Support Vector Machines

CSC 411 Tutorial
November (2nd, 3rd, 13th, 15th) 2017

Tutor: Bowen Xu

Many thanks to Jake Snell and Kevin Swersky for much of the following material.

Brief Review of SYMS

Geometric Intuition

In [15]: side by side(im2html(Image("loose.png"), width=450),
im2html(Image("tight.png"), width=450))

Out[15]:

margin

Margin Derivation

In [65]: Image("http://research.microsoft.com/en-us/um/people/cmbishop/PRML/prmlfigs-jpg/Fig
ured4.l.jpg")

Out[65]:

Margin Derivation

Compute the distance d,, of an arbitrary point x,, in the (+) class to the separating
hyperplane.

[Jwl|

T
men_an+b:0
[|wl|

wlz, +b= dn||wl|
. — wlz, +b
|[w]]

If we let t,, € {1, —1} denote the class of &, then the distance becomes

tn(wlz, + b)
[|w]l

d, =

SVM Problem

But scaling w — kw and b — kb doesn't change d,, =

[|wl|
1
We can set d,, = W for the point x,, closest to the decision boundary, leading to
w
the problem:
1
max ——
ool

st tp(wlz, +b)>1, forn=1...N

or equivalently:

o1 2
min — ||wl||
2

st tp(wlz, +b)>1, forn=1...N

Non-linear SVMs

For a linear SVM, y(z) = wl'x + b.

We can just as well work in an alternate feature space: §j(z) = w' ¢(z) + b.

In [19]: print "http://i.imgur.com/Wuxy0.png"
Image("http://i.imgur.com/WuxyO.png")

http://1i.imgur.com/Wuxy0.png

Out[19]:

Input Space Feature Space

In [27]:

Out[27]:

Non-linear SVMs

print "http://www.youtube.com/watch?v=31iCbRZPrzA"
YouTubeVideo("31iCbRZPrzA", width=900, height=600)

http://www.youtube.com/watch?v=31iCbRZPrzA

SVM with polynomial kernel visualization

SVMs vs Logistic Regression

In [30]:

Out[30]:

Logistic Regression

import matplotlib.pyplot as plt
plt.xkecd()

x = linspace(-8, 8)

y =1/(1 + np.exp(-x))
plt.plot(x, y)

[<matplotlib.lines.Line2D at 0x4558310>]

10

0.6|=

0.4/

0.2|=

0.0 L

Logistic Regression

e Assign probability to each outcome

P(y=1|z) = o(w’z + b)

e Train to maximize likelihood
N
L(w) = [[o, +b)"(1 - o(w @, + b))+
n=1

e Linear decision boundary

g = Iw'z +b >0

SVMs

In [31]: 1Image("tight.png")

Out[31]:

SVMs

e Enforce a margin of separation

yo(w 'z, +b)>1, forn=1...N

e Train to find the maximum margin

1
2

. 2
min —||wl]|

s.t. (2yn — 1)(w'z, +b) > 1, forn=1...

e Linear decision boundary
§ = Iw"z +b> 0]

Comparison

¢ Logistic regression wants to maximize the probability of the data.
= The greater the distance from each point to the decision boundary,
the better.

e SVMs want to maximize the distance from the closest points to the decision
boundary.
= Doesn't care about points that aren't support vectors.

A Different Take

Consider an alternate form of the logistic regression decision function:

. { 1 if Py =1|z) > P(y = 0|z)
~ L0 otherwise
P(y = 1|z) « exp(w’ z + b)
Ply=10|z) x 1

A Different Take

Suppose we don't actually care about the probabilities. All we want to do is make the
right decision.

We can put a constraint on the likelihood ratio, for some constant ¢ > 1:

Py = 1|z,)
P(y = 0z,)

>c

A Different Take

Take the log of both sides:

log P(y = 1|z,) — log P(y = 0|z,) > logc

Recalling that P(y = 1|z,,) « exp(w’z, + b) and P(y = 0|z,) o 1:
wlz, +b—0>loge
wla, +b>loge
But c is arbitrary, so set it s.t. logc = 1:

wle, +b>1

A Different Take

So now we have (2y, — 1)(wTz, +b) > 1,for n = 1... N.But this may not
have a unique solution, so put a quadratic penalty on the weights to make the solution

unique:

1
2
s.t. 2y, — D)(w 'z, +b) > 1, forn=1...N

. 2
min — ||w||

By asking logistic regression to make the right decisions instead of maximizing the
probability of the data, we derived an SVM.

Likelihood Ratio

The likelihood ratio drives this derivation:

_ P(y=1]z) exp(w'z+b) T
TS Py—ok) 1 oewErd)

Different classifiers assign different costs to 7.

