
Page ‹#›

Formal Requirements Modeling Languages -- 1 2004 John Mylopoulos

Conceptual Modeling CSC2507

From Informal to Formal Conceptual ModelsFrom Informal to Formal Conceptual Models
General-Purpose Formal Specification LanguagesGeneral-Purpose Formal Specification Languages

The Requirements Modeling Language (RML)The Requirements Modeling Language (RML)
GLIDERGLIDER

Formal Requirements Formal Requirements
Modeling LanguagesModeling Languages

Formal Requirements Modeling Languages -- 2 2004 John Mylopoulos

Conceptual Modeling CSC2507

Formality: From Informal to FormalFormality: From Informal to Formal

e.g., graphse.g., graphs

e.g., SADT, UMLe.g., SADT, UML

e.g., extended E-R,e.g., extended E-R,
(parts of) UML(parts of) UML

e.g., Classic, RML, e.g., Classic, RML,
KAOSKAOS

Informal box-and-arrow notations, minimal
syntax, no ontology, no semantics

Informal box-and-arrow notations, minimal
syntax, an ontology, no semantics

Formal box-and-arrow notations, with an
ontology, syntax, and semantics

 Formal conceptual model, with an
assertion language for specifying rules

and constraints

Page ‹#›

Formal Requirements Modeling Languages -- 3 2004 John Mylopoulos

Conceptual Modeling CSC2507

Formal Modeling NotationsFormal Modeling Notations

� A notation is formalformal if it comes with a formal set of rulesformal set of rules
which define its syntaxsyntax and semanticssemantics.

� These rules can be used to determine if an expression is
syntactically or semantically well-formed.

�� BUTBUT, keep in mind that for many situations we want our
models to be understandable by all stakeholders; for this
reason, we want to show the stakeholders informal
sketches of the (formal) models, also the results of
analyses performed on it.

Formal Requirements Modeling Languages -- 4 2004 John Mylopoulos

Conceptual Modeling CSC2507

Ingredients of Formal Notations?Ingredients of Formal Notations?

�� OntologyOntology - a set of assumptions about the nature of the
applications being modeled.

�� TerminologyTerminology - terms for talking about the application
e.g., entities and relationships for the E-R model,

or time points and before, same, after
relationships among them

�� LanguageLanguage - statements one can write in the notation
e.g., well-formed formulas for First Order Logic

�� Abstraction mechanismsAbstraction mechanisms -- structuring mechanisms
used to organize and conceptualize a large model
e.g., generalization, aggregation, classification,...

Page ‹#›

Formal Requirements Modeling Languages -- 5 2004 John Mylopoulos

Conceptual Modeling CSC2507

General-PurposeGeneral-Purpose
Formal Specification NotationsFormal Specification Notations

� Why not use First Order LogicFirst Order Logic or Set TheorySet Theory? General-
purpose formal mathematical notations have been in use
for almost a century, are well-understood and well-known.

� However, such notations, notably First-Order Logic, were
intended for formalizing mathematical theories (e.g.,
Number Theory), so they focus on things such as infinityinfinity
and deduction.deduction.

� For real-world modeling, “common sense” type of
reasoning may be more appropriate than deduction.

� Moreover, these notations don’t support suitable
abstractions for structuring large specifications.

Formal Requirements Modeling Languages -- 6 2004 John Mylopoulos

Conceptual Modeling CSC2507

Formal Specification LanguagesFormal Specification Languages

� Were developed largely for specifying programs, rather
than model parts of the world.

� Specification languages come in three basic flavours:

�� OperationalOperational -- specification is executable abstraction of
the implementation, e.g., Lisp, Prolog, Smalltalk

�� State-basedState-based -- view a software system in terms of states
and procedures, e.g., VDM, Z

�� AlgebraicAlgebraic -- view a program as a set of abstract data
structures together with a set of operations; operations
are defined in terms of algebraic axioms, e.g., Larch,
CLEAR, OBJ

Page ‹#›

Formal Requirements Modeling Languages -- 7 2004 John Mylopoulos

Conceptual Modeling CSC2507

A Critique of General-PurposeA Critique of General-Purpose
Formal Specification LanguagesFormal Specification Languages

� To model parts of the real world (physical, social, or
psychological), it is useful to have notations which have
built-in the notion of timetime, entityentity, activityactivity, agentagent, goalgoal, etc.

� Formal specification languages are more appropriate for
specifying what a software component needs to do during
design, rather than model the world.

� Formal specification languages are also weak with respect
to structuring; their structuring techniques, encapsulationencapsulation,
parameterizationparameterization, motivated primarily by programming
languages rather than knowledge representation and
conceptual models.

