CSC411- Ensemble methods
Gradient Boost Tree

What is ensemble ?

1 3 AN a0

Why ensemble?

Z
55
;;«Jf
B!
i+ 3
1%
;l‘
When three people are walking together, Three stooges equal to one master
| am sure to find teachers among them.
30% 30% 30%

Ensemble error rate = (g) (0.3)2(0.7)! + (g) (0.3)3(0.7)° = 21.6%

If the individual error rate is 60% , then the ensemble error rate = 64.8%
Ensemble error rate reduce to 2.6% (individual 30%) or increase to
82.6%(individual 60%) if there are 21 person.

We want each individual accurate and make different errors.

Type of ensemble methods

Bayesian voting

Bagging
(bootstrapping aggregation)

Boosting

Stacking

Recap: Supervised Learning

e Notations: z;, € R¢ i-th training example

e Model: how to make prediction j, given z;
= Linear model: ¢, = Zj Ww;Ti; (include linear/logistic regression)
= The prediction score §j; can have differentinterpretations

depending on the task
+ Linear regression: g;is the predicted score

+ Logistic regression: 1/(1 + exp(—y;))is predicted the probability
of the instance being positive

+ Others... for example in ranking g, can be the rank score

e Parameters: the things we need to learn from data

= Linear model: © = {w;|j=1,---,d}

ODbjective Function

e Objective function that is everywhere

0bj(©) = L(©) +

(0)

\

Training Loss measures how
well model fit on training data

Regularization, measures
complexity of model

e Loss on training data: 1 =" I(y;, 9;)

= Square loss: Uy, i) = (y; — Qz)Q

= Logistic loss: [(y;, 4;) = v; In(1 4+ €7 %) + (1 — y;) In(1 +)

e Regularization: how complicated the modelis?

= L2norm: Q(w) = Ajw|?
* L1norm (lasso): Q(w) = A||lwlx

ODbjective Function - GBT

* Objective: > " | I(ys, 0i) + >, QU fw) fu € F

e We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)
e Solution: Additive Training (Boosting)

= Start from constant prediction, add a new function each time

0 = fi(m) = 9 + i)
07 = fi(m) + falz) = 8 + falas)

@gt) — 22:1 fk(ﬂfz) — yﬁft_l) + ft(ajz)\ New function
/

Model at training round t Keep functions added in previous round

GBT — Additive Training

e How do we decide which f to add?

= Optimize the objective!!

e The prediction at round tis " = 3"V + ft(aji><\

1

This is what we need to decide in round t

+ N constant

Goal: find ft to minimize this

e Consider square loss
2
Obj 0 =3, (9= @ + ful@))) + Q) + const

= Z?:l () + ft(xi)Q} + Q(f;) + const

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

e Goal Obj®) =3>"" | (yz,?}&(t Yy ft(asz)) + Q(f;) + constant

= Seems still complicated except for the case of square loss

e Take Taylor expansion of the objective
» Recall f(z+ Az)~ f(z) + f'(x)Az + 5 f"(z)Ax?
= Define g; = dgu-nl(yi, g), hi =95, l(y;, 9" Y)

Obj) ~ S0 {l(yz, g),ft_)) + gi fe(x;) + %hsz(a:z)} + Q(f¢) + constant

e [f you are not comfortable with this, think of square loss
gi = Oga—v (HED — ;)2 =2V —y;) hi =00 1y (yi —§V)? =

e Compare what we get to previous slide

Our New Goal

e Objective, with constants removed
1
> iy Lgife(@i) + shaff(zs)] + Q(fr)
« where 9 =9y l(y;, 9 V), h; = 3§<t_1>l(y7:7?3(t_1))

e Why spending so much efforts to derive the objective, why
not just grow trees ...

= Theoretical benefit: know what we are learning, convergence

= Engineering benefit, recall the elements of supervised learning
+ g; and h; comes from definition of loss function
+ The learning of function only depend on the objective via g; and h;

+ Think of how you can separate modules of your code when you

are asked to implement boosted tree for both square loss and
logistic loss

Refine the definition of tree

e \We define tree by a vector of scores in leafs, and a leaf index
mapping function that maps an instance to a leaf

fi(z) = wy(g), wE RY7,q: R4 — {1,2,---,T}

\ The structure of the tree

The leaf weight of the tree

N

Define Complexity of a Tree

e Define complexity as (this is not the only possible definition)

Qfe) =T + %)‘2?21 w?

