CSC 411 Lecture 09: Generative Models for Classification II

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto
Today

- Classification - Multi-dimensional (Gaussian) Bayes classifier
- Estimate probability densities from data
Motivation

- Generative models - model $p(x|t = k)$
- Instead of trying to separate classes, try to model what each class "looks like".
- Recall that $p(x|t = k)$ may be very complex

\[
p(x_1, \cdots, x_d, y) = p(x_1|x_2, \cdots, x_d, y) \cdots p(x_{d-1}|x_d, y)p(x_d, y)
\]

- Naive bayes used a conditional independence assumption. What else could we do? Choose a simple distribution.
- Today we will discuss fitting Gaussian distributions to our data.
Bayes Classifier

- Let’s take a step back...
- Bayes Classifier

$$h(x) = \arg\max p(t = k| x) = \arg\max \frac{p(x| t = k)p(t = k)}{p(x)}$$

$$= \arg\max p(x| t = k)p(t = k)$$

- Talked about Discrete x, what if x is continuous?
Classification: Diabetes Example

- Observation per patient: White blood cell count & glucose value.

- How can we model $p(x|t = k)$? Multivariate Gaussian
Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

- Gaussian Discriminant Analysis in its general form assumes that $p(x|t)$ is distributed according to a multivariate normal (Gaussian) distribution.

- Multivariate Gaussian distribution:

$$p(x|t = k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp \left[-(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of x.

- Each class k has associated mean vector μ_k and covariance matrix Σ_k.

- Σ_k has $\mathcal{O}(d^2)$ parameters - could be hard to estimate (more on that later).
Multivariate Data

- Multiple measurements (sensors)
- d inputs/features/attributes
- N instances/observations/examples

\[
X = \begin{bmatrix}
x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\
x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
x_1^{(N)} & x_2^{(N)} & \cdots & x_d^{(N)}
\end{bmatrix}
\]
Multivariate Parameters

- **Mean**
 \[\mathbb{E}[\mathbf{x}] = [\mu_1, \cdots, \mu_d]^T \]

- **Covariance**
 \[\Sigma = \text{Cov}(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mu)^T(\mathbf{x} - \mu)] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix} \]

- For Gaussians - all you need to know to represent! (not true in general)
x \sim \mathcal{N}(\mu, \Sigma), \text{ a Gaussian (or normal) distribution defined as}

\[p(x) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left[- (x - \mu)^T \Sigma^{-1} (x - \mu) \right] \]

- Mahalanobis distance \((x - \mu_k)^T \Sigma^{-1} (x - \mu_k)\) measures the distance from \(x\) to \(\mu\) in terms of \(\Sigma\)
- It normalizes for difference in variances and correlations
Bivariate Normal

\[\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

\[\Sigma = 0.5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

\[\Sigma = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Figure: Probability density function

Figure: Contour plot of the pdf
Bivariate Normal

\[\text{var}(x_1) = \text{var}(x_2) \quad \text{var}(x_1) > \text{var}(x_2) \quad \text{var}(x_1) < \text{var}(x_2) \]

Figure: Probability density function

Figure: Contour plot of the pdf
Bivariate Normal

\[\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix} \]

Figure: Probability density function

Figure: Contour plot of the pdf
Bivariate Normal

\[\text{Cov}(x_1, x_2) = 0 \quad \text{Cov}(x_1, x_2) > 0 \quad \text{Cov}(x_1, x_2) < 0 \]

Figure: Probability density function

Figure: Contour plot of the pdf
GDA (GBC) decision boundary is based on class posterior:

\[
\log p(t_k|x) = \log p(x|t_k) + \log p(t_k) - \log p(x) \\
= -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\Sigma^{-1}_k| - \frac{1}{2} (x - \mu_k)^T \Sigma^{-1}_k (x - \mu_k) + \\
+ \log p(t_k) - \log p(x)
\]

