
Page 1 Copyright © 1997 by Rational Software Corporation

Analysis and Design
with UML

Page 2 Copyright © 1997 by Rational Software Corporation

Agenda

n Benefits of Visual Modeling

n History of the UML

n Visual Modeling with UML

n The Rational Iterative Development Process

Page 3 Copyright © 1997 by Rational Software Corporation

Computer System

Business Process

Order

Item

Ship via

“Modeling captures essential
 parts of the system.”

 Dr. James Rumbaugh

Visual Modeling is
modeling
using standard graphical
notations

What is Visual Modeling?

Page 4 Copyright © 1997 by Rational Software Corporation

Use Case Analysis is a technique to capture
business process from user’s perspective

Visual Modeling Captures
Business Process

Page 5 Copyright © 1997 by Rational Software Corporation

Visual Modeling is a
Communication Tool

Use visual modeling to capture business objects and logic

Use visual modeling to analyze and design your application

Page 6 Copyright © 1997 by Rational Software Corporation

Visual Modeling
Manages Complexity

Page 7 Copyright © 1997 by Rational Software Corporation

User Interface
(Visual Basic,

Java)
Business Logic

(C++, Java)

Database Server
(C++ & SQL)

Model your system
independent of

implementation language

Visual Modeling
Defines Software
Architecture

Page 8 Copyright © 1997 by Rational Software Corporation

Multiple Systems

Visual Modeling
Promotes Reuse

Reusable
Components

Page 9 Copyright © 1997 by Rational Software Corporation

What is the UML?

n UML stands for Unified Modeling Language

n The UML combines the best of the best from
– Data Modeling concepts (Entity Relationship Diagrams)

– Business Modeling (work flow)

– Object Modeling

– Component Modeling

n The UML is the standard language for visualizing,
specifying, constructing, and documenting the artifacts of a
software-intensive system

n It can be used with all processes, throughout the
development life cycle, and across different implementation
technologies

Page 10 Copyright © 1997 by Rational Software Corporation

History of the UML

Nov ‘97 UML approved by the OMG

Page 11 Copyright © 1997 by Rational Software Corporation

UML Supports
Application Development

Classes
application partitioning

Business Objects
Relationships

Business Process

Objects

Use Cases

large scale system

Scenarios
Components
Microsoft

ActiveX/COM
Microsoft

ORDBMS
Oracle

CORBA
OMG

Page 12 Copyright © 1997 by Rational Software Corporation

UML Concepts

n The UML may be used to:
– Display the boundary of a system & its major functions using use

cases and actors

– Illustrate use case realizations with interaction diagrams

– Represent a static structure of a system using class diagrams

– Model the behavior of objects with state transition diagrams

– Reveal the physical implementation architecture with component
& deployment diagrams

– Extend your functionality with stereotypes

Page 13 Copyright © 1997 by Rational Software Corporation

Putting the UML to Work

n The ESU University wants to computerize their registration
system

– The Registrar sets up the curriculum for a semester

• One course may have multiple course offerings

– Students select 4 primary courses and 2 alternate courses

– Once a student registers for a semester, the billing system is
notified so the student may be billed for the semester

– Students may use the system to add/drop courses for a period of
time after registration

– Professors use the system to receive their course offering rosters

– Users of the registration system are assigned passwords which are
used at logon validation

Page 14 Copyright © 1997 by Rational Software Corporation

Actors

n An actor is someone or some thing that must interact with
the system under development

Student

Registrar

Professor

Billing System

Page 15 Copyright © 1997 by Rational Software Corporation

Use Cases

n A use case is a pattern of behavior the system exhibits
– Each use case is a sequence of related transactions performed by

an actor and the system in a dialogue

n Actors are examined to determine their needs
– Registrar -- maintain the curriculum

