sequences of events, package diagrams, activity
diagrams, state diagrams, …more...

UML -- 3 2004 John Mylopoulos

Conceptual Modeling CSC2507

Use Case DiagramsUse Case Diagrams
� A use case [Jacobson92] represents “typical use

scenaria” for an object being modeled.
� Modeling objects in terms of use cases is consistent with

Cognitive Science theories which claim that every object
has obvious suggestive uses (or affordances) because
of its shape or other properties. For example,
�Glass is for looking through (...or breaking)
�Cardboard is for writing on...
�Radio buttons are for pushing or turning…
� Icons are for clicking…
�Door handles are for pulling, bars are for pushing…

� Use cases offer a notation for building a coarse-grain,
first sketch model of an object, or a process.

UML -- 4 2004 John Mylopoulos

Conceptual Modeling CSC2507

Use Cases for aUse Cases for a
Meeting Scheduling SystemMeeting Scheduling System

Initiator Participant

ScheduleMtg

ValidateUser

Generate
Schedule

<<includes>>

Edit
Constraints

Provide
ConstraintsWithdraw

<<extends>>

Use case Actor
<<includes>>

UML -- 5 2004 John Mylopoulos

Conceptual Modeling CSC2507

Use Cases for a CarUse Cases for a Car
Driver

Mechanic

TurnOnEngine

Drive

CheckOil

FixCar

FillUp

<<extends>>

GasAttendant

FixCarOntheRoad

<<includes>>
<<includes>> <<includes>>

UML -- 6 2004 John Mylopoulos

Conceptual Modeling CSC2507

Use CasesUse Cases
� Use cases may represent user goals, or user

interactions; for example, ScheduleMtg can be thought
as a goal (there are many ways to schedule a meeting),
but ValidateUser is probably not.

� Use cases make sense for usable things, such as
designed artifacts, including processes; they don’t make
sense for unusable things (e.g., the sky).

� (Consequently) Use cases constitute a special-purpose
modeling construct for software or other artifacts.

� [The notion of scenario, as a typical course of actions or
events, is probably more appropriate for a general
purpose modeling language.]

UML -- 7 2004 John Mylopoulos

Conceptual Modeling CSC2507

Features of Use CasesFeatures of Use Cases

� An actor is a rolerole that a user plays with respect to the
object being described; don’t think of actors as either
users (e.g., Maria), or positions (e.g., department chair).

� (When do I stop??When do I stop?? ……) For any one software
development project, you probably don’t want more than
100 use cases.

UML -- 8 2004 John Mylopoulos

Conceptual Modeling CSC2507

<<extends>> <<extends>> vsvs <<includes>> <<includes>>
� <<extends>> implies that one use case adds

behaviour to a base case; used to model a part of
a use case that the user may see as optional
system behavior; also models a separate sub-case
which is executed conditionally.

� <<includes>>: adds behavior to a base case
(like a procedure call); used to avoid describing the
same flow of events several times, by putting the
common behavior in a use case of its own.

<<extends>>
Check

Campaign
Budget

Print Campaign
Summary

<<includes>>
Find Campaign

UML -- 9 2004 John Mylopoulos

Conceptual Modeling CSC2507

Class DiagramsClass Diagrams
� Class diagrams describe the kinds of objects found in

the application, and their inter-relationships.
� There are two types of inter-relationships: associations

and subtypes [Fowler97]
� Class diagrams are basically an adaptation of EER

diagrams, with some minor differences.
� UML class diagrams may model some part of the real

world (e.g., the world of meetings and schedulings), a
design specification (e.g., for a system that does meeting
scheduling), or an implementation.

UML -- 10 2004 John Mylopoulos

Conceptual Modeling CSC2507

Comparison of EERComparison of EER
and Class Diagramsand Class Diagrams

� EER diagrams allow N-ary relationships, N≥2; Class
diagrams only allow binary relationships.

� EER diagrams allow multi-valued attributes, class
diagrams do not.

� EER diagrams allow the specification of identifiers (an
often-encountered type of constraint), while class
diagrams do not.

� Class diagrams allow dynamic classification, but EER
diagrams do not.

