
CSC411- Ensemble methods

Gradient Boost Tree

What is ensemble ?

2

Why ensemble?

3

30% 30% 30%

When three people are walking together,

I am sure to find teachers among them.

Ensemble error rate =
2
3

0.3 2 0.7 1 +
3
3

0.3 3 0.7 0 = 21.6%

• If the individual error rate is 60% , then the ensemble error rate = 64.8%

• Ensemble error rate reduce to 2.6% (individual 30%) or increase to

82.6%(individual 60%) if there are 21 person.

• We want each individual accurate and make different errors.

Three stooges equal to one master

Type of ensemble methods

4

Bayesian voting

Bagging

(bootstrapping aggregation)

Boosting

Stacking

Recap: Supervised Learning

• Notations: i-th training example

• Model: how to make prediction given

(include linear/logistic regression)

can have different interpretations

▪ Linear model:

▪ The prediction score
depending on the task

 Linear regression:

 Logistic regression:

is the predicted score

is predicted the probability
of the instance being positive

 Others… for example in ranking can be the rank score

• Parameters: the things we need to learn from data

▪ Linear model:

Objective Function

• Objective function that is everywhere

• Loss on training data:

▪ Square loss:

▪ Logistic loss:

• Regularization: how complicated the model is?

▪ L2 norm:

▪ L1 norm (lasso):

Training Loss measures how

well model fit on training data

Regularization, measures

complexity of model

• Objective:

• We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)

• Solution: Additive Training (Boosting)

▪ Start from constant prediction, add a new function each time

Model at training round t

New function

Keep functions added in previous round

Objective Function - GBT

• Consider square loss

• How do we decide which f to add?

▪ Optimize the objective!!

• The prediction at round t is

This is what we need to decide in round t

Goal: find to minimize this

This is usually called residual from previous round

GBT – Additive Training

Taylor Expansion Approximation of Loss

• Goal

▪ Seems still complicated except for the case of square loss

• Take Taylor expansion of the objective

▪ Recall

▪ Define

• If you are not comfortable with this, think of square loss

• Compare what we get to previous slide

Our New Goal

• Objective, with constants removed

▪ where

• Why spending so much efforts to derive the objective, why
not just grow trees …

▪ Theoretical benefit: know what we are learning, convergence

▪ Engineering benefit, recall the elements of supervised learning

 and comes from definition of loss function

 The learning of function only depend on the objective via and

 Think of how you can separate modules of your code when you
are asked to implement boosted tree for both square loss and
logistic loss

Refine the definition of tree

• We define tree by a vector of scores in leafs, and a leaf index
mapping function that maps an instance to a leaf

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

q() = 1

q() = 3

w1=+2 w2=0.1 w3=-1

The structure of the tree

The leaf weight of the tree

Define Complexity of a Tree

• Define complexity as (this is not the only possible definition)

Number of leaves L2 norm of leaf scores

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

w1=+2 w2=0.1 w3=-1

Revisit the Objectives

• Define the instance set in leaf j as

• Regroup the objective by each leaf

• This is sum of T independent quadratic functions

The Structure Score

• Two facts about single variable quadratic function

• Let us define

• Assume the structure of tree (q(x)) is fixed, the optimal
weight in each leaf, and the resulting objective value are

This measures how good a tree structure is!

The Structure Score Calculation

age < 15

is male?

Y N

Y N

Instance index

1

2

3

4

5

g1, h1

g2, h2

g3, h3

g4, h4

g5, h5

gradient statistics

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

• Enumerate the possible tree structures q

• Calculate the structure score for the q, using the scoring eq.

• Find the best tree structure, and use the optimal leaf weight

• But… there can be infinite possible tree structures..

Greedy Learning of the Tree

• In practice, we grow the tree greedily

▪ Start from tree with depth 0

▪ For each leaf node of the tree, try to add a split. The change of
objective after adding the split is

▪ Remaining question: how do we find the best split?

the score of left child the score of if we do not split

the score of right child

The complexity cost by

introducing additional leaf

Efficient Finding of the Best Split

• All we need is sum of g and h in each side, and calculate

• Left to right linear scan over sorted instance is enough to
decide the best split along the feature

g1, h1 g4, h4 g2, h2 g5, h5 g3, h3

• What is the gain of a split rule ? Say is age

a

An Algorithm for Split Finding

• For each node, enumerate over all features

▪ For each feature, sorted the instances by feature value

▪ Use a linear scan to decide the best split along that feature

▪ Take the best split solution along all the features

• Time Complexity growing a tree of depth K

▪ It is O(n d K log n): or each level, need O(n log n) time to sort
There are d features, and we need to do it for K level

▪ This can be further optimized (e.g. use approximation or caching
the sorted features)

▪ Can scale to very large dataset

What about Categorical Variables?

• Some tree learning algorithm handles categorical variable and
continuous variable separately

▪ We can easily use the scoring formula we derived to score split
based on categorical variables.

• Actually it is not necessary to handle categorical separately.

▪ We can encode the categorical variables into numerical vector
using one-hot encoding. Allocate a #categorical length vector

▪ The vector will be sparse if there are lots of categories, the
learning algorithm is preferred to handle sparse data

Pruning and Regularization

• Recall the gain of split, it can be negative!

▪ When the training loss reduction is smaller than regularization

▪ Trade-off between simplicity and predictivness

• Pre-stopping

▪ Stop split if the best split have negative gain

▪ But maybe a split can benefit future splits..

• Post-Prunning

▪ Grow a tree to maximum depth, recursively prune all the leaf
splits with negative gain

Recap: Boosted Tree Algorithm

• Add a new tree in each iteration

• Beginning of each iteration, calculate

• Use the statistics to greedily grow a tree

• Add to the model

▪ Usually, instead we do

▪ is called step-size or shrinkage, usually set around 0.1

▪ This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