– Professor -- request roster

– Student -- maintain schedule

– Billing System -- receive billing information from registration

Maintain ScheduleMaintain Curriculum Request Course Roster

Page 16 Copyright © 1997 by Rational Software Corporation

Documenting Use Cases

n A flow of events document is created for each use cases
– Written from an actor point of view

n Details what the system must provide to the actor when the
use cases is executed

n Typical contents
– How the use case starts and ends

– Normal flow of events

– Alternate flow of events

– Exceptional flow of events

Page 17 Copyright © 1997 by Rational Software Corporation

Maintain Curriculum
Flow of Events

n This use case begins when the Registrar logs onto the Registration
System and enters his/her password. The system verifies that the
password is valid (E-1) and prompts the Registrar to select the current
semester or a future semester (E-2). The Registrar enters the desired
semester. The system prompts the professor to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.

n If the activity selected is ADD, the S-1: Add a Course subflow is
performed.

n If the activity selected is DELETE, the S-2: Delete a Course subflow is
performed.

n If the activity selected is REVIEW, the S-3: Review Curriculum
subflow is performed.

n If the activity selected is QUIT, the use case ends.

n ...

Page 18 Copyright © 1997 by Rational Software Corporation

Use Case Diagram

n Use case diagrams are created to visualize the relationships
between actors and use cases

Student

Registrar

Professor

Maintain Schedule

Maintain Curriculum

Request Course Roster

Billing System

Page 19 Copyright © 1997 by Rational Software Corporation

Uses and Extends Use
Case Relationships

n As the use cases are documented, other use case
relationships may be discovered

– A uses relationship shows behavior that is common to one or
more use cases

– An extends relationship shows optional behavior

Register for courses

<<uses>>

Logon validation
<<uses>>

Maintain curriculum

Page 20 Copyright © 1997 by Rational Software Corporation

Use Case Realizations

n The use case diagram presents an outside view of the system

n Interaction diagrams describe how use cases are realized as
interactions among societies of objects

n Two types of interaction diagrams
– Sequence diagrams

– Collaboration diagrams

Page 21 Copyright © 1997 by Rational Software Corporation

Sequence Diagram

n A sequence diagram displays object interactions arranged
in a time sequence

 : Student registration
form

registration
manager

math 101

1: fill in info

2: submit

3: add course(joe, math 01)

4: are you open?
5: are you open?

6: add (joe)
7: add (joe)

math 101
section 1

Page 22 Copyright © 1997 by Rational Software Corporation

 : Registrar

course form :
CourseForm

theManager :
CurriculumManageraCourse :

Course

1: set course info
2: process

3: add course

4: new course

Collaboration Diagram

n A collaboration diagram displays object interactions
organized around objects and their links to one another

Page 23 Copyright © 1997 by Rational Software Corporation

Class Diagrams

n A class diagram shows the existence of classes and their
relationships in the logical view of a system

n UML modeling elements in class diagrams
– Classes and their structure and behavior

– Association, aggregation, dependency, and inheritance
relationships

– Multiplicity and navigation indicators

– Role names

Page 24 Copyright © 1997 by Rational Software Corporation

Classes

n A class is a collection of objects with common structure,
common behavior, common relationships and common
semantics

n Classes are found by examining the objects in sequence and
collaboration diagram

n A class is drawn as a rectangle with three compartments

n Classes should be named using the vocabulary of the
domain

– Naming standards should be created

– e.g., all classes are singular nouns starting with a capital letter

Page 25 Copyright © 1997 by Rational Software Corporation

Classes

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

ScheduleAlgorithm

Page 26 Copyright © 1997 by Rational Software Corporation

Operations

n The behavior of a class is represented by its operations

n Operations may be found by examining interaction
diagrams

registration
form

registration
manager

3: add course(joe, math 01)

RegistrationManager

addCourse(Student,Course)

Page 27 Copyright © 1997 by Rational Software Corporation

Attributes

n The structure of a class is represented by its attributes

n Attributes may be found by examining class definitions, the
problem requirements, and by applying domain knowledge

