
Tutorial of Reinforcement: A
Special Focus on Q-Learning

TINGWU WANG,

MACHINE LEARNING GROUP,

UNIVERSITY OF TORONTO

Contents
1. Introduction

1. Discrete Domain vs. Continous Domain
2. Model Based vs. Model Free
3. Value-based vs. Policy-based
4. On-policy vs. Off-policy

2. Prediction vs. Control: Marching Towards Q-learning
1. Prediction: TD-learning and Bellman Equation
2. Control: Bellman Optimality Equation and SARSA
3. Control: Switching to Q-learning Algorithm

3. Misc: Continous Control
1. Policy Based Algorithm
2. NerveNet: Learning Stuctured Policy in RL

4. Reference

Introduction
1. Today's focus: Q-learning [1] method.

1. Q-learning is a {
 discrete domain,
 value-based,
 off-policy,
 model-free,
 control,
 often shown up in ML finals

 } algorithm.

2. Related to Q-learning [2]:
1. Bellman-equation.
2. TD-learning.
3. SARSA algorithm.

Discrete Domain vs.
Continous Domain

1. Discrete action space (our focus).
1. Only several actions are available (e.g. up, down, left, right).
2. Often solved by value based methods (DQN [3], or DQN +

MCTS [4]).
3. Policy based methods work too (TRPO[5] / PPO[6], not our

focus).

Discrete Domain vs.
Continous Domain

1. Continuous action space (not our focus).
1. Action is a value from a continous interval.

1. Infinite number of choices.
2. E.g.: Locomotion control of robots (MuJoCo [7]).

Actions could be the forces applied to each joint (say: 0 - 100 N).

2. If we apply discretization to the action space, we have discrete
domain problems (autonomous car).

Model Based vs. Model Free
1. Model Based RL make use of

dynamical model of the environment.
(not our focus).
1. Pros

1. Better sample efficiency and transferabilty
(VIN [8]).

2. Security/performance gaurantee (if the
model is good).

3. Monte-Carlo Tree Search (used in
AlphaGo[4]).

4. ...

2. Cons
1. The dynamical models are difficult to train

itself.
2. Time consuming.
3. ...

Model Based vs. Model Free
1. Model Free RL makes no assumption of

the environments' dynamical model (our
focus)
1. In the ML community, more focus has

been put on Model-free RL.
2. E.g. :

1. In Q-learning, we can choose our action by
looking at Q(s, a), without worrying about what
happens next.

2. In AlphaGo, the authors combine the model-free
method with model-based method (much
stronger performance given a perfect dynamical
model for Chess/GO).

Value-based vs. Policy-based
1. Value based methods are more interested in "Value" (our

focus)
1. Estimate the expected reward for different actions given the

initial states (table from Silver's slides [9]).
2. Policies are chosen by looking at values.

Value-based vs. Policy-based
1. Policy-based methods directly model the policy (not our

focus).

1. Objective function is the expected average reward.

1. Usually solved by policy gradient or evolutionary updates.

2. If using value function to reduce variance --> actor-critic
methods.

On-policy vs. Off-policy
1. Behavior policy & target policy.

My own way of telling them (works most of the time):
1. Behavior policy is the policy used to generate training data.

1. Could be generated by other agents (learning by watching)

2. Could be that the agent just want to do something new to explore the world.

3. Re-use generated data.

2. Target policy is the policy the agent want to use if the agent is put into testing.
3. Behavior policy == target policy: On-policy, otherwise Off-policy

Contents
1. Introduction

1. Discrete Domain vs. Continous Domain
2. Model Based vs. Model Free
3. Value-based vs. Policy-based
4. On-policy vs. Off-policy

2. Prediction vs. Control: Marching Towards Q-learning
1. Prediction: TD-learning and Bellman Equation
2. Control: Bellman Optimality Equation and SARSA
3. Control: Switching to Q-learning Algorithm

3. Misc: Continous Control
1. Policy Based Algorithm
2. NerveNet: Learning Stuctured Policy in RL

4. Reference

Prediction: TD-learning and
Bellman Equation

1. Prediction:
1. Evaluation certain policy (could be crappy).
2. Bellman Expectation Equation (covered in lecture slides).

Take out the Expectation if the process is deterministic.