UML -- 11 2004 John Mylopoulos

Conceptual Modeling CSC2507

Class DiagramClass Diagram
for Meeting Schedulingfor Meeting Scheduling

Person
name
email

0..1

0..*

1

has

Meeting
time
place

attends

RequestedMtg

Timetable

initiates

2..*

1

0..*

MtgRequirement

TimeReq

SpaceReq

LocationReq

EquipmentReq

0..*

ScheduledMtg

attributes

rolemultiplicity

generalization association

initiator

has
0..*

1

composition

aggregation

UML -- 12 2004 John Mylopoulos

Conceptual Modeling CSC2507

Notes on AssociationsNotes on Associations
� Associations represent semantic relationships. Each

association can have up to two roles for participating
objects. Each role can also have an associated
cardinality range (“multiplicity”).

� Associations represented with directed arrows are
navigatable only in one direction; for example, if the
Meeting-Person association was represented with an
arrow pointing towards Person, this would indicate that
from a Meeting we can navigate to all meeting persons,
but given a person, we can’t find all the meetings she
has participated in.

UML -- 13 2004 John Mylopoulos

Conceptual Modeling CSC2507

Notes on AttributesNotes on Attributes

� Attributes are always single-valued.
� Attributes can have an associated type (a class), a

default value, and a visibility value of + (public), #
(protected) and - (private). They can also be derived
(/attr) or not.

� There is no semantic difference in UML between
attributes and directional associations.

� Other models treat attributes as associations with an
existence constraint which says: if an object is deleted,
so are its attributes and their values.

UML -- 14 2004 John Mylopoulos

Conceptual Modeling CSC2507

Notes on OperationsNotes on Operations
� These are “the processes a class knows how to carry

out” [Fowler97, p63]. They are specified in the third layer
of a class box.

� Specification includes a visibility value, name, parameter
list and returned value type.

� For conceptual modeling, Fowler argues -- rather
vaguely -- that operations should be used to define the
responsibilities of a class.

� It makes better sense to distinguish a subclass of objects
-- agents/positions/roles -- which can participate in
activities, and describe for each the activities they know
how to carry out.

UML -- 15 2004 John Mylopoulos

Conceptual Modeling CSC2507

Operations and ConstraintsOperations and Constraints
Meeting

+ time: Time = 9am
+ place: Place = LP266

+ schedule(ConstrLst):Meeting
+ cancel()

if place=SF2201 then time≠12pm;
if Meeting.initiator is Disabled
then place is AccessibleRm;

� How do you say that “If one of the participants is
disabled, then the place must be disabled-accessible??
� We need some sort of a First Order language for
constraints:
if (exists p:Meeting.participant) p is Disabled

then place is AccessibleRm

UML -- 16 2004 John Mylopoulos

Conceptual Modeling CSC2507

Object Constraint Language (OCL)Object Constraint Language (OCL)

� Some constraints can be adequately expressed in the
graphical language (ex. cardinality of an association).

� Some can not. For example, constraints within
operation specifications (pre- and post-conditions)

� OCL expressions are constructed from a collection of
pre-defined elements and types.

� The language has a formal syntax and semantics and
supplements the expressiveness of UML.

[Warmer99] Warmer, J. Kleppe, A. The Object
Constraint Language: Precise Modeling with UML
Addison-Wesley 1999.

UML -- 17 2004 John Mylopoulos

Conceptual Modeling CSC2507

OCL ExamplesOCL Examples

UML -- 18 2004 John Mylopoulos

Conceptual Modeling CSC2507

Multiple and Dynamic ClassificationMultiple and Dynamic Classification
� Classification refers to the relationship between an

object and the classes it is an instance of.
� Traditional object models (e.g., Smalltalk, C++,…)

assume that classification is singlesingle and staticstatic.
� Multiple classification allows an object to be an instance

of several classes that are not is-a-related to each other;
for example, Maria may be an instance of
GradStudent and Employee at the same time.

� If you allow multiple classification, you want to be able to
specify which combinations of instantiations are allowed.
This is done through discriminatorsdiscriminators.

�� DynamicDynamic classifications allows an object to change its
type during its lifetime.

UML -- 19 2004 John Mylopoulos

Conceptual Modeling CSC2507

Multiple ClassificationMultiple Classification

Person

TA

Professor

Staff

Male

Female

Student

student

sex
{mandatory}

role
<<dynamic>>

� Mandatory means that every instance of Person
must be an instance of Male or Female.
� <<Dynamic>> means that an object can cease to be a
TA and may become a Professor.

UML -- 20 2004 John Mylopoulos

Conceptual Modeling CSC2507

GeneralizationGeneralization
� Multiple generalization involves a class which has two or

more superclasses that are not is-a related. For
example, TA is a specialization of Student and
Employee.