Each course offering
has a number, location
and time

CourseOffering

number
location
time

Page 28 Copyright © 1997 by Rational Software Corporation

Classes

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo)
Course

name
numberCredits

open()
addStudent(StudentInfo)

Student
name
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
name
tenureStatus

ScheduleAlgorithm

Page 29 Copyright © 1997 by Rational Software Corporation

Relationships

n Relationships provide a pathway for communication
between objects

n Sequence and/or collaboration diagrams are examined to
determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk”
there must be a link between them

n Three types of relationships are:
– Association

– Aggregation

– Dependency

Page 30 Copyright © 1997 by Rational Software Corporation

Relationships

n An association is a bi-directional connection between classes
– An association is shown as a line connecting the related classes

n An aggregation is a stronger form of relationship where the
relationship is between a whole and its parts

– An aggregation is shown as a line connecting the related classes
with a diamond next to the class representing the whole

n A dependency relationship is a weaker form of relationship
showing a relationship between a client and a supplier
where the client does not have semantic knowledge of the
supplier

n A dependency is shown as a dashed line pointing from the
client to the supplier

Page 31 Copyright © 1997 by Rational Software Corporation

Registration
Manager

Math 101:
Course

3: add student(joe)

RegistrationManager

Course

Finding Relationships

n Relationships are discovered by examining interaction
diagrams

– If two objects must “talk” there must be a pathway for
communication

Page 32 Copyright © 1997 by Rational Software Corporation

Relationships

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)name

major

location

open()
addStudent(StudentInfo)

name
tenureStatus

ScheduleAlgorithm

Page 33 Copyright © 1997 by Rational Software Corporation

Multiplicity and Navigation

n Multiplicity defines how many objects participate in a
relationships

– Multiplicity is the number of instances of one class related to
ONE instance of the other class

– For each association and aggregation, there are two multiplicity
decisions to make: one for each end of the relationship

n Although associations and aggregations are bi-directional
by default, it is often desirable to restrict navigation to one
direction

n If navigation is restricted, an arrowhead is added to
indicate the direction of the navigation

Page 34 Copyright © 1997 by Rational Software Corporation

Multiplicity and Navigation

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

1
0..*

0..*

1

1

1..*
4

3..10

0..4
1

Page 35 Copyright © 1997 by Rational Software Corporation

Inheritance

n Inheritance is a relationships between a superclass and its
subclasses

n There are two ways to find inheritance:
– Generalization

– Specialization

n Common attributes, operations, and/or relationships are
shown at the highest applicable level in the hierarchy

Page 36 Copyright © 1997 by Rational Software Corporation

Inheritance

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

name

RegistrationUser

Page 37 Copyright © 1997 by Rational Software Corporation

The State of an Object

n A state transition diagram shows
– The life history of a given class

– The events that cause a transition from one state to another

– The actions that result from a state change

n State transition diagrams are created for objects with
significant dynamic behavior

Page 38 Copyright © 1997 by Rational Software Corporation

State Transition Diagram

Initialization
Open

entry: Register student
exit: Increment count

Closed

Canceled

do: Initialize course

do: Finalize course

do: Notify registered students

Add Student /
Set count = 0

Add student[count < 10]

[count = 10]

Cancel

Cancel

Cancel

Page 39 Copyright © 1997 by Rational Software Corporation

The Physical World

n Component diagrams illustrate the organizations and
dependencies among software components

n A component may be
– A source code component

– A run time components or

– An executable component

Page 40 Copyright © 1997 by Rational Software Corporation

Course Course
Offering

Student Professor

Component Diagram

Course.dll

People.dll

Course

User

Register.exeBilling.exe

Billing
System

Page 41 Copyright © 1997 by Rational Software Corporation

Deploying the System

n The deployment diagram shows the configuration of run-
time processing elements and the software processes living
on them

n The deployment diagram visualizes the distribution of
components across the enterprise.