Decision boundary:

\[
(x - \mu_k)^T \Sigma^{-1}_k (x - \mu_k) = (x - \mu_\ell)^T \Sigma^{-1}_\ell (x - \mu_\ell) + \text{Const}
\]

\[
x^T \Sigma^{-1}_k x - 2\mu_k^T \Sigma^{-1}_k x = x^T \Sigma^{-1}_\ell x - 2\mu_\ell^T \Sigma^{-1}_\ell x + \text{Const}
\]

Quadratic function in \(x\)

What if \(\Sigma_k = \Sigma_\ell\)?
Decision Boundary

likelihoods

posterior for t_1

discriminant:

$P(t_1 | x) = 0.5$
Learn the parameters for each class using maximum likelihood

Assume the prior is Bernoulli (we have two classes)

\[p(t|\phi) = \phi^t (1 - \phi)^{1-t} \]

You can compute the ML estimate in closed form

\[
\phi = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1]
\]

\[
\mu_k = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot x^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]}
\]

\[
\Sigma_k = \frac{1}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]} \sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] (x^{(n)} - \mu_{t^{(n)}})(x^{(n)} - \mu_{t^{(n)}})^T
\]
Simplifying the Model

What if x is high-dimensional?

- For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance matrix has many parameters.
- Save some parameters by using a shared covariance for the classes.
- Any other idea you can think of?
- MLE in this case:

$$
\Sigma = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu_{t^{(n)}})(x^{(n)} - \mu_{t^{(n)}})^T
$$

- Linear decision boundary.
Decision Boundary: Shared Variances (between Classes)

variances may be different

variances may be different
Binary classification: If you examine $p(t = 1|x)$ under GDA and assume $\Sigma_0 = \Sigma_1 = \Sigma$, you will find that it looks like this:

$$p(t|x, \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-w^T x)}$$

where w is an appropriate function of $(\phi, \mu_0, \mu_1, \Sigma)$, $\phi = p(t = 1)$

- Same model as logistic regression!
- When should we prefer GDA to LR, and vice versa?
Gaussian Discriminative Analysis vs Logistic Regression

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions (what loss is it optimizing?)
- Many class-conditional distributions lead to logistic classifier
- When these distributions are non-Gaussian (a.k.a almost always), LR usually beats GDA
- GDA can handle easily missing features (how do you do that with LR?)
Naive Bayes: Assumes features independent given the class

\[p(\mathbf{x}|t = k) = \prod_{i=1}^{d} p(x_i|t = k) \]

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
- Equivalent to assuming \(\Sigma_k \) is diagonal.
Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

\[p(x_i | t = k) = \frac{1}{\sqrt{2\pi\sigma_{ik}}} \exp\left[-\frac{(x_i - \mu_{ik})^2}{2\sigma_{ik}^2} \right] \]

(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal covariance matrix

Maximum likelihood estimate of parameters

\[\mu_{ik} = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot x_i^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]} \]

\[\sigma_{ik}^2 = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot (x_i^{(n)} - \mu_{ik})^2}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]} \]

What decision boundaries do we get?
In this case: $\sigma_{i,k} = \sigma$ (just one parameter), class priors equal (e.g., $p(t_k) = 0.5$ for 2-class case)

Going back to class posterior for GDA:

$$
\log p(t_k|x) = \log p(x|t_k) + \log p(t_k) - \log p(x)
$$

$$
= -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log p(t_k) - \log p(x)
$$

where we take $\Sigma_k = \sigma^2 I$ and ignore terms that don’t depend on k (don’t matter when we take max over classes):

$$
\log p(t_k|x) = -\frac{1}{2\sigma^2} (x - \mu_k)^T (x - \mu_k)
$$
Same variance across all classes and input dimensions, all class priors equal
Classification only depends on distance to the mean. Why?
Example

Full Covariances (acc 0.805)

Shared Covariance (acc 0.717)

Naive Bayes (acc 0.780)

Logistic regression (acc 0.722)
Generative models - Recap

- GDA - quadratic decision boundary.
- With shared covariance "collapses" to logistic regression.
- Generative models:
 - Flexible models, easy to add/remove class.
 - Handle missing data naturally
 - More "natural" way to think about things, but usually doesn’t work as well.
- Tries to solve a hard problem in order to solve a easy problem.