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Analysis and Design
with UML
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n Benefits of Visual Modeling

n History of the UML

n Visual Modeling with UML

n The Rational Iterative Development Process
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Computer System

Business Process

Order

Item

Ship via

“Modeling captures essential 
    parts of the system.”

        Dr. James Rumbaugh

Visual Modeling is
modeling
using standard graphical
notations

What is Visual Modeling?
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Use Case Analysis is a technique to capture
business process from user’s perspective

Visual Modeling Captures
Business Process
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Visual Modeling is a
Communication Tool

Use visual modeling to capture business objects and logic

Use visual modeling to analyze and design your application
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Visual Modeling
Manages Complexity
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User Interface
(Visual Basic,

Java)
Business Logic

(C++, Java)

Database Server
(C++ & SQL)

Model your system
independent of 

implementation language

Visual Modeling
Defines Software
Architecture
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Multiple Systems

Visual Modeling
Promotes Reuse

Reusable
Components
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What is the UML?

n UML stands for Unified Modeling Language

n The UML combines the best of the best from
– Data Modeling concepts (Entity Relationship Diagrams)

– Business Modeling (work flow)

– Object Modeling

– Component Modeling

n The UML is the standard language for visualizing,
specifying, constructing, and documenting the artifacts of a
software-intensive system

n  It can be used with all processes, throughout the
development life cycle, and across different implementation
technologies
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History of the UML

Nov ‘97 UML approved by the OMG
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UML Supports
Application Development

Classes
application partitioning

Business Objects
Relationships

Business Process

Objects

Use Cases

large scale system

Scenarios
Components
Microsoft

ActiveX/COM
Microsoft

ORDBMS
Oracle

CORBA
OMG
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UML Concepts

n The UML may be used to:
– Display the boundary of a system & its major functions using use

cases and actors

– Illustrate use case realizations with interaction diagrams

– Represent a static structure of a system using class diagrams

– Model the behavior of objects with state transition diagrams

– Reveal the physical implementation architecture with component
& deployment diagrams

– Extend your functionality with stereotypes
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Putting the UML to Work

n The ESU University wants to computerize their registration
system

– The Registrar sets up the curriculum for a semester

• One course may have multiple course offerings

– Students select 4 primary courses and 2 alternate courses

– Once a student registers for a semester, the billing system is
notified so the student may be billed for the semester

– Students may use the system to add/drop courses for a period of
time after registration

– Professors use the system to receive their course offering rosters

– Users of the registration system are assigned passwords which are
used at logon validation
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Actors

n An actor is someone or some thing that must interact with
the system under development

Student

Registrar

Professor

Billing System
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Use Cases

n A use case is a pattern of behavior the system exhibits
– Each use case is a sequence of related transactions performed by

an actor and the system in a dialogue

n Actors are examined to determine their needs
– Registrar -- maintain the curriculum

– Professor -- request roster

– Student -- maintain schedule

– Billing System -- receive billing information from registration

Maintain ScheduleMaintain Curriculum Request Course Roster
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Documenting Use Cases

n A flow of events document is created for each use cases
– Written from an actor point of view

n Details what the system must provide to the actor when the
use cases is executed

n Typical contents
– How the use case starts and ends

– Normal flow of events

– Alternate flow of events

– Exceptional flow of events
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Maintain Curriculum
Flow of Events

n This use case begins when the Registrar logs onto the Registration
System and enters his/her password.  The system verifies that the
password is valid (E-1) and prompts the Registrar to select the current
semester or a future semester (E-2).  The Registrar enters the desired
semester.  The system prompts the professor to select the desired
activity:  ADD, DELETE, REVIEW, or QUIT.

n If the activity selected is ADD, the S-1:  Add a Course subflow is
performed.

n If the activity selected is DELETE, the S-2:  Delete a Course subflow is
performed.

n If the activity selected is REVIEW, the S-3:  Review Curriculum
subflow is performed.

n If the activity selected is QUIT, the use case ends.