Page 42 Copyright © 1997 by Rational Software Corporation

Deployment Diagram

Registration Database

Library

Dorm

Main
Building

Page 43 Copyright © 1997 by Rational Software Corporation

Extending the UML

n Stereotypes can be used to extend the UML notational
elements

n Stereotypes may be used to classify and extend associations,
inheritance relationships, classes, and components

n Examples:
– Class stereotypes: boundary, control, entity, utility, exception

– Inheritance stereotypes: uses and extends

– Component stereotypes: subsystem

Page 44 Copyright © 1997 by Rational Software Corporation

What the Iterative Life
Cycle Is Not

n It is not hacking

n It is not a playpen for developers

n It is not unpredictable

n It is not redesigning the same thing over and over until it is
perfect

n It is not an excuse for not planning and managing a project

n It is not something that affects only the developers on a
project

Page 45 Copyright © 1997 by Rational Software Corporation

What the Iterative Life
Cycle Is

n It is planned and managed

n It is predictable

n It accommodates changes to requirements with less
disruption

n It is based on evolving executable prototypes, not
documentation

n It involves the user/customer throughout the process

n It is risk driven

Page 46 Copyright © 1997 by Rational Software Corporation

Three Important
Features of the Iterative
Approach

n Continuous integration
– Not done in one lump near the delivery date

n Frequent, executable releases
– Some internal; some delivered

n Attack risks through demonstrable progress
– Progress measured in products, not documentation or

engineering estimates

Page 47 Copyright © 1997 by Rational Software Corporation

Resulting Benefits

n Releases are a forcing function that drives the development
team to closure at regular intervals

– Cannot have the “90% done with 90% remaining” phenomenon

n Can incorporate problems/issues/changes into future
iterations rather than disrupting ongoing production

n The project’s supporting elements (testers, writers,
toolsmiths, CM, QA, etc.) can better schedule their work

Page 48 Copyright © 1997 by Rational Software Corporation

Risk

Transition

Inception

Elaboration

Construction

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Post-
deployment

Waterfall

Time

Risk Profile of an
Iterative Development

Page 49 Copyright © 1997 by Rational Software Corporation

Risk Management Phase-
by-Phase

n Inception
– Bracket the project’s risks by building a proof of concept

n Elaboration
– Develop a common understanding of the system’s scope and

desired behavior by exploring scenarios with end users and
domain experts

– Establish the system’s architecture

– Design common mechanisms to address system-wide issues

Page 50 Copyright © 1997 by Rational Software Corporation

Risk Management Phase-
by-Phase (cont.)

n Construction
– Refine the architecture

– Risk-driven iterations

– Continuous integration

n Transition
– Facilitate user acceptance

– Measure user satisfaction

n Post-deployment cycles
– Continue evolutionary approach

– Preserve architectural integrity

Page 51 Copyright © 1997 by Rational Software Corporation

Initial Project Risks
Initial Project Scope

Revise Overall
Project Plan
• Cost
• Schedule
• Scope/Content

Plan Iteration N
• Cost
• Schedule

Assess Iteration N

Risks Eliminated
Revise Project Risks
• Reprioritize

Develop Iteration N
• Collect cost and
quality metrics

Define scenarios to
address highest risks

Iteration N

Risk Reduction Drives
Iterations

Page 52 Copyright © 1997 by Rational Software Corporation

Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration 3

Iteration Planning
Rqmts Capture

Analysis & Design
Implementation

 Test
Prepare Release

“Mini-Waterfall” Process

Use Cases Drive the
Iteration Process

Page 53 Copyright © 1997 by Rational Software Corporation

The Iteration Life Cycle:
A Mini-Waterfall

• Results of previous iterations
• Up-to-date risk assessment
• Controlled libraries of models,

code, and tests

Release description
Updated risk assessment
Controlled libraries

Iteration Planning

Requirements Capture

Analysis & Design

Implementation

Test

Prepare Release

Selected scenarios

Page 54 Copyright © 1997 by Rational Software Corporation

Detailed Iteration Life
Cycle Activities

n Iteration planning
– Before the iteration begins, the general objectives of the iteration

should be established based on

• Results of previous iterations (if any)

