Principal Component Analysis (PCA)

CSC411/2515 Tutorial

Harris Chan

Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek

University of Toronto

hchan@cs.toronto.edu

October 19th, 2017

(UofT) PCA October 19th, 2017 1/24



Overview

@ Motivation
@ Dimensionality Reduction
@ Two Perspectives on Good Transformations

@ PcA

@ Maximum Variance
@ Minimum Reconstruction Error

© Applications of PCA
@ Demo

@ Summary

(UofT) PCA October 19th, 2017 2 /24



Dimensionality Reduction

@ We have some data X € RV*P where D can be very large.

e We want a new representation of the data Z € RN*K where
K << D.
e For computational reasons
e To better understand / visualize the data
e For compression
o etc.

@ We will restrict ourselves to textbflinear transformation.
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o In this dataset, there are only 3 degrees of freedom: (1) horizontal
translations; (2) vertical translations; (3) Rotations.

303%13) 13

@ But each image is 100 x 100 = 10000 pixels, so X will be 10000
elements wide!
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What is a Good Transformation?

@ The goal is to find good directions u that preserves "important”
aspects of the data

o In linear setting: z = x"u

@ This will turn out to be the top-K eigenvalues of the data

covariance.
@ 2 ways to view this:

© Find directions of maximum variation
© Find projections that minimizes the reconstruction error
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Two Derivations of PCA

Consider the n-th datapoint x,, that has 2 dimensions, x; and xp:

X2

eXp

X1
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Two Derivations of PCA

We can pick a direction u; to project x, onto, creating a projected point

X
ux
X2 /

Xn

Xn

X1
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Two Derivations of PCA

By Pythagorean theorem:

u1
X2
R2 — D2 + 62
~—~ =~ ~—~ X,

Original Dist Variance  Reconstr. Err €

Since R? is fixed: Xn

Problem Equivalence

Maximize D? (variance) D
& Minimize €2 (reconstruction error)

X1
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Two Derivations of PCA

Figure 12.2 from Bishop's Textbook:
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Principal Component Analysis: Maximum Variance

@ Our goal is to maximize the variance of the projected data:

N

maximize SN nz_;(ulTxn —u{%,) = u{ Su; (1)

@ Where the sample mean and covariance is given by:
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Lagrange Multiplier

o If we want to find a stationary point of a function of multiple
variables f(x) subject to one or more constraints g(x) = 0:

@ Introduce Lagrangian function:
L(x,\) = f(x) + A\g(x) (5)

© Find its stationary point w.r.t. both x and A

@ If you are not familiar with it, check out Appendix E in Bishop's book

(UofT) PCA October 19th, 2017 11 /24



o We want to maximize u] Su; subject to |lu1| = 1 (since we are
finding direction)

@ Use Lagrange multiplier a; to express this as:
u! Su; + a1(1 — uf uy) (6)
@ Take derivative and set to O:
Su1 — 1up = 0 (7)
Su1 = (1up (8)
@ So uj is an eigenvector of S with eigenvalue oy
@ In fact, it must be the eigenvector with the maximum eigenvalue,

since this maximizes the objective
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e We want to maximize uj Sup subject to |[uz|| =1 and uJu; =0
(orthogonal to uy)

@ Use Lagrange form:
u! Sug + as(1 —ulup) — ful uy (9)

@ Take derivative and set to 0 to find 5:

({;32 = Suy —asur — Bu; =0 (10)

— u/ Suy — azuf uy — fuf u; =0 (11)
— alulTuz - agulTuz — 6u1Tu1 =0 (12)
= a1-0—a-0-5-1=0 (13)

— =0 (14)
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o We want to maximize uj Suy subject to |[uz|| =1 and uJu; =0
(orthogonal to uy)

@ Use Lagrange form:
ul Sus + as(1 —ul u) — fuf uy (15)
~——
0
@ Take derivative and set to 0 to find as:

9
8U2

— SUQ = opu (17)

= SUQ — QoUp = 0 (16)

@ So ap must be the second largest eigenvalue of S.
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PCA In General

@ We can compute the entire PCA solution by just computing the
eigenvectors with the top-K eigenvalues.

@ These can be found using the singular value decomposition (SVD) of
S.
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Choosing the number of K

@ How do we choose the number of components?

@ ldea: Look at the spectrum of covariance, pick K to capture most of
the variation
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Number of principal components, k
@ More principled: Bayesian treatment (beyond this course)
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Principal Component Analysis: Minimum Reconstruction

Error

@ We can also think of PCA as minimizing the reconstruction error of
compressed data:

N
o1 <
minimize = ng_l [Xn — % (18)

@ We will omit some details for now, but the key is that we define some
K-dimensional basis such that:

X = Wx + const (19)

@ The solution will turn out to be the same as the maximum variance
formulation
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PCA Demo

We'll apply PCA using scikit-learn in Python on various datasets for
visualization / compression:

@ Synthetic 2D data: Show the principal components learned and what
the transformed data looks like

@ MNIST digits: Compression and Reconstruction

@ Olivetti faces dataset: Compression and Reconstruction
@ lris dataset: Visualization
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PCA Application: Compression & Reconstruction

For example: Olivetti Faces dataset. Apply PCA on the face images to
find the principle components, and project the data down to k-dimensions

Mean Face Component 1 Component 2
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PCA Application: Compression & Reconstruction

Reconstruction when using various values of k:
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PCA Application: Visualization

@ PCA can be used to find the 'best’ viewing angle to project onto a
2-D plane (or 3D) to better understand the data

@ Example on the Iris dataset:
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e PCA is a linear projection of D-dimensional {x,} to K < D vector
space given by {uy} basis vectors such that it:
e Maximizes variance in the projected data points
e Minimizes projection error (square loss)
o {ug} are orthonormal
o {uy} turns out to be the first K eigenvectors of the data covariance

matrix with K largest eigenvalues
Can be computed in O(KD?)
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@ PCA is good for:

o Dimensionality reduction

o Visualization

Compression (with loss)

Denoising (by removing small variances in the data)

Can be used for data whitening = decorrelation, so that features have
unit covariance

@ Caution! In classification task, if the class labels’ signal in the data
has small variance, PCA may remove it completely
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Thanks!
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