n ...
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Use Case Diagram

n Use case diagrams are created to visualize the relationships
between actors and use cases

Student

Registrar

Professor

Maintain Schedule

Maintain Curriculum

Request Course Roster

Billing System
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Uses and Extends Use
Case Relationships

n As the use cases are documented, other use case
relationships may be discovered

– A uses relationship shows behavior that is common to one or
more use cases

– An extends relationship shows optional behavior

Register for courses

<<uses>>

Logon validation
<<uses>>

Maintain curriculum
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Use Case Realizations

n The use case diagram presents an outside view of the system

n Interaction diagrams describe how use cases are realized as
interactions among societies of objects

n Two types of interaction diagrams
– Sequence diagrams

– Collaboration diagrams



Page  21 Copyright © 1997 by Rational Software Corporation

Sequence Diagram

n A sequence diagram displays object interactions arranged
in a time sequence

 : Student registration 
form

registration 
manager

math 101

1: fill in info

2: submit

3: add course(joe, math 01)

4: are you open?
5: are you open?

6: add (joe)
7: add (joe)

math 101 
section 1
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 : Registrar

course form : 
CourseForm

theManager : 
CurriculumManageraCourse : 

Course

1: set course info
2: process

3: add course

4: new course

Collaboration Diagram

n A collaboration diagram displays object interactions
organized around objects and their links to one another
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Class Diagrams

n A class diagram shows the existence of classes and their
relationships in the logical view of a system

n UML modeling elements in class diagrams
– Classes and their structure and behavior

– Association, aggregation, dependency, and inheritance
relationships

– Multiplicity and navigation indicators

– Role names
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Classes

n A class is a collection of objects with common structure,
common behavior, common relationships and common
semantics

n Classes are found by examining the objects in sequence and
collaboration diagram

n A class is drawn as a rectangle with three compartments

n Classes should be named using the vocabulary of the
domain

– Naming standards should be created

– e.g., all classes are singular nouns starting with a capital letter
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Classes

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

ScheduleAlgorithm
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Operations

n The behavior of a class is represented by its operations

n Operations may be found by examining interaction
diagrams

registration 
form

registration 
manager

3: add course(joe, math 01)

RegistrationManager

addCourse(Student,Course)
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Attributes

n The structure of a class is represented by its attributes

n Attributes may be found by examining class definitions, the
problem requirements, and by applying domain knowledge

Each course offering
has a number, location 
and time

CourseOffering

number
location
time
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Classes

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo)
Course

name
numberCredits

open()
addStudent(StudentInfo)

Student
name
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
name
tenureStatus

ScheduleAlgorithm
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Relationships

n Relationships provide a pathway for communication
between objects

n Sequence and/or collaboration diagrams are examined to
determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk”
there must be a link between them

n Three types of relationships are:
– Association

– Aggregation

– Dependency
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Relationships

n An association is a bi-directional connection between classes
– An association is shown as a line connecting the related classes

n An aggregation is a stronger form of relationship where the
relationship is between a whole and its parts

– An aggregation is shown as a line connecting the related classes
with a diamond next to the class representing the whole

n A dependency relationship is a weaker form of relationship
showing a relationship between a client and a supplier
where the client does not have semantic knowledge of the
supplier

n A dependency is shown as a dashed line pointing from the
client to the supplier
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Registration 
Manager

Math 101: 
Course

3: add student(joe)

RegistrationManager

Course

Finding Relationships

n Relationships are discovered by examining interaction
diagrams

– If two objects must “talk” there must be a pathway for
communication

Page  32 Copyright © 1997 by Rational Software Corporation

Relationships

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)name

major

location

open()
addStudent(StudentInfo)

name
tenureStatus

ScheduleAlgorithm
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Multiplicity and Navigation

n Multiplicity defines how many objects participate in a
relationships

– Multiplicity is the number of instances of one class related to
ONE instance of the other class

– For each association and aggregation, there are two multiplicity
decisions to make:  one for each end of the relationship

n Although associations and aggregations are bi-directional
by default, it is often desirable to restrict navigation to one
direction

n If navigation is restricted, an arrowhead is added to
indicate the direction of the navigation
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Multiplicity and Navigation

