Probability Theory for Machine Learning

Jesse Bettencourt
September 2017
Introduction to Machine Learning
CSC411
University of Toronto
Introduction to Notation
Motivation

Uncertainty arises through:

- Noisy measurements
- Finite size of data sets
- Ambiguity
- Limited Model Complexity

Probability theory provides a consistent framework for the quantification and manipulation of uncertainty.
Sample space Ω is the set of all possible outcomes of an experiment.

Observations $\omega \in \Omega$ are points in the space also called sample outcomes, realizations, or elements.

Events $E \subset \Omega$ are subsets of the sample space.
In this experiment we flip a coin twice:

Sample space All outcomes $\Omega = \{HH, HT, TH, TT\}$

Observation $\omega = HT$ valid sample since $\omega \in \Omega$

Event Both flips same $E = \{HH, TT\}$ valid event since $E \subset \Omega$
Probability
The probability of an event E, $P(E)$, satisfies three axioms:

1: $P(E) \geq 0$ for every E

2: $P(\Omega) = 1$

3: If E_1, E_2, \ldots are disjoint then

\[P\left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i) \]
Joint Probability of A and B is denoted $P(A, B)$

Conditional Probability of A given B is denoted $P(A|B)$.

- Assuming $P(B) > 0$, then $P(A|B) = P(A, B)/P(B)$
- Product Rule: $P(A, B) = P(A|B)P(B) = P(B|A)P(A)$
60% of ML students pass the final and 45% of ML students pass both the final and the midterm. What percent of students who passed the final also passed the midterm?
60% of ML students pass the final and 45% of ML students pass both the final and the midterm.
What percent of students who passed the final also passed the midterm?
Reword: What percent passed the midterm given they passed the final?

\[P(M|F) = P(M, F)/P(F) \]
\[= 0.45/0.60 \]
\[= 0.75 \]
Events A and B are independent if $P(A, B) = P(A)P(B)$

Events A and B are conditionally independent given C if $P(A, B|C) = P(B|A, C)P(A|C) = P(B|C)P(A|C)$
Marginalization and Law of Total Probability

Marginalization (Sum Rule)

\[P(X) = \sum_{Y} P(X, Y) \]

Law of Total Probability

\[P(X) = \sum_{Y} P(X|Y)P(Y) \]
Bayes’ Rule
Bayes’ Rule:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Bayes’ Rule:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

\[P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)} \]

Posterior = Likelihood \times Prior

\[Posterior \propto Likelihood \times Prior \]
Suppose you have tested positive for a disease. What is the probability you actually have the disease?
Bayes’ Example

Suppose you have tested positive for a disease. What is the probability you actually have the disease?
This depends on accuracy and sensitivity of test and prior probability of the disease:

\[P(T = 1|D = 1) = 0.95 \text{ (true positive)} \]
\[P(T = 1|D = 0) = 0.10 \text{ (false positive)} \]
\[P(D = 1) = 0.1 \text{ (prior)} \]

So \[P(D = 1|T = 1) = ? \]
Suppose you have tested positive for a disease. What is the probability you actually have the disease?

\[P(T = 1|D = 1) = 0.95 \text{ (true positive)} \]

\[P(T = 1|D = 0) = 0.10 \text{ (false positive)} \]

\[P(D = 1) = 0.1 \text{ (prior)} \]

So \(P(D = 1|T = 1) = ? \)

Use Bayes’ Rule:

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]

\[
P(D = 1|T = 1) = \frac{P(T = 1|D = 1)P(D = 1)}{P(T = 1)}
\]
Bayes’ Example

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

\[P(T = 1|D = 1) = 0.95 \text{ (true positive)} \]
\[P(T = 1|D = 0) = 0.10 \text{ (false positive)} \]
\[P(D = 1) = 0.1 \text{ (prior)} \]

Use Bayes’ Rule:

\[P(D = 1|T = 1) = \frac{P(T = 1|D = 1)P(D = 1)}{P(T = 1)} \]
\[P(D = 1|T = 1) = \frac{0.95 \times 0.1}{P(T = 1)} \]
Suppose you have tested positive for a disease. What is the probability you actually have the disease?

\[
P(T = 1|D = 1) = 0.95 \text{ (true positive)}
\]
\[
P(T = 1|D = 0) = 0.10 \text{ (false positive)}
\]
\[
P(D = 1) = 0.1 \text{ (prior)}
\]

By Bayes' Rule

\[
P(D = 1|T = 1) = \frac{0.95 \times 0.1}{P(T = 1)}
\]

By Law of Total Probability

\[
P(T = 1) = \sum_D P(T = 1|D)P(D)
\]
\[
= P(T = 1|D = 1)P(D = 1) + P(T = 1|D = 0)P(D = 0)
\]
\[
= 0.95 \times 0.1 + 0.1 \times 0.90
\]
\[
= 0.185
\]
Suppose you have tested positive for a disease. What is the probability you actually have the disease?

\[
P(T = 1|D = 1) = 0.95 \text{ (true positive)}
\]

\[
P(T = 1|D = 0) = 0.10 \text{ (false positive)}
\]

\[
P(D = 1) = 0.1 \text{ (prior)}
\]

\[
P(T = 1) = 0.185 \text{ (from Law of Total Probability)}
\]

\[
P(D = 1|T = 1) = \frac{0.95 \times 0.1}{P(T = 1)} = \frac{0.95 \times 0.1}{0.185} = 0.51
\]

Probability you have the disease given you tested positive is 51%
Random Variables and Statistics
How do we connect sample spaces and events to data?