� In UML multiple generalization is allowed. Inheritance
conflicts are resolved by predefined order of
superclasses; renaming of attributes or operations is
also allowed.

� For each discriminator, the associated collection of
classes can be declared to be complete/incomplete,
also disjoint/over-lapping

UML -- 21 2004 John Mylopoulos

Conceptual Modeling CSC2507

StereotypesStereotypes

� Stereotypes offer “a high level classification of an
object…tell you the kind of object it is” [Fowler97].

� Stereotypes define the types of constructs that can be
used in a UML diagram. You can think of them as
offering a metamodel of UML diagrams, or as giving the
graphical syntax of UML diagrams.

� In UML, stereotypes are shown delimited by <<…>>.
� Note that the stereotypes shown in class diagrams (such

as <<includes>>, <<extends>>) are metaclasses
which define the UML metamodel.

� One can extend UML by creating new stereotypes as
specializations of built-in ones.

UML -- 22 2004 John Mylopoulos

Conceptual Modeling CSC2507

Stereotypes as Stereotypes as MetaclassesMetaclasses
<<metaclass>>

Actor

<<metaclass>>
Use Case

<<metaclass>>
Class

<<metaclass>>
UML CLass

uses extends

<<metaclass>>
Boundary

<<metaclass>>
Control

<<metaclass>>
Entity

user

UML -- 23 2004 John Mylopoulos

Conceptual Modeling CSC2507

AggregationAggregation

Engine

Person

Car Train
1..1

0..1 0..1

1..*

drives
drives

1..1

1..1

0..1

1..1

composition

aggregation

UML -- 24 2004 John Mylopoulos

Conceptual Modeling CSC2507

Notes on AggregationNotes on Aggregation
� Aggregation represents the partOf relationship.
� Composition is a strong form of aggregation, where a

part can only participate in one composition relationship.
� Aggregation has been formalized in [Motschnig93].

Every aggregation relationship can be classified along
two dimensions:
• Dependent/Independent -- if an aggregation

relation is dependent, then when you remove the
whole you also remove the part;

• Shared/Exclusive -- if an aggregation relationship
is exclusive, a part can’t be part of several wholes.

� So, composition amounts to a dependent,exclusive
aggregation relationship.

UML -- 25 2004 John Mylopoulos

Conceptual Modeling CSC2507

Objects Objects vs vs ValuesValues

� Values are mathematical objects, such as numbers,
tuples, lists and sets. They come with their own equality
predicate so that they can be compared. Values are
immutable.

� (Reference) objects, on the other hand, have equality
defined by their internal identifier. This means that two
processes which have been running independently can
never generate the same object, but may well be using
the same values.

� Some conceptual models do make the distinction,
[Fowler97] appears not to.

� The presence of values can influence (positively!) the
semantics of attributes.

UML -- 26 2004 John Mylopoulos

Conceptual Modeling CSC2507

Qualified AssociationsQualified Associations

Idea is that when you have a multi-valued role, you may
have a key for all the values of that role. For instance:

University Person
employedBy

empl#
0..*

Computer
System Person

usesuserId
0..*
user

UML -- 27 2004 John Mylopoulos

Conceptual Modeling CSC2507

Association ClassesAssociation Classes
� Association classes allow you to treat associations like

classes:

In UML you can only have a single instance of an
association class for every pair of objects; this doesn’t
allow, for instance, several employments of the same
person by the same employer.

University Person
employedBy

0..*

Employment

hireD:Date
sal:Amount

UML -- 28 2004 John Mylopoulos

Conceptual Modeling CSC2507

Template ClassesTemplate Classes
TemplateTemplate classes are parameterized classes; this

construct is useful if you want to model groups or lists
whose elements are all of the same type:

Group

Make(T)
Delete(T)

T

:Group<TA>

:Group<TA>

<<bind>>
<TA>

<<bind>>
<TA>

UML -- 29 2004 John Mylopoulos

Conceptual Modeling CSC2507

VisibilityVisibility
� Private/public attributes and operations have obvious

semantics.
� Protected attributes and operations can only be used by

the owner class and its specializations.
� Question is: can one instance of a class see protected

attributes of another instance of the same class?
� C++ allows this, Smalltalk does not. Smalltalk is

obviously right...