In [41]:

Out[41]:

LR Cost

1
Choose cost(r) = log(l + —)
”

import matplotlib.pyplot as plt
plt.xkcd()

r = linspace(le-2, 5)

cost r = np.log(1l + 1/r)
plt.plot(r, cost r)

plt.xlabel("r")
plt.ylabel("cost(r)")
plt.title("cost(r) = log(l + 1/r)")

<matplotlib.text.Text at 0x58bael0d>

5 cost(r) = log(1 + 1/r)
]] i

LR Cost

log (1 + %) = log(1 + exp(—(w'z + b)))
1

T+ exp(—(wTz + b))
= —logo(w’z + b)

Minimizing cost(’r') is the same as minimizing the negative log-likelihood objective for
logistic regression!

SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.

1. . N
mmglel +C;£n

s.t. 2y, — 1) (wlz, +b0) >1—¢,, forn=1...N
and &, >0, forn=1...N

SVM with Slack Variables

In [42]: 1Image("http://research.microsoft.com/en-us/um/people/cmbishop/PRML/prmlfigs-png/Fig
ure7.3.png")

Out[42]:

SVM Cost

Choose cost(r) = max(0,1 — log(r)) = max(0,1 — (w’ z + b))

In [49]: import matplotlib.pyplot as plt
plt.xkcd()
r = linspace(le-2, 5)
cost r=1 - np.log(r)
cost r[cost r<0] =0
plt.plot(r, cost r, 'g")
plt.xlabel("r")
plt.ylabel("cost(r)")
plt.title("cost(r) = max(0, 1 - log(r))")

Out[49]: <matplotlib.text.Text at 0x624fedo>

6 cost(r) = max(0, 1 - log(r))
[] [] i]

cost(r)

In [57]:

Out[57]:

Plotted in terms of

import matplotlib.pyplot as plt

plt.xkcd()

r = linspace(le-2, 5)

1r cost r = np.log(l + 1/r)

svm cost r =1 - np.log(r)
svm_cost r[svm cost r < 0] =0

plt.plot(r, lr _cost r, 'b', label="LR Cost")
plt.plot(r, svm cost r, 'g', label="SVM Cost")
plt.xlabel("r")

plt.ylabel("cost(r)")

plt.legend(loc="best")

<matplotlib.legend.Legend at 0x6dfe390>

]] v 0 =

5 — LR Cost

\ — SVM Cost

4 -
N '
2 -
1}= -
0 N H

In [64]:

Out[64]:

Plotted in terms of w & + b

plt.xkcd()

x = linspace(-5, 5)

1r cost x = np.log(1l + 1/x)

1r cost x = - np.log(1l / (1 + np.exp(-x)))
svm cost x = 1 - X

svm_cost x[svm cost x < 0] =0

plt.plot(x, lr_cost x, 'b', label="LR Cost")
plt.plot(x, svm cost x, 'g', label="SVM Cost")
plt.xlabel("w"T x + b")

plt.ylabel("cost(w™T x + b)")
plt.xlim([-5,5])

plt.legend(loc="best")

<matplotlib.legend.Legend at Ox7b36c90>

— LR Cost
—— SVM Cost

cost(w"T x + b)
n w o (&)

—

/

Exploiting the Connection between LR and SVMs

Kernel Trick for LR

In the dual form, the SVM decision boundary is

N
y(z) = wlé(z) +b= ZantnK(w, T,) +b=0

n=1

We could plug this into the LR cost:

N
log (1 + exp (— Z ant, K(z,z,) — b))
n=1

Multi-class SVMS

Recall multi-class logistic regression

exp(w! z + b;)

Ply=1ilx) =
(v 2) >k exp(w;—ga: + by,)

Multi-class SYMS

Suppose that we just want the decision rule to satisfy

P(y = i|z)

— = >¢, fork #1
Py=Ha) ~ 7

Taking logs as before,

(wlz +b;) — (wiz +by) > 1, fork #4

Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

o1 2
min — ||wl||
2

s.t. (wy, zn + by) — (Wiz, +b;) > 1, forn=1...N,k # y,

LR and SVMs are closely linked

e Both can be viewed as taking a probabilistic model and miminizing some cost
associated with the likelihood ratio.

e This allows use to extend both models in principled ways.

Which to Use?

Logistic regression

e Gives calibrated probabilities that can be interpreted as confidence in a
decision.

e Unconstrained, smooth objective.

e Can be used within Bayesian models.

SVMs
e No penalty for examples where the correct decision is made with sufficient
confidence, which can lead to good generalization.

¢ Dual form gives sparse solutions when using the kernel trick, leading to
better scalability.

In []:

