Support Vector Machines

CSC 411 Tutorial

November (2nd, 3rd, 13th, 15th) 2017

Tutor: Bowen Xu

Many thanks to Jake Snell and Kevin Swersky for much of the following material.

Geometric Intuition

Out[15]:

Margin Derivation

In [65]:

Image ("http://research.microsoft.com/en-us/um/people/cmbishop/PRML/prmlfigs-jpg/Figure 4.1.jpg")

Out[65]:

Margin Derivation

Compute the distance d_n of an arbitrary point x_n in the (+) class to the separating hyperplane.

$$egin{aligned} w^T \left(x_n - d_n rac{w}{||w||}
ight) + b &= 0 \ w^T x_n - d_n rac{w^T w}{||w||} + b &= 0 \ w^T x_n + b &= d_n ||w|| \ d_n &= rac{w^T x_n + b}{||w||} \end{aligned}$$

If we let $t_n \in \{1,-1\}$ denote the class of x_n , then the distance becomes

$$d_n = rac{t_n(w^Tx_n + b)}{||w||}$$

SVM Problem

But scaling $w o\kappa w$ and $b o\kappa b$ doesn't change $d_n=rac{t_n(w^Tx_n+b)}{||w||}.$

We can set $d_n=rac{1}{||w||}$ for the point x_n closest to the decision boundary, leading to the problem:

$$\max rac{1}{||w||} \ ext{s.t.} \ t_n(w^Tx_n+b) \geq 1, ext{ for } n=1\dots N$$

or equivalently:

$$\min rac{1}{2} ||w||^2 \ ext{s.t.} \ t_n(w^T x_n + b) \geq 1, \ ext{for} \ n = 1 \dots N$$

Non-linear SVMs

For a linear SVM, $y(x) = w^T x + b$.

We can just as well work in an alternate feature space: $ilde{y}(x) = w^T \phi(x) + b$.

http://i.imgur.com/Wuxy0.png

Out[19]:

Input Space

Feature Space

Non-linear SVMs

In [27]:

print "http://www.youtube.com/watch?v=3liCbRZPrZA"
YouTubeVideo("3liCbRZPrZA", width=900, height=600)

http://www.youtube.com/watch?v=3liCbRZPrZA

Out[27]:

SVMs vs Logistic Regression

Logistic Regression

```
In [30]: import matplotlib.pyplot as plt
plt.xkcd()
x = linspace(-8, 8)
y = 1/(1 + np.exp(-x))
plt.plot(x, y)
```

Out[30]: [<matplotlib.lines.Line2D at 0x4558310>]

Logistic Regression

• Assign probability to each outcome

$$P(y=1|x) = \sigma(w^Tx+b)$$

• Train to maximize likelihood

$$\mathcal{L}(w) = \prod_{n=1}^N \sigma(w^T x_n + b)^{y_n} (1 - \sigma(w^T x_n + b))^{1-y_n}$$

• Linear decision boundary

$$\hat{y} = I[w^Tx + b \geq 0]$$

SVMs

In [31]: Image("tight.png")

Out[31]:

SVMs

- ullet Enforce a margin of separation $y_n(w^Tx_n+b)\geq 1, \ ext{for} \ n=1\dots N$
- Train to find the maximum margin

$$\min rac{1}{2}{||w||}^2 ext{ s.t. } (2y_n-1)(w^Tx_n+b) \geq 1, ext{ for } n=1\dots N$$

 $oldsymbol{\hat{y}} = I[w^Tx + b \geq 0]$

Comparison

- Logistic regression wants to maximize the probability of the data.
 - The greater the distance from each point to the decision boundary, the better.
- **SVMs** want to maximize the distance from the closest points to the decision boundary.
 - Doesn't care about points that aren't support vectors.

Consider an alternate form of the logistic regression decision function:

$$\hat{y} = egin{cases} 1 & ext{if } P(y=1|x) \geq P(y=0|x) \ 0 & ext{otherwise} \ P(y=1|x) \propto \exp(w^Tx+b) \ P(y=0|x) \propto 1 \end{cases}$$

Suppose we don't actually care about the probabilities. All we want to do is make the right decision.

We can put a constraint on the likelihood ratio, for some constant c>1:

$$rac{P(y=1|x_n)}{P(y=0|x_n)} \geq c$$

Take the log of both sides:

$$\log P(y=1|x_n) - \log P(y=0|x_n) \ge \log c$$

Recalling that $P(y=1|x_n) \propto \exp(w^T x_n + b)$ and $P(y=0|x_n) \propto 1$:

$$w^T x_n + b - 0 \geq \log c \ w^T x_n + b \geq \log c$$

But c is arbitrary, so set it s.t. $\log c = 1$:

$$w^Tx_n+b\geq 1$$

So now we have $(2y_n-1)(w^Tx_n+b)\geq 1$, for $n=1\dots N$. But this may not have a unique solution, so put a quadratic penalty on the weights to make the solution unique:

$$egin{aligned} \min rac{1}{2}||w||^2 \ ext{s.t.} \ (2y_n-1)(w^Tx_n+b) \geq 1, ext{ for } n=1\dots N \end{aligned}$$

By asking logistic regression to make the right **decisions** instead of maximizing the **probability** of the data, we derived an SVM.

Likelihood Ratio

The likelihood ratio drives this derivation:

$$r = rac{P(y=1|x)}{P(y=0|x)} = rac{\exp(w^Tx+b)}{1} = \exp(w^Tx+b)$$

Different classifiers assign different costs to r.

