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Dimensionality Reduction

We have some data X ∈ RN×D , where D can be very large.

We want a new representation of the data Z ∈ RN×K where
K << D.

For computational reasons
To better understand / visualize the data
For compression
etc.

We will restrict ourselves to textbflinear transformation.
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Example

In this dataset, there are only 3 degrees of freedom: (1) horizontal
translations; (2) vertical translations; (3) Rotations.

But each image is 100× 100 = 10000 pixels, so X will be 10000
elements wide!
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What is a Good Transformation?

The goal is to find good directions u that preserves ”important”
aspects of the data

In linear setting: z = xTu

This will turn out to be the top-K eigenvalues of the data
covariance.

2 ways to view this:
1 Find directions of maximum variation
2 Find projections that minimizes the reconstruction error
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Two Derivations of PCA

Consider the n-th datapoint xn that has 2 dimensions, x1 and x2:

x2

x1

xn
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Two Derivations of PCA

We can pick a direction u1 to project xn onto, creating a projected point
x̃n:

x2

x1

xn

u1

x̃n
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Two Derivations of PCA

By Pythagorean theorem:

R2︸︷︷︸
Original Dist

= D2︸︷︷︸
Variance

+ ε2︸︷︷︸
Reconstr . Err

Since R2 is fixed:

Problem Equivalence

Maximize D2 (variance)
⇔ Minimize ε2 (reconstruction error)
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Two Derivations of PCA

Figure 12.2 from Bishop’s Textbook:
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Principal Component Analysis: Maximum Variance

Our goal is to maximize the variance of the projected data:

maximize
1

2N

N∑
n=1

(uT1 xn − uT1 x̄n) = uT1 Su1 (1)

Where the sample mean and covariance is given by:

x̄ =
1

N

N∑
n=1

xn (2)

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (3)

(4)
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Lagrange Multiplier

If we want to find a stationary point of a function of multiple
variables f (x) subject to one or more constraints g(x) = 0:

1 Introduce Lagrangian function:

L(x, λ) ≡ f (x) + λg(x) (5)

2 Find its stationary point w.r.t. both x and λ

If you are not familiar with it, check out Appendix E in Bishop’s book
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Finding u1

We want to maximize uT1 Su1 subject to ‖u1‖ = 1 (since we are
finding direction)

Use Lagrange multiplier α1 to express this as:

uT1 Su1 + α1(1− uT1 u1) (6)

Take derivative and set to 0:

Su1 − α1u1 = 0 (7)

Su1 = α1u1 (8)

So u1 is an eigenvector of S with eigenvalue α1

In fact, it must be the eigenvector with the maximum eigenvalue,
since this maximizes the objective
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Finding u2

We want to maximize uT2 Su2 subject to ‖u2‖ = 1 and uT2 u1 = 0
(orthogonal to u1)

Use Lagrange form:

uTs Sus + αs(1− uTs u2)− βuT2 u1 (9)

Take derivative and set to 0 to find β:

∂

∂u2
= Su2 − α2u2 − βu1 = 0 (10)

=⇒ uT1 Su2 − α2u
T
1 u2 − βuT1 u1 = 0 (11)

=⇒ α1u
T
1 u2 − α2u

T
1 u2 − βuT1 u1 = 0 (12)

=⇒ α1 · 0− α2 · 0− β · 1 = 0 (13)

=⇒ β = 0 (14)
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Finding u2

We want to maximize uT2 Su2 subject to ‖u2‖ = 1 and uT2 u1 = 0
(orthogonal to u1)

Use Lagrange form:

uTs Sus + αs(1− uTs u2)− βuT2 u1︸ ︷︷ ︸
0

(15)

Take derivative and set to 0 to find α2:

∂

∂u2
= Su2 − α2u2 = 0 (16)

=⇒ Su2 = α2u2 (17)

So α2 must be the second largest eigenvalue of S .
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PCA In General

We can compute the entire PCA solution by just computing the
eigenvectors with the top-K eigenvalues.

These can be found using the singular value decomposition (SVD) of
S .
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Choosing the number of K

How do we choose the number of components?

Idea: Look at the spectrum of covariance, pick K to capture most of
the variation

More principled: Bayesian treatment (beyond this course)

(UofT) PCA October 19th, 2017 16 / 24



Principal Component Analysis: Minimum Reconstruction
Error

We can also think of PCA as minimizing the reconstruction error of
compressed data:

minimize
1

2N

N∑
n=1

‖xn − x̃n‖2 (18)

We will omit some details for now, but the key is that we define some
K-dimensional basis such that:

x̃ = W x + const (19)

The solution will turn out to be the same as the maximum variance
formulation
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PCA Demo

We’ll apply PCA using scikit-learn in Python on various datasets for
visualization / compression:

Synthetic 2D data: Show the principal components learned and what
the transformed data looks like

MNIST digits: Compression and Reconstruction

Olivetti faces dataset: Compression and Reconstruction

Iris dataset: Visualization
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PCA Application: Compression & Reconstruction

For example: Olivetti Faces dataset. Apply PCA on the face images to
find the principle components, and project the data down to k-dimensions
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PCA Application: Compression & Reconstruction

Reconstruction when using various values of k:
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PCA Application: Visualization

PCA can be used to find the ’best’ viewing angle to project onto a
2-D plane (or 3D) to better understand the data

Example on the Iris dataset:
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Summary

PCA is a linear projection of D-dimensional {xn} to K ≤ D vector
space given by {uk} basis vectors such that it:

Maximizes variance in the projected data points
Minimizes projection error (square loss)
{uk} are orthonormal
{uk} turns out to be the first K eigenvectors of the data covariance
matrix with K largest eigenvalues
Can be computed in O(KD2)
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Summary

PCA is good for:

Dimensionality reduction
Visualization
Compression (with loss)
Denoising (by removing small variances in the data)
Can be used for data whitening = decorrelation, so that features have
unit covariance

Caution! In classification task, if the class labels’ signal in the data
has small variance, PCA may remove it completely
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Thanks!
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