• Up-to-date risk assessment for the project

– Determine the evaluation criteria for this iteration

– Prepare detailed iteration plan for inclusion in the development
plan

• Include intermediate milestones to monitor progress

• Include walkthroughs and reviews

Page 55 Copyright © 1997 by Rational Software Corporation

Detailed Iteration Life
Cycle Activities (cont.)

n Requirements Capture
– Select/define the use cases to be implemented in this iteration

– Update the object model to reflect additional domain classes and
associations discovered

– Develop a test plan for the iteration

Page 56 Copyright © 1997 by Rational Software Corporation

Detailed Iteration Life
Cycle Activities (cont.)

n Analysis & Design
– Determine the classes to be developed or updated in this iteration

– Update the object model to reflect additional design classes and
associations discovered

– Update the architecture document if needed

– Begin development of test procedures

n Implementation
– Automatically generate code from the design model

– Manually generate code for operations

– Complete test procedures

– Conduct unit and integration tests

Page 57 Copyright © 1997 by Rational Software Corporation

Detailed Iteration Life
Cycle Activities (cont.)

n Test
– Integrate and test the developed code with the rest of the system

(previous releases)

– Capture and review test results

– Evaluate test results relative to the evaluation criteria

– Conduct an iteration assessment

n Prepare the release description
– Synchronize code and design models

– Place products of the iteration in controlled libraries

Page 58 Copyright © 1997 by Rational Software Corporation

Work Allocation Within
an Iteration

n Work to be accomplished within an iteration is determined
by

– The (new) use cases to be implemented

– The rework to be done

n Packages make convenient work packages for developers
– High-level packages can be assigned to teams

– Lower-level packages can be assigned to individual developers

n Use Cases make convenient work packages for test and
assessment teams

n Packages are also useful in determining the granularity at
which configuration management will be applied

– For example, check-in and check-out of individual packages

Page 59 Copyright © 1997 by Rational Software Corporation

Iteration Assessment

n Assess iteration results relative to the evaluation criteria
established during iteration planning:

– Functionality

– Performance

– Capacity

– Quality measures

n Consider external changes that have occurred during this
iteration

– For example, changes to requirements, user needs, competitor’s
plans

n Determine what rework, if any, is required and assign it to
the remaining iterations

Page 60 Copyright © 1997 by Rational Software Corporation

Selecting Iterations

n How many iterations do I need?
– On projects taking 18 months or less, 3 to 6 iterations are typical

n Are all iterations on a project the same length?
– Usually

– Iteration length may vary by phase. For example, elaboration
iterations may be shorter than construction iterations

Page 61 Copyright © 1997 by Rational Software Corporation

The First Iteration

n The first iteration is usually the hardest
– Requires the entire development environment and most of the

development team to be in place

– Many tool integration issues, team-building issues, staffing issues,
etc. must be resolved

n Teams new to an iterative approach are usually overly-
optimistic

n Be modest regarding the amount of functionality that can
be achieved in the first iteration

– Otherwise, completion of the first iteration will be delayed,

– The total number of iterations reduced, and

– The benefits of an iterative approach reduced

Page 62 Copyright © 1997 by Rational Software Corporation

There Is No Silver Bullet

n Remember the main reason for using the iterative life cycle:
– You do not have all the information you need up front

– Things will change during the development period

n You must expect that
– Some risks will not be eliminated as planned

– You will discover new risks along the way

– Some rework will be required; some lines of code developed for
an iteration will be thrown away

– Requirements will change along the way

Page 63 Copyright © 1997 by Rational Software Corporation

