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Introduction to Notation



Uncertainty arises through:

e Noisy measurements

Finite size of data sets

Ambiguity
e Limited Model Complexity

Probability theory provides a consistent framework for the
quantification and manipulation of uncertainty.



Sample Space

Sample space Q is the set of all possible outcomes of an
experiment.
Observations w € § are points in the space also called sample

outcomes, realizations, or elements.

Events E C Q are subsets of the sample space.



Sample Space Coin Example

In this experiment we flip a coin twice:

Sample space All outcomes Q = {HH,HT, TH, TT}
Observation w = HT valid sample since w € Q

Event Both flips same E = {HH, TT} valid event since E C Q



Probability



Probability

The probability of an event E, P(E), satisfies three axioms:

1: P(E) > 0 for every E
2: P(Q)=1
3: If E1, Ep, ... are disjoint then

[e.e]

P(JE) =) P(E)
i=1 i=1



Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B)
Conditional Probability of A given B is denoted P(A|B).
o Assuming P(B) > 0, then P(A|B) = P(A, B)/P(B)
e Product Rule: P(A, B) = P(A|B)P(B) = P(B|A)P(A)



Conditional Example

60% of ML students pass the final and 45% of ML students pass
both the final and the midterm.

What percent of students who passed the final also passed the
midterm?



Conditional Example

60% of ML students pass the final and 45% of ML students pass
both the final and the midterm.

What percent of students who passed the final also passed the
midterm?

Reword: What percent passed the midterm given they passed the
final?

P(M|F) = P(M,F)/P(F)
— 0.45/0.60
~0.75



Independence

Events A and B are independent if P(A, B) = P(A)P(B)

Events A and B are conditionally independent given C if
P(A, B|C) = P(B|A, C)P(A|C) = P(B|C)P(A|C)



Marginalization and Law of Total Probability

Marginalization (Sum Rule)

Law of Total Probability

P(X) =) P(X|Y)P(Y)



Bayes’ Rule




Bayes’ Rule

Bayes' Rule:

P(B|A)P(A)

P(AIB) = =555

10



Bayes’ Rule

Bayes' Rule:

pag) — PEIAPA)

P(B)
P(x|0)P(0)

PO = =50

. Likelihood * Prior

Posterior = -

Evidence

Posterior < Likelihood x Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

This depends on accuracy and sensitivity of test and prior
probability of the disease:

P(T =1|D = 1) = 0.95 (true positive)
P(T =1|D = 0) = 0.10 (false positive)
P(D =1) = 0.1 (prior)

So P(D=1|T =1) =7
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

P(T =1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D =1) = 0.1 (prior)

So P(D=1|T =1) =7
Use Bayes' Rule:

p(alg) = ZEIAEA) (BIL?;’; )
po=1T=1)= = IPLZT::)S(D =2
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

P(T =1|D = 1) = 0.95 (true positive)
P(T = 1|D = 0) = 0.10 (false positive)
P(D =1) = 0.1 (prior)

Use Bayes' Rule:
P(T =1D=1)P(D=1)

P(D=1T=1)=

P(T = 1)
P(D=1T=1)= 2,(9?*:011)

ii5)



Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

P(T =1|D =1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D =1) = 0.1 (prior)

0.95%0.1

P(D=1T =1) = 5773

(Bayes' Rule)

By Law of Total Probability
E:P = 1|D)P(D)

:m =1|D=1)P(D =1)+ P(T = 1|D = 0)P(D = 0)
=0.95%0.140.1%0.90

=0.185
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

P(T =1|D = 1) = 0.95 (true positive)

P(T =1|D = 0) = 0.10 (false positive)
P(D =1) = 0.1 (prior)
P(T =1) = 0.185 (from Law of Total Probability)
0.95x%0.1
P(D=1T =1) = BT =1)
0.95%0.1
~ 0185
=0.51

Probability you have the disease given you tested positive is 51%
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Random Variables and Statistics




Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number X(w)

to each observed outcome w € Q

For example, let’s flip a coin 10 times. X(w) counts the number of
Heads we observe in our sequence. If w = HHTHTHHTHT then
X(w) =6.
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Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.