UML -- 30 2004 John Mylopoulos

Conceptual Modeling CSC2507

Object DiagramsObject Diagrams
� These are like class diagrams, except now we model

instances of the classes defined in class diagrams.
� Object diagrams are mentioned in [Gogolla98], but not in

[Fowler97].

myMtg:
ScheduledMtg

time:12pm
place:LP266

Jack:
Person

Jeff:
Person

participates

participates

UML -- 31 2004 John Mylopoulos

Conceptual Modeling CSC2507

Interaction DiagramsInteraction Diagrams
� Interaction diagrams capture interactions among objects.
� Typically, an interaction diagram models what happens

for a single use case.
� An interaction diagram shows a number of example

objects and the messages that are passed between
them during the execution of the use case.

� There are two (comparable) types of interaction
diagrams: sequence diagramssequence diagrams , and collaborationcollaboration
diagramsdiagrams .

� Use icons to denote the objects participating in an
interaction diagram (sequence or collaboration).

UML -- 32 2004 John Mylopoulos

Conceptual Modeling CSC2507

Sequence Diagram for Sequence Diagram for ScheduleMtgScheduleMtg

1. call()

2. what’s up?()

3. give mtg
 details()

4. *[for all
participants]
inform()

6. *[for all
participants] remind()

8. prompt(timetables)
9. show schedule()

10. [decision=OK]
scheduleOK’ed()

Initiator
:Person

Participant
:Person

11. *[for all
participants]
inform(mtg)

Staff
:Person

Scheduler
:Person

5. acknowledge()

7. giveTimetable()condition

iteration

participating
object

T
im

e

UML -- 33 2004 John Mylopoulos

Conceptual Modeling CSC2507

Concurrency and SynchronizationConcurrency and Synchronization

activation

giveDetails()

[decision=OK]
scheduleOK’ed()

initiator
:Person

staff
:Person

show
schedule()

asynchronous
communication

object
inactive

� Some of the features of
sequence diagrams are
useful for modeling
concurrent computer
processes, rather than for
world modeling
� Statecharts are much
more elegant for modeling
concurrency.
� Numbering messages is
optional for sequence
diagrams in UML.

UML -- 34 2004 John Mylopoulos

Conceptual Modeling CSC2507

Selecting a Course to TeachSelecting a Course to Teach
:Course

SelectionMgr
:Professor

CourseOption
: Professor

: CourseInfo

enterid(“lochov”)

:Course
Offering :ProfessorInfo

getofferings(“CSE403”, “98wi”)

enterPassword(“abcxyz”)

validate(“lochov”, “abcxyz”)

enterSemester(“98wi”)

enterCourseOption(“add”)

enterCourseName(“Software Engineering”)

enterCourseNumber(“CSE403”)

selectCourseOffering(1101)
*get(“98wi”)

addoffering(“lochov”)

addoffering(“lochov”)

get(“lochov”)

linkprofessor()

getofferings(“CSE403”, “98wi”)

[Lochovsky98]

UML -- 35 2004 John Mylopoulos

Conceptual Modeling CSC2507

Collaboration DiagramCollaboration Diagram
for Meeting Schedulingfor Meeting Scheduling

initiator
:Person

staff
:Person

participant
:Person

scheduler
:Person

1:giveDetails()
8:approveSchedule()

2:inform()
4:remind()
9:inform()

3:acknowledge()
5:sendDetails()

6:prompt()

7:sendSchedule()

UML -- 36 2004 John Mylopoulos

Conceptual Modeling CSC2507

How to Use Collaboration DiagramsHow to Use Collaboration Diagrams
� Collaboration diagrams model scenaria; each scenario

describes a possible sequence of events and actions.
� For a complex process, use several collaboration

diagrams; make sure each collaboration diagram is
simple and easy to understand.