Formal Requirements Modeling Languages -- 8 2004 John Mylopoulos

Conceptual Modeling CSC2507

�� Sol GreenspanSol Greenspan’’s PhD thesis (DCS, 1984); s PhD thesis (DCS, 1984); Conceived
as a formalization of SADT diagrams

�� Basic IdeaBasic Idea -- Use knowledge representation ideas to
design a requirements modeling language

�� ConstructsConstructs -- include a logical sublanguage for
integrity constraints and deductive rules

�� AbstractionsAbstractions -- generalization, attribution, classific.
�� TimeTime -- requirements models as histories of the

application domain [Greenspan86]
� Metaclasses -- which define the RML domain model

Last two features not fully addressedLast two features not fully addressed

RML: A Requirements ModelingRML: A Requirements Modeling
LanguageLanguage

Page ‹#›

Formal Requirements Modeling Languages -- 9 2004 John Mylopoulos

Conceptual Modeling CSC2507

EntityClass Patients with
necessary, unique, partnecessary, unique, part

record: MedicalRecords
associationassociation

location: NursingHomes; room: Rooms; physician: Doctors
producerproducer

register: AdmitPatients(per<-this)
modifiermodifier

assessment: Assess(patient<-this)
consumerconsumer

release: Discharge(patient<-this) ...
initiallyinitially

rightPlace?: record.place = location
startClean?: paymentDue = 0

end Patients

An Entity ClassAn Entity Class

Formal Requirements Modeling Languages -- 10 2004 John Mylopoulos

Conceptual Modeling CSC2507

An Activity ClassAn Activity Class
ActivityClass AdmitPatients with

inputinput
per: Persons

controlcontrol
home: NursingHome
doc: Doctors

outputoutput
pat: Patients

initiallyinitially
alreadyIn?: not(p in Patients)

finallyfinally
...

partpart
getBasicInfo: Interview(whom<-per)
place: AssignRoom(...)
...

end AdmitPatients

Page ‹#›

Formal Requirements Modeling Languages -- 11 2004 John Mylopoulos

Conceptual Modeling CSC2507

� Assertion classes represent assertions with free variables.
� Instances of an assertion classes represent closed formulas (no free

variables) which are true.
For example,

AssertionClass IsTreatedWith with
argarg

p: Patients
t: Treatments

partpart
c1: Available(tr<-t, at<-p.loc)
c2: Recommended(...)

end IsTreatedWith

Assertion ClassesAssertion Classes

Formal Requirements Modeling Languages -- 12 2004 John Mylopoulos

Conceptual Modeling CSC2507

Entity Activity Assertion
Entity part producer initially

assoc consumer finally
 ... modifier invariant

Activity input initially
output part finally
control trigger

Assertion arg arg part
trigger

EntityEntity ActivityActivity AssertionAssertion
EntityEntity part part producerproducer initiallyinitially

assoc assoc consumerconsumer finallyfinally
 modifiermodifier invariantinvariant

ActivityActivity inputinput initiallyinitially
output output part part finallyfinally
controlcontrol triggertrigger

AssertionAssertion argarg arg arg partpart
triggertrigger

Attribute CategoriesAttribute Categories

Page ‹#›

Formal Requirements Modeling Languages -- 13 2004 John Mylopoulos

Conceptual Modeling CSC2507

Formalization of RMLFormalization of RML

τ: RML → L augmented, many-sorted Logic,
totally ordered, dense time points

�The Logic L includes axioms for
structuring mechanisms
built-in property categories
...

� Sample axiom
isA(C, D) ∧ in(x, C, t) ⇒ in(x, D, t)
“if C isA D and x is an instance of C at time t then
x is an instance of D at time t”

Formal Requirements Modeling Languages -- 14 2004 John Mylopoulos

Conceptual Modeling CSC2507

Formalizing an Attribute CategoryFormalizing an Attribute Category

dvp means “definitional property value”,
 represents an attribute type associated with a class
fvp means “factual property value”, an attribute
 instance

Assume that C is an entity and D an assertion
 class

dpv(C, i) = D ∧ D ≠ null ∧ InitCond(C, i) ⇒
∀ x, t[Inserted(x, C, t) ⇒ fpv(x, i, t) ≠ null

“ If I is an initialCond attribute from (entity) class C to
(assertion) class D then when x becomes an instance of
class C, the assertion
class D is true for object x”

CCC DDD
iii

initCondinitCond attribute

xxx ααααααααααααiii

Page ‹#›

Formal Requirements Modeling Languages -- 15 2004 John Mylopoulos

Conceptual Modeling CSC2507

� A formal language for expressing requirements
� Offers modal temporal operators for the representation of

time
� Supports abstractions, including generalization,

aggregation and a form of encapsulation
� Successor to ERAE and predecessor to ALBERT

[Dubois92]

GLIDERGLIDER

Formal Requirements Modeling Languages -- 16 2004 John Mylopoulos

Conceptual Modeling CSC2507

Library ExampleLibrary Example

Books Users

Requests

Borrowings
Name
Surname0:1

0:N 0:N

0:N

� Boxes represent entity types, polygons relationship
types.
� From this sketch we can start putting together a
requirements specification.