This is a common assumption for observations. For example, coin

flips are assumed to be iid.
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Discrete and Continuous Random Variables

Discrete Random Variables

e Takes countably many values, e.g., number of heads
e Distribution defined by probability mass function (PMF)
e Marginalization: p(x) = > p(x,y)
Continuous Random Variables
e Takes uncountably many values, e.g., time to complete task
e Distribution defined by probability density function (PDF)
e Marginalization: p(x) = fy p(x,y)dy
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Probability Distribution Statistics

Mean: First Moment, u

o0
El[x] = Zx,-p(x,-) (univariate discrete r.v.)
i=1
I (e .°]
El[x] = / xp(x)dx (univariate continuous r.v.)
— 0o

\Variance: Second Moment, o2

Varbd = [~ (x = 10Pe(x)ae

—O00

= E[(x — p)’]
= E[x?] — E[x]?
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Gaussian Distribution




Univariate Gaussian Distribution

Also known as the Normal Distribution, N'(p, o2)
1 1

LA 2
N(x|p,0%) = ——=exp{—5—5(x — )}
V2mo? 20
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

x is a D-dimensional vector

1 is a D-dimensional mean vector

Y is a D x D covariance matrix with determinant |X|

o el (1) TSk — )

N ®) = Gryore e

Mutivariate Normal Distribution
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Covariance Matrix

Recall that x and p are D-dimensional vectors
Covariance matrix X is a matrix whose (/, /) entry is the covariance

Y = Cov(x;, X))
= E[(xi — pi)(xj — )]
= E[(xixj)] = pinj
so notice that the diagonal entries are the variance of each
elements.

The covariant matrix has the property that it is symmetric and
positive-semidefinite (this is useful for whitening).
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Whitening Transform

Whitening is a linear transform that converts a d-dimensional
random vector x = (xq,...,x¢)"

with mean = E[x] = (p1,...,uq)" and

positive definite d x d covariance matrix Cov(x) = X

into a new random d-dimensional vector
T
z=(z1,...,24)" = Wx

with “white” covariance matrix, Cov(z) = I

The d x d covariance matrix W is called the whitening matrix.
: N . 1

Mahalanobis or ZCA whitening matrix: Wzcqa =X 2
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Inferring Parameters




Inferring Parameters

We have data X and we assume it is sampled from some
distribution.

How do we figure out the parameters that ‘best’ fit that
distribution?
Maximum Likelihood Estimation (MLE)
Omie = argmaxP(X|6)
0

Maximum a Posteriori (MAP)

é\MAP = argmaxP(9|X)
0
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian
Distribution, mean (x) and variance (o).

1 1
2y _ Ry
Nxlu,0%) = Zo—exp{—5 5 (x— 1)}
The likelihood that our observations xi, ..., xy were generated by

a univariate Gaussian with parameters i and o2 is

1 1,
oz Plmga i = 1)

N
Likelihood = p(x1 ... xn|u, %) = [ |
i=1
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult

because it is represented by a product of terms

N

1 1

Likelihood = p(xi ... xn|p,0%) = [ ] exp{—=—5(xi — p)?
pixa - xnlp, o) S Wz {52 (xi — 1)}

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(xi . . . xn |1, o)

1 2
o2 exp{—rﬂ(x; — 1)}

Since log is monotonically increasing max L(#) = maxlog L(6)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

Zlog —exp{ 5500 — )}

= _,/\/ log( 27ra

Mz

202
i=1

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

1
L(p,0)= —ENlog (2mo?) Z
i=1

Derivative w.r.t. u, set equal to 0, and solve for i

OL(p, o) L1
Therefore the i that maximizes the likelihood is the average of the

data points.

Derivative w.r.t. o2,

9L(p,0)

N
R 1 N
i=1

set equal to 0, and solve for 52
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