� A special designation is available for objects which are
created or destroyed during a collaboration:
• Created during execution of the collaboration

:Employee{new}

• Destroyed during execution
:Employee{destroyed}

• Created and destroyed
:Employee{transient}

UML -- 37 2004 John Mylopoulos

Conceptual Modeling CSC2507

Select Courses to TeachSelect Courses to Teach

5: Update(courseList’)

<<entity>>

: ProfessorInfo
<<entity>>

: CourseInfo

:Administrator
1: Inform(courseList)

<<entity>>

: CourseOffering
6: *[For each course]
 Update()

 2: *[for each professor]
 Inform(courseList)

: Professor

AssociateChair :Professor

 3:Propose(courseList’)

 4:Agree(courseList’)

7: *[For each professor]
 Update()

UML -- 38 2004 John Mylopoulos

Conceptual Modeling CSC2507

PackagesPackages
� Packages allow one to define useful subsets of a model

to facilitate understanding and other modeling tasks.
� There are many criteria to use in defining the subsets:
�Ownership -- who is responsible for which diagrams;
�Application -- each application has its own obvious

partitions; e.g., a university department model may be
partitioned into staff, courses, degree programmes,…

�Use -- clusters of classes used together, e.g., course,
course description, instructor, student,…

�Perspectives -- Maria’s vs Peter’s.
� ...

UML -- 39 2004 John Mylopoulos

Conceptual Modeling CSC2507

A Package DiagramA Package Diagram
� A dependency means

that if you change a
class in one package,
you maymay have to
change something in
the other.

� The concept is similar
to compilation
dependencies.

� I t ’s desirable to
minimize dependency
cycles, if at all
possible.

Persons

Meetings

Constraints

dependency

UML -- 40 2004 John Mylopoulos

Conceptual Modeling CSC2507

State DiagramsState Diagrams
� These are state transition diagrams and describe the

lifetime of some object (a person, a student,…)
� Transitions are supposed to represent actions which

occur quickly and are not interruptible. States represent
longer-running activities.

� A transition can have an associated event [guard]
action, all of which are optional.

� When a transition has no associated event, it fires as
soon as its source state activity is done.

� State diagrams can have superstates, consisting of
several states. This is basically the statechart notation
[Harel87].

UML -- 41 2004 John Mylopoulos

Conceptual Modeling CSC2507

State Diagram for Purchase OrderState Diagram for Purchase Order

/get order Checking
Do/check items

Dispatching
Do/package items

[some item not
In stock]

Waiting

Item received
[some item not

In stock]

Item received
[all items in stock]

[all items in stock]

Delivered

/deliver
 package

start

UML -- 42 2004 John Mylopoulos

Conceptual Modeling CSC2507

EventsEvents

UML distinguishes four different types of events:
� Change events designate when a condition becomes

true
E.g., when(balance < 0)

� Signal events designate the receipt of an explicit (real-
time) signal from one object to another

� Call events indicate the receipt of a call for an operation
by an object (request events would be more appropriate
for non-software modeling)

� Time events mark the passage of a designated period
of time from some time point
E.g., after(10 seconds,<event>)

UML -- 43 2004 John Mylopoulos

Conceptual Modeling CSC2507

Course LifetimesCourse Lifetimes

Initialization

Open Closed

Canceled

offerNewCourse/
count=0;create(CourseRoster)

[count=10]

 addStudent[count<10]
 count=count+1;
 getStudentInfo(info);
 addStudent()

cancel
cancel

/delete(CourseRoster)

quarterStarted

[Lochovsky98]

UML -- 44 2004 John Mylopoulos

Conceptual Modeling CSC2507

StatesStates

� A state represents a time period in the life of an object
during which the object satisfies some condition,
performs some action or waits for an event.

� In general a state can be characterized by a predicate
which is true while the state is “on”.

� Such a predicate may be defined in terms of:
• The value(s) of one or more attributes of the class

E.g., a person’s address
• The existence of a link to another object

� (In OO folklore...) The interval between two messages
sent by an object typically represents a state

UML -- 45 2004 John Mylopoulos

Conceptual Modeling CSC2507

ActivitiesActivities
� Some states represent the lifetime of an activity that

takes time to complete
• starts when a state is entered
• either completes or is interrupted by an event that

causes an outgoing transition
� Special activity constructs:

do/stateDiagramName(parameterList) -- “calls”
another state diagram;

entry/action -- carry out the action when entering
the activity;

exit/action -- carry out the action when exiting.

UML -- 46 2004 John Mylopoulos

Conceptual Modeling CSC2507

Course Lifetimes, AgainCourse Lifetimes, Again
addCourse/ count=0;
CourseRoster.Create()

[count=10]

addStudent [count<10]

cancel

cancel

CourseRoster.Delete()

quarterStarted

Closed

do / FinalizeCourse

Cancelled

entry / RegisterStudent(Student)
exit / CourseRoster.AddStudent(student)

Open

Initialization

do / Initialize OpenNew

addStudent [count<10]

UML -- 47 2004 John Mylopoulos

Conceptual Modeling CSC2507

SuperstatesSuperstates
� State transition diagrams can be very hard to read once

they grow to more than a few dozen states.
� For UML activity diagrams, states can be composed into

superstates. Such compositions make it possible to view
an activity at different levels of abstraction.