LR Cost

 $\mathsf{Choose} \ \mathrm{cost}(r) = \log \biggl(1 + \frac{1}{r} \biggr)$

In [41]: import matplotlib.pyplot as plt

plt.xkcd()
r = linspace(1e-2, 5)
cost_r = np.log(1 + 1/r)
plt.plot(r, cost_r)
plt.xlabel("r")
plt.ylabel("cost(r)")
plt.title("cost(r) = log(1 + 1/r)")

Out[41]: <matplotlib.text.Text at 0x58bae10>

LR Cost

$$\begin{split} \log \left(1 + \frac{1}{r}\right) &= \log \left(1 + \exp(-(w^T x + b))\right) \\ &= -\log \frac{1}{1 + \exp(-(w^T x + b))} \\ &= -\log \sigma(w^T x + b) \end{split}$$

Minimizing $\mathrm{cost}(r)$ is the same as minimizing the negative log-likelihood objective for logistic regression!

SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.

$$egin{aligned} \min rac{1}{2} ||w||^2 + C \sum_{n=1}^N \xi_n \ ext{s.t.} \ (2y_n - 1)(w^T x_n + b) & \geq 1 - \xi_n, ext{ for } n = 1 \dots N \ ext{ and } \xi_n & \geq 0, ext{ for } n = 1 \dots N \end{aligned}$$

SVM with Slack Variables

In [42]:

Image ("http://research.microsoft.com/en-us/um/people/cmbishop/PRML/prmlfigs-png/Figure7.3.png")

Out[42]:

SVM Cost

Choose $\operatorname{cost}(r) = \max(0, 1 - \log(r)) = \max(0, 1 - (w^Tx + b))$

```
In [49]: import matplotlib.pyplot as plt
plt.xkcd()
    r = linspace(1e-2, 5)
    cost_r = 1 - np.log(r)
    cost_r[cost_r < 0] = 0
    plt.plot(r, cost_r, 'g')
    plt.xlabel("r")
    plt.ylabel("cost(r)")
    plt.title("cost(r) = max(0, 1 - log(r))")</pre>
```

Out[49]: <matplotlib.text.Text at 0x624fed0>

Plotted in terms of r

```
In [57]: import matplotlib.pyplot as plt
plt.xkcd()
r = linspace(1e-2, 5)
lr_cost_r = np.log(1 + 1/r)
svm_cost_r = 1 - np.log(r)
svm_cost_r[svm_cost_r < 0] = 0
plt.plot(r, lr_cost_r, 'b', label="LR Cost")
plt.plot(r, svm_cost_r, 'g', label="SVM Cost")
plt.xlabel("r")
plt.ylabel("cost(r)")
plt.legend(loc="best")</pre>
```

Out[57]: <matplotlib.legend.Legend at 0x6dfe390>

Plotted in terms of $oldsymbol{w}^Toldsymbol{x} + oldsymbol{b}$

```
In [64]: plt.xkcd()
    x = linspace(-5, 5)
    lr_cost_x = np.log(1 + 1/x)
    lr_cost_x = - np.log(1 / (1 + np.exp(-x)))
    svm_cost_x = 1 - x
    svm_cost_x[svm_cost_x < 0] = 0
    plt.plot(x, lr_cost_x, 'b', label="LR Cost")
    plt.plot(x, svm_cost_x, 'g', label="SVM Cost")
    plt.xlabel("w^T x + b")
    plt.ylabel("cost(w^T x + b)")
    plt.xlim([-5,5])
    plt.legend(loc="best")</pre>
```

Out[64]: <matplotlib.legend.Legend at 0x7b36c90>

Kernel Trick for LR

In the dual form, the SVM decision boundary is

$$y(x)=w^T\phi(x)+b=\sum_{n=1}^N lpha_n t_n K(x,x_n)+b=0$$

We could plug this into the LR cost:

$$\log \Biggl(1 + \exp\Biggl(-\sum_{n=1}^N lpha_n t_n K(x,x_n) - b\Biggr)\Biggr)$$

Multi-class SVMS

Recall multi-class logistic regression

$$P(y=i|x) = rac{\exp(w_i^T x + b_i)}{\sum_k \exp(w_k^T x + b_k)}$$

Multi-class SVMS

Suppose that we just want the decision rule to satisfy

$$rac{P(y=i|x)}{P(y=k|x)} \geq c, ext{ for } k
eq i$$

Taking logs as before,

$$(w_i^Tx+b_i)-(w_k^Tx+b_k)\geq 1, ext{ for } k
eq i$$

Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

$$\min rac{1}{2} ||w||^2 ext{ s.t. } (w_{y_n}^T x_n + b_{y_n}) - (w_k^T x_n + b_k) \geq 1, ext{ for } n = 1 \dots N, k
eq y_n$$

LR and SVMs are closely linked

- Both can be viewed as taking a probabilistic model and miminizing some cost associated with the likelihood ratio.
- This allows use to extend both models in principled ways.

Which to Use?

Logistic regression

- Gives calibrated probabilities that can be interpreted as confidence in a decision.
- Unconstrained, smooth objective.
- Can be used within Bayesian models.

SVMs

- No penalty for examples where the correct decision is made with sufficient confidence, which can lead to good generalization.
- Dual form gives sparse solutions when using the kernel trick, leading to better scalability.