Page ‹#›

Formal Requirements Modeling Languages -- 17 2004 John Mylopoulos

Conceptual Modeling CSC2507

Type Definitions and ConstraintsType Definitions and Constraints
Fixed Books: BOOK

Users: USER
Varying Borrowings: BOOK × USER

Requests: BOOK × USER

Constraints -- start with connectivity, cardinality constraints,
Borrowings(b, u) ⇒ Books(b) ∧ Users(u)

• A user cannot issue a request for a book she has borrowed
Requests(b, u) ⇒ ¬Borrowings(b, u)

• Books on the shelves for which there is a pending request,
are allocated without delay:
¬∃ u: Borrowings(b, u) ∧ ∃ u': Requests(b, u') ⇒

 �(∃ u": Borrowings(b, u"))

Formal Requirements Modeling Languages -- 18 2004 John Mylopoulos

Conceptual Modeling CSC2507

More ConstraintsMore Constraints

• A book can only be allocated to a waiting user
 Borrowings(b, u) ∧ �¬ Borrowings(b, u) ⇒

�Requests(b, u)
• Borrowed books are returned within 30 days
 Borrowings(b, u) ⇒ �≤30days¬ Borrowings(b, u)
• A waiting user waits until she borrows the book she is
waiting for
Requests(b, u) ⇒ �(Requests(b, u) ∨ Borrowings(b, u))

Page ‹#›

Formal Requirements Modeling Languages -- 19 2004 John Mylopoulos

Conceptual Modeling CSC2507

The Temporal Operators of GLIDERThe Temporal Operators of GLIDER
�φ - φ is true in the next state/time point
�φ - φ is true in the previous state/time point
�≤xφ - φ will be true sometime (within x)
�≤xφ - φ was true sometime (within x)
�φ - φ will always be true
�φ - φ was always true
φ U ψ - φ is true until ψ becomes true
φ S ψ - φ has been true since ψ became true

Notation:
circle - previous/next state/time point
double arrow - sometime in the past/future
square - always in the past/future

Formal Requirements Modeling Languages -- 20 2004 John Mylopoulos

Conceptual Modeling CSC2507

Events in GLIDEREvents in GLIDER

OnShelfBooks

Users

Pending
Requests

Name

Surname0:N 1:N

RequestUsers

Allocations

Requests

BorrowedBooks

Returns

Borrowings 0:N1:1

Library

Environment

Page ‹#›

Formal Requirements Modeling Languages -- 21 2004 John Mylopoulos

Conceptual Modeling CSC2507

Parameterized ClustersParameterized Clusters

Type Cluster ResourceAlloc(RESOURCE, CONSUMER)
Fixed

Consumer: CONSUMER
Varying

Resources: RESOURCE
WaitingConsumers: CONSUMER
PendingRequests: RESOURCE × CONSUMER

Interface events
Grants: RESOURCE × CONSUMER

…

Formal Requirements Modeling Languages -- 22 2004 John Mylopoulos

Conceptual Modeling CSC2507

Parameterized ClustersParameterized Clusters

Constraints
• A grant occurs for an available resource and a waiting

consumer
• A request is pending until the resource is granted
...
Type Cluster Library is ResourceAlloc(BOOK, USER)
...

A whole set of declarations, constraints can beA whole set of declarations, constraints can be
derived from the parameterized clusterderived from the parameterized cluster

Page ‹#›

Formal Requirements Modeling Languages -- 23 2004 John Mylopoulos

Conceptual Modeling CSC2507

Additional ReadingAdditional Reading

� [Dubois92] Dubois, E., Du Bois, P., Rifaut, A., "Elaborating, Structuring and
Expressing Formal Requirements of Composite Systems", Proceedings Fourth
International Conference on Advanced Information System Engineering
(CAiSE’92), Manchester, May 1992.
� [Greenspan86] Greenspan, S., Borgida, A. and Mylopoulos, J., "A
Requirements Modelling Language and its Logic", Information Systems 11(1),
January 1986.
� [Guttag85] Guttag, J., Horning, J., Wing, J., “The Larch Family of
Specification Languages”, IEEE Software, September 1985.