Number of leaves L2 norm of leaf scores

T

a
{ V
Q7L

(T
@% Q=73+ IA4+0.01+1)

Leaf 3

wl=+2 w2=0.1 w3=-1

Revisit the Objectives

e Define the instance setin leafjas I; = {i|¢(z;) = j}
e Regroup the objective by each leaf
Obj®) =~ 3" [gife(xi) + Fhaf2(xi)] + Qft)
= ic1 |9iWq(a;) T+ %hiwg(m) + 1+ A% Z?zl w?
= S0 |(Cier, 00ws + 3 (Sier, b+ Nw?| 44T

e This is sum of T independent quadratic functions

The Structure Score

e Two facts about single variable quadratic function

G2

argming Gx + %Ha:z = —%, H >0 min, G’x+%Ha:2 — _%ﬁ

e Letusdefine Gj=2ic; 90 Hj=3,c; hi

0bj 0 =71 [(Cier, 90005 + 3(Sie, hi + Nw?| +4T
= Z?:l [ijj' I %(HJ .)\)wﬂ + ~T

e Assume the structure of tree (g(x)) is fixed, the optimal
weight in each leaf, and the resulting objective value are

wk = — 2 Obj = —15°7 % +~T
i T H; 4N J 2 2j=1H4x T

;

This measures how good a tree structureis!

The Structure Score Calculation

Instance index gradient statistics

1 g1, h1 N
S > Is ={2,3,5}
2 g2, h2 _— Gz =92+ 93+ g5
(=) h={1} L= gy hy ot hy+hs
3 S gahs G1=q G2 = g4
Hi=h Hi=h
4 ‘@? g4, h4

G

% Obj ==, gz +3
5 g5, h5

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

e Enumerate the possible tree structures g

e Calculate the structure score for the g, using the scoring eq.

. T G?
Ob]: % i 1Hj—|—>_|_’yT

e Find the best tree structure, and use the optimal leaf weight

e But... there can be infinite possible tree structures..

Greedy Learning of the Tree

e |[n practice, we grow the tree greedily
= Start from tree with depth 0

= For each leaf node of the tree, try to add a split. The change of

objective after adding the splitis The complexity cost by
introducing additional leaf
. 1 G% G% . (GL+GR)2 L /

Gain = §[HL—|—>\ + Hr+A\ HL+HR+>\] v

T,

the score of left child the score of if we do not split

the score of right child

= Remaining question: how do we find the best split?

Efficient Finding of the Best Split

e What is the gain of a splitrule 2, <« ? Sayz; isage

(=)
R
I

gl,hl g4, h4 g2, h2 g5,h5 g¢g3,h3

GrL =91+ g4 Gr=¢2+93+ g5

e All we need is sum of g and h in each side, and calculate

. G G% (GL+GRr)?
Gain = g5+ mix — HosHaix)

e Left to right linear scan over sorted instance is enough to
decide the best split along the feature

An Algorithm for Split Finding

e For each node, enumerate over all features
= For each feature, sorted the instances by feature value

= Use a linear scan to decide the best split along that feature

= Take the best split solution along all the features

e Time Complexity growing a tree of depth K

It is O(n d K log n): or each level, need O(n log n) time to sort
There are d features, and we need to do it for K level

This can be further optimized (e.g. use approximation or caching
the sorted features)

Can scale to very large dataset

What about Categorical Variables?

e Some tree learning algorithm handles categorical variable and
continuous variable separately

= We can easily use the scoring formula we derived to score split
based on categorical variables.

e Actually it is not necessary to handle categorical separately.

= We can encode the categorical variables into numerical vector
using one-hot encoding. Allocate a #categorical length vector

L 1 if z is in category j
71 0 otherwise

= The vector will be sparse if there are lots of categories, the
learning algorithm is preferred to handle sparse data

Pruning and Regularization

e Recall the gain of split, it can be negative!
G2 (GL+Gr
L R P
+A ™ Hpr+A Hyp+Hp+ 7\

= When the training loss reduction is smaller than regularization

Gain =

= Trade-off between simplicity and predictivhess

e Pre-stopping
= Stop split if the best split have negative gain

= But maybe a split can benefit future splits..

e Post-Prunning

= Grow a tree to maximum depth, recursively prune all the leaf
splits with negative gain

Recap: Boosted Tree Algorithm

e Add a new tree in each iteration

e Beginning of each iteration, calculate

gi = 8g(t—1>l(yi7 Q(t_l))v h’t — a;(t—l)l(yivg(t_l))

e Use the statistics to greedily grow a tree f:(z)

. T G2
Obj = _% Zj:1 Hx T YT

e Add f:(2) to the model %" = 8"~ + fi(x:)
= Usually, instead we do y = yU=D + efy (z;)

= € jscalled step-size or shrinkage, usually set around 0.1

= This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

