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Today

Classification - Multi-dimensional (Gaussian) Bayes classifier

Estimate probability densities from data
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Motivation

Generative models - model p(x|t = k)

Instead of trying to separate classes, try to model what each class
”looks like”.

Recall that p(x|t = k) may be very complex

p(x1, · · · , xd , y) = p(x1|x2, · · · , xd , y) · · · p(xd−1|xd , y)p(xd , y)

Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

Today we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

Let’s take a step back...

Bayes Classifier

h(x) = arg max p(t = k |x) = arg max
p(x|t = k)p(t = k)

p(x)

= arg max p(x|t = k)p(t = k)

Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

How can we model p(x |t = k)? Multivariate Gaussian
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

Multivariate Gaussian distribution:

p(x|t = k) =
1

(2π)d/2|Σk |1/2
exp

[
−(x− µk)TΣ−1

k (x− µk)
]

where |Σk | denotes the determinant of the matrix, and d is dimension of x

Each class k has associated mean vector µk and covariance matrix Σk

Σk has O(d2) parameters - could be hard to estimate (more on that later).
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Multivariate Data

Multiple measurements (sensors)

d inputs/features/attributes

N instances/observations/examples

X =
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Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



For Gaussians - all you need to know to represent! (not true in general)
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−(x− µ)TΣ−1(x− µ)

]

Mahalanobis distance (x− µk)TΣ−1(x− µk) measures the distance from x
to µ in terms of Σ

It normalizes for difference in variances and correlations
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

var(x1) = var(x2) var(x1) > var(x2) var(x1) < var(x2)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Cov(x1, x2) = 0 Cov(x1, x2) > 0 Cov(x1, x2) < 0

Figure: Probability density function

Figure: Contour plot of the pdf
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

GDA (GBC) decision boundary is based on class posterior:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

Decision boundary:

(x− µk)TΣ−1
k (x− µk) = (x− µ`)

TΣ−1
` (x− µ`) + Const

xTΣ−1
k x− 2µT

k Σ−1
k x = xTΣ−1

` x− 2µT
` Σ−1

` x + Const

Quadratic function in x

What if Σk = Σ`?
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Learning

Learn the parameters for each class using maximum likelihood

Assume the prior is Bernoulli (we have two classes)

p(t|φ) = φt(1− φ)1−t

You can compute the ML estimate in closed form

φ =
1

N

N∑
n=1

1[t(n) = 1]

µk =

∑N
n=1 1[t(n) = k] · x(n)∑N

n=1 1[t(n) = k]

Σk =
1∑N

n=1 1[t(n) = k]

N∑
n=1

1[t(n) = k](x(n) − µt(n))(x(n) − µt(n))
T
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

Save some parameters by using a shared covariance for the classes

Any other idea you can think of?

MLE in this case:

Σ =
1

N

N∑
n=1

(x(n) − µt(n))(x(n) − µt(n))
T

Linear decision boundary.
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Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Gaussian Discriminative Analysis vs Logistic Regression

Binary classification: If you examine p(t = 1|x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ), φ = p(t = 1)

Same model as logistic regression!

When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

If this is true, GDA is asymptotically efficient (best model in limit of large N)

But LR is more robust, less sensitive to incorrect modeling assumptions
(what loss is it optimizing?)

Many class-conditional distributions lead to logistic classifier

When these distributions are non-Gaussian (a.k.a almost always), LR usually
beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Naive Bayes

Naive Bayes: Assumes features independent given the class

p(x|t = k) =
d∏

i=1

p(xi |t = k)

Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

Equivalent to assuming Σk is diagonal.
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Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

σ2
ik =

∑N
n=1 1[t(n) = k] · (x (n)i − µik)2∑N

n=1 1[t(n) = k]

What decision boundaries do we get?
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Decision Boundary: isotropic

In this case: σi,k = σ (just one parameter), class priors equal (e.g.,
p(tk) = 0.5 for 2-class case)

Going back to class posterior for GDA:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

where we take Σk = σ2I and ignore terms that don’t depend on k (don’t
matter when we take max over classes):

log p(tk |x) = − 1

2σ2
(x− µk)T (x− µk)
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Decision Boundary: isotropic

* ? 

Same variance across all classes and input dimensions, all class priors equal

Classification only depends on distance to the mean. Why?
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Example
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Generative models - Recap

GDA - quadratic decision boundary.

With shared covariance ”collapses” to logistic regression.

Generative models:

I Flexible models, easy to add/remove class.
I Handle missing data naturally
I More ”natural” way to think about things, but usually doesn’t work as

well.

Tries to solve a hard problem in order to solve a easy problem.
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