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

1
0..*

0..*

1

1

1..*
4

3..10

0..4
1
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Inheritance

n Inheritance is a relationships between a superclass and its
subclasses

n There are two ways to find inheritance:
– Generalization

– Specialization

n Common attributes, operations, and/or relationships are
shown at the highest applicable level in the hierarchy
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Inheritance

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

name

RegistrationUser
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The State of an Object

n A state transition diagram shows
– The life history of a given class

– The events that cause a transition from one state to another

– The actions that result from a state change

n State transition diagrams are created for objects with
significant dynamic behavior
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State Transition Diagram

Initialization
Open

entry: Register student
exit: Increment count

Closed

Canceled

do: Initialize course

do: Finalize course

do: Notify registered students

Add Student / 
Set count = 0

Add student[ count < 10 ]

[ count = 10 ]

Cancel

Cancel

Cancel
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The Physical World

n Component diagrams illustrate the organizations and
dependencies among software components

n A component may be
– A source code component

– A run time components or

– An executable component
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Course Course
Offering

Student Professor

Component Diagram

Course.dll

People.dll

Course

User

Register.exeBilling.exe

Billing
System
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Deploying the System

n The deployment diagram shows the configuration of run-
time processing elements and the software processes living
on them

n The deployment diagram visualizes the distribution of
components across the enterprise.
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Deployment Diagram

Registration Database

Library

Dorm

Main 
Building
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Extending the UML

n Stereotypes can be used to extend the UML notational
elements

n Stereotypes may be used to classify and extend associations,
inheritance relationships, classes, and components

n Examples:
– Class stereotypes:  boundary, control, entity, utility, exception

– Inheritance stereotypes:  uses and extends

– Component stereotypes:  subsystem
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What the Iterative Life
Cycle Is Not

n It is not hacking

n It is not a playpen for developers

n It is not unpredictable

n It is not redesigning the same thing over and over until it is
perfect

n It is not an excuse for not planning and managing a project

n It is not something that affects only the developers on a
project
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What the Iterative Life
Cycle Is

n It is planned and managed

n It is predictable

n It accommodates changes to requirements with less
disruption

n It is based on evolving executable prototypes, not
documentation

n It involves the user/customer throughout the process

n It is risk driven
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Three Important
Features of the Iterative
Approach

n Continuous integration
– Not done in one lump near the delivery date

n Frequent, executable releases
– Some internal; some delivered

n Attack risks through demonstrable progress
– Progress measured in products, not documentation or

engineering estimates
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Resulting Benefits

n Releases are a forcing function that drives the development
team to closure at regular intervals

– Cannot have the “90% done with 90% remaining” phenomenon

n Can incorporate problems/issues/changes into future
iterations rather than disrupting ongoing production

n The project’s supporting elements (testers, writers,
toolsmiths, CM, QA, etc.) can better schedule their work
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Risk

Transition

Inception

Elaboration

Construction

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel. 
Iteration

Devel. 
Iteration

Devel. 
Iteration

Transition
Iteration

Transition
Iteration

Post-
deployment

Waterfall

Time

Risk Profile of an
Iterative Development
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Risk Management Phase-
by-Phase

n Inception
– Bracket the project’s risks by building a proof of concept

n Elaboration
– Develop a common understanding of the system’s scope and

desired behavior by exploring scenarios with end users and
domain experts

– Establish the system’s architecture

– Design common mechanisms to address system-wide issues
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Risk Management Phase-
by-Phase (cont.)

n Construction
– Refine the architecture

– Risk-driven iterations

– Continuous integration

n Transition
– Facilitate user acceptance

– Measure user satisfaction

n Post-deployment cycles
– Continue evolutionary approach

– Preserve architectural integrity
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Initial Project Risks
Initial Project Scope