� For example, the Closed state of the last activity
diagram may have its own state transition diagram which
describes what happens while this state is “on”.

� There are two types of superstates:
• OR superstate -- when the superstate is “on”, one of

its component states is “on”;
• AND superstate -- when the superstate is “on”, all of

its component states are “on”;

UML -- 48 2004 John Mylopoulos

Conceptual Modeling CSC2507

An OR An OR SuperstateSuperstate

Neutral

Forward

Reverse

Transmission

select R

select N

select Fselect N

UML -- 49 2004 John Mylopoulos

Conceptual Modeling CSC2507

State Diagram for Purchase OrderState Diagram for Purchase Order

/get order Checking
Do/check items

Dispatching
Do/package items

[some item not
In stock]

Waiting

Item received
[some item not

In stock]
Item received

[all items in stock]

[all items in stock]

Delivered

/deliver
 package

Cancelled

cancel
OR Superstate

UML -- 50 2004 John Mylopoulos

Conceptual Modeling CSC2507

State Diagram forState Diagram for
(Auto) Transmission(Auto) Transmission

Neutral Reverse

Transmission

select R

select N

select Fselect N

SecondFirst Third

Forward

upshift upshift

downshiftdownshift

stop

UML -- 51 2004 John Mylopoulos

Conceptual Modeling CSC2507

Cancelled

Delivered

Rejected

Checking

Waiting

Dispatching

Authorizing Authorized

An AND SuperstateAn AND Superstate

cancel

Join (unlabelled
outgoing transition)

Fork

UML -- 52 2004 John Mylopoulos

Conceptual Modeling CSC2507

Complex State Diagram TransitionsComplex State Diagram Transitions

� Transition to superstate boundary ≡ transition to initial
state of the superstate.
+ entry actions of all regions entered are performed

� There may also be transitions directly into a complex
state region (like program “gotos”).

� Unlabelled transition from a superstate boundary ≡
transition from the final state of the superstate
+ exit actions of all regions exited are performed

� Labelled transition from a superstate boundary means
transition from any one substate.

� There may be transitions directly from within a complex
state region to an outside state

UML -- 53 2004 John Mylopoulos

Conceptual Modeling CSC2507

Bridge Vulnerability RulesBridge Vulnerability Rules

Playing Bridge Rubber

N-S gameNot
vulnerable

Vulnerable N-S wins

N-S vulnerability

N-S game

E-W gameNot
vulnerable

Vulnerable E-W wins

E-W vulnerability

E-W game

UML -- 54 2004 John Mylopoulos

Conceptual Modeling CSC2507

Taking a CourseTaking a Course

Incomplete

lab done
Lab1 Lab2

Passed

Failed

Term
Project

Final
Exam

project done

pass

fail

Taking a Course

UML -- 55 2004 John Mylopoulos

Conceptual Modeling CSC2507

Auto TransmissionAuto Transmission

Neutral Reverse

Transmission

select R

select N
select Fselect N

SecondFirst Third

Forward

upshift upshift

downshiftdownshift

stop

Starting On

Ignition

Off

turn key to start
[Transmission

in Neutral]
release

key

turn key off

turn key off

UML -- 56 2004 John Mylopoulos

Conceptual Modeling CSC2507

Activity DiagramsActivity Diagrams
� Like Perti nets, activity diagrams allow transitions with several input

and output states:

BeforeBefore AfterAfter

UML -- 57 2004 John Mylopoulos

Conceptual Modeling CSC2507

An ExampleAn Example

UML -- 58 2004 John Mylopoulos

Conceptual Modeling CSC2507

Another Example: Order ProcessingAnother Example: Order Processing

� The Process Order use case:

“When we receive an order, we check each line item on
the order to see if we have the goods in stock. If we do,
we assign the goods to the order. If this assignment
sends the quantity of those goods in stock below the
reorder level, we reorder the goods. While we are doing
this, we check to see if the payment is O.K. If the
payment is O.K. and we have the goods in stock, we
dispatch the order. If the payment is O.K. but we do not
have the goods, we leave the order waiting. If the
payment is not O.K., we cancel the order.”

