
CSC 411 Tutorial: Optimization for Machine
Learning

Eleni Triantafillou1

September 13, 2017

1Based on tutorials and slides by Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang and others



Contents

▶ Overview
▶ Gradient Descent
▶ Convexity



Overview of Optimization



An informal definition of optimization

Minimize (or maximize) some quantity.



Applications

▶ Engineering: Minimize fuel consumption of an automobile
▶ Economics: Maximize returns on an investment
▶ Supply Chain Logistics: Minimize time taken to fulfill an order
▶ Life: Maximize happiness



More formally

Goal: find θ∗ = argminθf(θ), (possibly subject to constraints on θ).
▶ θ ∈ Rn: optimization variable
▶ f : Rn → R: objective function

Maximizing f(θ) is equivalent to minimizing −f(θ), so we can treat
everything as a minimization problem.



Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

▶ Is θ discrete or continuous?
▶ What form do constraints on θ take? (if any)
▶ Is f “well-behaved”? (linear, differentiable, convex,

submodular, etc.)



Optimization for Machine Learning

Often in machine learning we are interested in learning the
parameters θ of a model.
Goal: minimize some loss function

▶ For example, if we have some data (x, y), we may want to
maximize P(y|x, θ).

▶ Equivalently, we can minimize − logP(y|x, θ).
▶ We can also minimize other sorts of loss functions

log can help for numerical reasons



Gradient Descent



Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point
where ∂f(θ∗)

∂θ = 0.
▶ Sometimes, we can solve this equation analytically for θ.
▶ Most of the time, we are not so lucky and must resort to

iterative methods.
Review

▶ Gradient: ∇θf = ( ∂f
∂θ1

, ∂f
∂θ2

, ..., ∂f
∂θk

)



Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:
▶ Initialize θ0 randomly
▶ for t = 1 : T:

▶ δt ← −η∇θt−1 f
▶ θt ← θt−1 + δt

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)



Gradient Descent with Line-Search

Where η is the learning rate and T is the number of iterations:
▶ Initialize θ0 randomly
▶ for t = 1 : T:

▶ Finding a step size ηt such that f(θt − ηt∇θt−1) < f(θt)
▶ δt ← −ηt∇θt−1 f
▶ θt ← θt−1 + δt

Require a line-search step in each iteration.



Gradient Descent with Momentum

We can introduce a momentum coefficient α ∈ [0, 1) so that the
updates have “memory”:

▶ Initialize θ0 randomly
▶ Initialize δ0 to the zero vector
▶ for t = 1 : T:

▶ δt ← −η∇θt−1 f+αδt−1
▶ θt ← θt−1 + δt

Momentum is a nice trick that can help speed up convergence.
Generally we choose α between 0.8 and 0.95, but this is problem
dependent



Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:
▶ Initialize θ0 randomly
▶ Do:

▶ δt ← −η∇θt−1 f
▶ θt ← θt−1 + δt

▶ Until convergence
Setting a convergence criteria.



Some convergence criteria

▶ Change in objective function value is close to zero:
|f(θt+1)− f(θt)| < ϵ

▶ Gradient norm is close to zero: ∥∇θf∥ < ϵ
▶ Validation error starts to increase (this is called early stopping)



Checkgrad

▶ When implementing the gradient computation for machine
learning models, it’s often difficult to know if our
implementation of f and ∇f is correct.

▶ We can use finite-differences approximation to the gradient to
help:

∂f
∂θi
≈ f((θ1, . . . , θi + ϵ, . . . , θn))− f((θ1, . . . , θi − ϵ, . . . , θn))

2ϵ

Why don’t we always just use the finite differences approximation?
▶ slow: we need to recompute f twice for each parameter in our

model.
▶ numerical issues



Stochastic Gradient Descent

▶ Any iteration of a gradient descent (or quasi-Newton) method
requires that we sum over the entire dataset to compute the
gradient.

▶ SGD idea: at each iteration, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient.

▶ Each update is noisy, but very fast!
▶ It can be shown that this method produces an unbiased

estimator of the true gradient.
▶ This is the basis of optimizing ML algorithms with huge

datasets (e.g., recent deep learning).
▶ Computing gradients using the full dataset is called batch

learning, using subsets of data is called mini-batch learning.



Stochastic Gradient Descent

▶ The reason SGD works is because similar data yields similar
gradients, so if there is enough redundancy in the data, the
noise from subsampling won’t be so bad.

▶ SGD is very easy to implement compared to other methods,
but the step sizes need to be tuned to different problems,
whereas batch learning typically “just works”.

▶ Tip 1: divide the log-likelihood estimate by the size of your
mini-batches. This makes the learning rate invariant to
mini-batch size.

▶ Tip 2: subsample without replacement so that you visit each
point on each pass through the dataset (this is known as an
epoch).



Demo

▶ Logistic regression



Convexity



Definition of Convexity

A function f is convex if for any two points θ1 and θ2 and any
t ∈ [0, 1],

f(tθ1 + (1− t)θ2) ≤ tf(θ1) + (1− t)f(θ2)

We can compose convex functions such that the resulting function
is also convex:

▶ If f is convex, then so is αf for α ≥ 0
▶ If f1 and f2 are both convex, then so is f1 + f2
▶ etc., see

http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for
more



Why do we care about convexity?

▶ Any local minimum is a global minimum.
▶ This makes optimization a lot easier because we don’t have to

worry about getting stuck in a local minimum.



Examples of Convex Functions

Quadratics



Examples of Convex Functions

Negative logarithms



Convexity for logistic regression
Cross-entropy objective function for logistic regression is also
convex!
f(θ) = −

∑
n t(n) log p(y = 1|x(n), θ) + (1− t(n)) log p(y = 0|x(n), θ)

Plot of − log σ(θ)



More on optimization

▶ Automatic Differentiation Modern technique (used in libraries
like tensorflow, pytorch, etc) to efficiently compute the
gradients required for optimization. A survey of these
techniques can be found here:
https://arxiv.org/pdf/1502.05767.pdf

▶ Convex Optimization by Boyd & Vandenberghe Book available
for free online at http://www.stanford.edu/~boyd/cvxbook/

▶ Numerical Optimization by Nocedal & Wright Electronic
version available from UofT Library