Revise Overall 
Project Plan
• Cost
• Schedule
• Scope/Content

Plan Iteration N
• Cost
• Schedule

Assess Iteration N

Risks Eliminated
Revise Project Risks
• Reprioritize

Develop Iteration N
• Collect cost and
quality metrics

Define scenarios to
address highest risks

Iteration N

Risk Reduction Drives
Iterations
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Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration 3

Iteration Planning
Rqmts Capture   

Analysis & Design
Implementation        

        Test                
Prepare Release

“Mini-Waterfall” Process

Use Cases Drive the
Iteration Process
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The Iteration Life Cycle:
A Mini-Waterfall

• Results of previous iterations
• Up-to-date risk assessment
• Controlled libraries of models,

code, and tests

Release description
Updated risk assessment
Controlled libraries

Iteration Planning

Requirements Capture

Analysis & Design

Implementation 

Test

Prepare Release

Selected scenarios
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Detailed Iteration Life
Cycle Activities

n Iteration planning
– Before the iteration begins, the general objectives of the iteration

should be established based on

• Results of previous iterations ( if any)

• Up-to-date risk assessment for the project

– Determine the evaluation criteria for this iteration

– Prepare detailed iteration plan for inclusion in the development
plan

• Include intermediate milestones to monitor progress

• Include walkthroughs and reviews
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Detailed Iteration Life
Cycle Activities (cont.)

n Requirements Capture
– Select/define the use cases to be implemented in this iteration

– Update the object model to reflect additional domain classes and
associations discovered

– Develop a test plan for the iteration
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Detailed Iteration Life
Cycle Activities (cont.)

n Analysis & Design
– Determine the classes to be developed or updated in this iteration

– Update the object model to reflect additional design classes and
associations discovered

– Update the architecture document if needed

– Begin development of test procedures

n Implementation
– Automatically generate code from the design model

– Manually generate code for operations

– Complete test procedures

– Conduct unit and integration tests
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Detailed Iteration Life
Cycle Activities (cont.)

n Test
– Integrate and test the developed code with the rest of the system

(previous releases)

– Capture and review test results

– Evaluate test results relative to the evaluation criteria

– Conduct an iteration assessment

n Prepare the release description
– Synchronize code and design models

– Place products of the iteration in controlled libraries
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Work Allocation Within
an Iteration

n Work to be accomplished within an iteration is determined
by

– The (new) use cases to be implemented

– The rework to be done

n Packages make convenient work packages for developers
– High-level packages can be assigned to teams

– Lower-level packages can be assigned to individual developers

n Use Cases make convenient work packages for test and
assessment teams

n Packages are also useful in determining the granularity at
which configuration management will be applied

– For example, check-in and check-out of individual packages
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Iteration Assessment

n Assess iteration results relative to the evaluation criteria
established during iteration planning:

– Functionality

– Performance

– Capacity

– Quality measures

n Consider external changes that have occurred during this
iteration

– For example, changes to requirements, user needs, competitor’s
plans

n Determine what rework, if any, is required and assign it to
the remaining iterations
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Selecting Iterations

n How many iterations do I need?
– On projects taking 18 months or less, 3 to 6 iterations are typical

n Are all iterations on a project the same length?
– Usually

– Iteration length may vary by phase.  For example, elaboration
iterations may be shorter than construction iterations
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The First Iteration

n The first iteration is usually the hardest
– Requires the entire development environment and most of the

development team to be in place

– Many tool integration issues, team-building issues, staffing issues,
etc.  must be resolved

n Teams new to an iterative approach are usually overly-
optimistic

n Be modest regarding the amount of functionality that can
be achieved in the first iteration

– Otherwise, completion of the first iteration will be delayed,

– The total number of iterations reduced, and

– The benefits of an iterative approach reduced
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There Is No Silver Bullet

n Remember the main reason for using the iterative life cycle:
– You do not have all the information you need up front

– Things will change during the development period

n You must expect that
– Some risks will not be eliminated as planned

– You will discover new risks along the way

– Some rework will be required; some lines of code developed for
an iteration will be thrown away

– Requirements will change along the way
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