UML -- 59 2004 John Mylopoulos

Conceptual Modeling CSC2507

Order Processing Activity DiagramOrder Processing Activity Diagram
Receive
Order

Reorder
Item

Dispatch
Order

Check
Line
Item

Assign to
Order

Authorize
Payment

Cancel
Order

for each line
item on order*

[in stock]

[need to
reorder]

[stock assigned to
all line items and
payment authorized]

[succeeded]

[failed]

UML -- 60 2004 John Mylopoulos

Conceptual Modeling CSC2507

ActivitiesActivities

� An activity state represents an action in the execution of
the activity. An activity state normally contains an action
expression and usually has no associated name

� Actions may be described by:
• Natural language
• Structured English
• Pseudo-code
• Programming language
• Another activity diagram

� An action expression may only use attributes and links of
the owning object

UML -- 61 2004 John Mylopoulos

Conceptual Modeling CSC2507

More About Activity DiagramsMore About Activity Diagrams

� Decision points:

� Dead ends: there may be transitions in an activity
diagram with no destination state; this can mean that:
• Not all processing has been specified,
• Or, that another activity diagram will take over.

Charge
customer’s

account
Calculate
total cost

Get
authorization

[cost < $50]

[cost ≥ $50]

UML -- 62 2004 John Mylopoulos

Conceptual Modeling CSC2507

SwimlanesSwimlanes

Checking

Waiting

Dispatching

Authorizing Authorized

Synchronization bar
Get Order

[cancelled]

swimlane

Purchase
Order Dept.

Finance
Dept.

[rejected]

[accepted]

UML -- 63 2004 John Mylopoulos

Conceptual Modeling CSC2507

More More SwimlanesSwimlanes

Receive
Order

Reorder
Item

Dispatch
Order

Check
Line
Item

Assign to
Order

for each line
item on order*

[in stock]

[need to
reorder]

[stock assigned to
all line items and
payment authorized]

Authorize
Payment

Cancel
Order

[succeeded]

[failed]

Receive
Supply

Choose
Outstanding
Order Items

Assign
Goods to

Order

for each chosen
order item *

[all outstanding
order items filled]

Add
Remainder

to Stock

Order
Processing

Finance Stock
Manager

UML -- 64 2004 John Mylopoulos

Conceptual Modeling CSC2507

Modeling with UMLModeling with UML
(For comparison purposes) To model with UML you need

to answer the following kinds of questions:
�What are the users doing? -- use cases (Jacobson)
�What are the objects in the real world? (Rumbaugh)
�What objects are needed for each use case?

(Jacobson)
�How do objects collaborate? (Jacobson, Booch)
�What are allowable sequences of actions and

activities?
�What are allowable lifelines for objects?
� [How will we implement real-time control?
�How are we going to build this system? (Booch)]

UML -- 65 2004 John Mylopoulos

Conceptual Modeling CSC2507

ConclusionsConclusions

� UML amounts to a combination of EER diagrams,
statecharts and other diagrammatic notations.

� Much of this is useful for conceptual modeling. Some
diagrams, however, are appropriate for software
modeling only.

� The great contribution of UML is that for the first time
ever, there is a modeling standard; this has led to
compatibility and portability of conceptual models.

� The great weakness of UML is that it was designed by
committee, and some design decisions were based on
political, rather than technical considerations.

� Another major weakness of UML is that it is (still largely)
informal. Informal models are not scalable!

UML -- 66 2004 John Mylopoulos

Conceptual Modeling CSC2507

ReferencesReferences
� [Booch97] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling

Language User Guide, Addison-Wesley, 1997.

� [Fowler97] Fowler, M., Scott, K., UML Distilled, Addison-Wesley, 1997.

� [Gogolla98] Gogolla, M., “UML for the Impatient”, technical report 3-98,
Fachberiech Mathematik und Informatik, Universitaet Bremen, 1998.

� [Harel87] Harel, D., “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, 1987.

� [Jacobson92] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard,
G., Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

� [Lochovsky98] Lochovsky, F., Lecture Notes on Software Engineering,
Department of Computer Science, University of Washington, 1998,
http://www.cs.washington.edu/education/courses/403/

� [Motschnig93] Motschnig-Pitrik, R., “The Semantics of Parts versus
Aggregates in Data/Knowledge Modeling”, Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAiSE’93), Paris, June 1993.

� [UML97] http://www.rational.com.