3. Algorithms:
1. Monte-Carlo algorithm (not our focus).

1. It learns directly from episodes of experience.
2. Dynamic Programming (not our focus)

1. Only applicable when the dynamical model is known and small.
3. TD-learning algorithm (related to Q-learning, covered in lecture slides).

1. Update value V(St) toward estimated return Rt+1 + γV(St+1)

Prediction: TD-learning and
Bellman Equation

1. Prediction Examples:

2. Since the trajectory is generated by the policy we want to evaluate,
eventually the value function converges to the true value under
this policy.

Control: Bellman Optimality
Equation and SARSA

1. Control:
1. Obtaining the optimal policy.

1. Looping over Bellman Expectation Equation and improve policy.

2. Bellman Optimality Equation (covered in lecture slides).

3. SARSA:
1. Fix the policy to be epsilon-greedy policy from Bellman Optimality

Equation.
2. Updating the policy using Bellman Expectation Equation (TD).
3. When the Bellman Expectation Equation converges, the Bellman

Optimality Equation is met.

Control: Switching to Q-
learning Algorithm

1. Switching to off-policy method.
1. SARSA has the same target policy and behavior policy

(epsilon-greedy).
2. Q-learning might has different target policy and behavior

policy.
1. Target policy: greedy policy (Bellman Optimality Equation).
2. Common behavior policy for Q-learning: Epsilon-greedy policy.

1. Choose random policy with probability of epsilon, greedy policy with
probability of (1 - epsilon)

2. Decaying epsilon with time.

Contents
1. Introduction

1. Discrete Domain vs. Continous Domain
2. Model Based vs. Model Free
3. Value-based vs. Policy-based
4. On-policy vs. Off-policy

2. Prediction vs. Control: Marching Towards Q-learning
1. Prediction: TD-learning and Bellman Equation
2. Control: Bellman Optimality Equation and SARSA
3. Control: Switching to Q-learning Algorithm

3. Misc: Continous Control
1. Policy Based Algorithm
2. NerveNet: Learning Stuctured Policy in RL

4. Reference

Policy Based Algorithm
1. Policy Gradient (not our focus)

1. Objective function:

2. Takeing the gradient (Policy Gradient Theorem)

1. Variants:
1. If Qw is the empirical return: REINFORCE algorithm [10].
2. If Qw is the estimation of action-value function: Actor Critics [11].
3. If adding KL constraints on policy updates: TRPO / PPO.
4. If policy is deterministic: DPG [12] / DDPG [13] (Deterministic

Policy Gradient).

NerveNet: Learning Stuctured
Policy in RL

1. NerveNet:
1. In traditional reinforcement learning, policies of agents are learned by MLPs which

take the concatenation of all observations from the environment as input for predicting
actions.

2. We propose NerveNet to explicitly model the structure of an agent, which naturally
takes the form of a graph.

Contents
1. Introduction

1. Discrete Domain vs. Continous Domain
2. Model Based vs. Model Free
3. Value-based vs. Policy-based
4. On-policy vs. Off-policy

2. Prediction vs. Control: Marching Towards Q-learning
1. Prediction: TD-learning and Bellman Equation
2. Control: Bellman Optimality Equation and SARSA
3. Control: Switching to Q-learning Algorithm

3. Misc: Continous Control
1. Policy Based Algorithm
2. NerveNet: Learning Stuctured Policy in RL

4. Reference

Reference
[1] Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8.3-4 (1992): 279-292.
[2] Sutton, Richard S., Doina Precup, and Satinder Singh. "Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning." Artificial intelligence 112.1-2 (1999): 181-211.
[3] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
[4] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587
(2016): 484-489.
[5] Schulman, John, et al. "Trust region policy optimization." Proceedings of the 32nd International Conference on
Machine Learning (ICML-15). 2015.
[6] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
[7] Todorov, Emanuel, Tom Erez, and Yuval Tassa. "MuJoCo: A physics engine for model-based control." Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.
[8] Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information Processing Systems. 2016.
[9] Silver, David, UCL Course on RL, http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
[10] WILLIANMS, RJ. "Toward a theory of reinforcement-learning connectionist systems." Technical Report (1988).
[11] Konda, Vijay R., and John N. Tsitsiklis. "Actor-critic algorithms." Advances in neural information processing
systems. 2000.
[12] Silver, David, et al. "Deterministic policy gradient algorithms." Proceedings of the 31st International Conference
on Machine Learning (ICML-14). 2014.
[13] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint
arXiv:1509.02971 (2015).