A random variable is a mapping which assigns a real number $X(\omega)$ to each observed outcome $\omega \in \Omega$.

For example, let's flip a coin 10 times. $X(\omega)$ counts the number of Heads we observe in our sequence. If $\omega = HHTHTHHTHT$ then $X(\omega) = 6$.
Random variables are said to be independent and identically distributed (i.i.d.) if they are sampled from the same probability distribution and are mutually independent. This is a common assumption for observations. For example, coin flips are assumed to be iid.
Discrete and Continuous Random Variables

Discrete Random Variables

- Takes countably many values, e.g., number of heads
- Distribution defined by probability mass function (PMF)
- Marginalization: $p(x) = \sum_y p(x, y)$

Continuous Random Variables

- Takes uncountably many values, e.g., time to complete task
- Distribution defined by probability density function (PDF)
- Marginalization: $p(x) = \int_y p(x, y)dy$
Mean: First Moment, μ

\[
E[x] = \sum_{i=1}^{\infty} x_i p(x_i) \quad \text{(univariate discrete r.v.)}
\]

\[
E[x] = \int_{-\infty}^{\infty} xp(x) \, dx \quad \text{(univariate continuous r.v.)}
\]

Variance: Second Moment, σ^2

\[
Var[x] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, dx
\]

\[
= E[(x - \mu)^2]
\]

\[
= E[x^2] - E[x]^2
\]
Gaussian Distribution
Univariate Gaussian Distribution

Also known as the Normal Distribution, \(N(\mu, \sigma^2) \)

\[
N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}
\]
Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

\(\mathbf{x} \) is a \(D \)-dimensional vector

\(\mu \) is a \(D \)-dimensional mean vector

\(\Sigma \) is a \(D \times D \) covariance matrix with determinant \(|\Sigma| \)

\[
\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\}
\]
Recall that \mathbf{x} and μ are D-dimensional vectors.

Covariance matrix Σ is a matrix whose (i,j) entry is the covariance

$$
\Sigma_{ij} = \text{Cov}(\mathbf{x}_i, \mathbf{x}_j) \\
= E[(\mathbf{x}_i - \mu_i)(\mathbf{x}_j - \mu_j)] \\
= E[(\mathbf{x}_i\mathbf{x}_j)] - \mu_i\mu_j
$$

so notice that the diagonal entries are the variance of each element.

The covariant matrix has the property that it is symmetric and positive-semidefinite (this is useful for whitening).
Whitening is a linear transform that converts a d-dimensional random vector $\mathbf{x} = (x_1, \ldots, x_d)^T$ with mean $\mu = E[\mathbf{x}] = (\mu_1, \ldots, \mu_d)^T$ and positive definite $d \times d$ covariance matrix $\text{Cov}(\mathbf{x}) = \Sigma$ into a new random d-dimensional vector $\mathbf{z} = (z_1, \ldots, z_d)^T = \mathbf{Wx}$ with “white” covariance matrix, $\text{Cov}(\mathbf{z}) = \mathbf{I}$.

The $d \times d$ covariance matrix \mathbf{W} is called the whitening matrix. Mahalanobis or ZCA whitening matrix: $\mathbf{W}_{\text{ZCA}} = \Sigma^{-\frac{1}{2}}$
Inferring Parameters
Inferring Parameters

We have data \(X \) and we assume it is sampled from some distribution. How do we figure out the parameters that ‘best’ fit that distribution?

Maximum Likelihood Estimation (MLE)

\[
\hat{\theta}_{MLE} = \arg\max_{\theta} P(X|\theta)
\]

Maximum a Posteriori (MAP)

\[
\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|X)
\]
MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian Distribution, mean (μ) and variance (σ^2).

$$
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}
$$

The **likelihood** that our observations x_1, \ldots, x_N were generated by a univariate Gaussian with parameters μ and σ^2 is

$$
\text{Likelihood} = p(x_1 \ldots x_N|\mu, \sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x_i - \mu)^2\right\}
$$
MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult because it is represented by a product of terms

$$\text{Likelihood} = p(x_1 \ldots x_N | \mu, \sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} (x_i - \mu)^2 \right\}$$

So we take the log of the likelihood so the product becomes a sum

$$\log \text{Likelihood} = \log p(x_1 \ldots x_N | \mu, \sigma^2)$$

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} (x_i - \mu)^2 \right\}$$

Since log is monotonically increasing $\max L(\theta) = \max \log L(\theta)$
MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

\[\mathcal{L}(\mu, \sigma) = \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi}\sigma^2} \right) \exp\left\{ -\frac{1}{2\sigma^2} (x_i - \mu)^2 \right\} \]

\[= -\frac{1}{2} N \log(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \]

Which we want to maximize. How?
MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

\[
\mathcal{L}(\mu, \sigma) = -\frac{1}{2} N \log(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}
\]

Derivative w.r.t. \(\mu \), set equal to 0, and solve for \(\hat{\mu} \)

\[
\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \mu} = 0 \implies \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

Therefore the \(\hat{\mu} \) that maximizes the likelihood is the average of the data points.

Derivative w.r.t. \(\sigma^2 \), set equal to 0, and solve for \(\hat{\sigma}^2 \)

\[
\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \sigma^2} = 0 \implies \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
\]