CSC 411 Lecture 09: Generative Models for

Classification |l

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec9 1/1



o Classification - Multi-dimensional (Gaussian) Bayes classifier

@ Estimate probability densities from data

CSC411 Lec9 2/1



o Generative models - model p(x|t = k)

@ Instead of trying to separate classes, try to model what each class
"looks like".

@ Recall that p(x|t = k) may be very complex

p(x1, -, Xd,¥) = p(xt|x2, -+ s Xd,¥) -+ - p(Xd—1|Xd, y)P(Xd, ¥)

@ Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

@ Today we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

@ Let's take a step back...

@ Bayes Classifier

p(x|t = K)p(t = k)

h(x) = arg max p(t = k|x) = arg max
(x) = arg max p( x) = arg ()

= argmax p(x|t = k)p(t = k)

@ Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

@ How can we model p(x|t = k)? Multivariate Gaussian
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

@ Multivariate Gaussian distribution:
1 _
p(x|t = k) = )5 2 P [0 = ) TE T (x = 1))

where |X| denotes the determinant of the matrix, and d is dimension of x
@ Each class k has associated mean vector p, and covariance matrix X,
@ ¥, has O(d?) parameters - could be hard to estimate (more on that later).
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Multivariate Data

@ Multiple measurements (sensors)
@ d inputs/features/attributes

@ N instances/observations/examples
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Multivariate Parameters

@ Mean
E[X] = [Mlv' e ’/~Ld]T

@ Covariance

01 012 e 01d
2
012 [ e 024
¥ = Cov(x) = E[(x — p) T (x — )] = _
o1 Ogp - 0F

@ For Gaussians - all you need to know to represent! (not true in general)
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Multivariate Gaussian Distribution

@ x ~ N(p,X), a Gaussian (or normal) distribution defined as

P(X) = Gyarargrers & [ — ) TE e )]
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@ Mahalanobis distance (x — px) T E~1(x — ux) measures the distance from x
to p in terms of &

@ It normalizes for difference in variances and correlations
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Bivariate Normal
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Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

var(xi) = var(xz) var(xi) > var(xz) var(xi) < var(xz)

Probability Density

Figure: Probability density function

©

b b L s oo s
b L s o ow e

5 [ H £ -4 2 [ 2 4 B “ -2 [ 2 4 B

Figure: Contour plot of the pdf
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Figure: Probability density function

Figure: Contour plot of the pdf
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ GDA (GBC) decision boundary is based on class posterior:

log p(tk[x) = log p(x|t) + log p(tx) — log p(x)
d 1 1 _
= —5log(2m) = S log |7 | = S (x — ) I (x — ) +
+ log p(tx) — log p(x)

@ Decision boundary:
(x — ) T (x = juk) = (x — pe) TE; (x — ae) + Const

X" x —2u] T x = xTzzlx - 2u£TZglx + Const

@ Quadratic function in x

o What if ¥, = ¥,?
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Decision Boundary

discriminant:
P(t;|x)=0.5

posterior for t, O
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@ Learn the parameters for each class using maximum likelihood

@ Assume the prior is Bernoulli (we have two classes)

p(tld) = 6" (1 —¢)**

@ You can compute the ML estimate in closed form

1 N
_ (n) _
¢ = N ,?:1 1t = 1]

Z’n"zl 1t = k] - x(")

M =
‘ SV L[ = A]
1 ) (n) () T
Yy = —Zﬂ[t = K|(x'" = g ) (X = p4))

Zrl:lzl 1t = k] 7=
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Simplifying the Model

What if x is high-dimensional?

@ For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

@ Save some parameters by using a shared covariance for the classes

Any other idea you can think of?
@ MLE in this case:
L

Y= D = ) () = )T

n=1

Linear decision boundary.
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Decision Boundary: Shared Variances (between Classes)

variances may be
different
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Gaussian Discriminative Analysis vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
Yo =23 =X, you will find that it looks like this:

1

t b [
P( |x7¢7M07M17 ) 1+exp(—wa)

where w is an appropriate function of (¢, uo, p1, %), ¢ = p(t = 1)
@ Same model as logistic regression!

@ When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

@ GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

@ If this is true, GDA is asymptotically efficient (best model in limit of large N)

@ But LR is more robust, less sensitive to incorrect modeling assumptions
(what loss is it optimizing?)

@ Many class-conditional distributions lead to logistic classifier

@ When these distributions are non-Gaussian (a.k.a almost always), LR usually
beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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@ Naive Bayes: Assumes features independent given the class

d

p(xlt = k) = T] plxilt = K)

i=1
@ Assuming likelihoods are Gaussian, how many parameters required for Naive

Bayes classifier?

@ Equivalent to assuming X4 is diagonal.
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

1 _(Xi - Mik)2
plxi ) V2o &P [ 2‘7/2k

(this is just a 1-dim Gaussian, one for each input dimension)

@ Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

@ Maximum likelihood estimate of parameters
S Lt = K- X"
Soais 1t = 4]

2 ZnNzl ]]‘[t(n) k] ) (Xi(n) — l’l’ik)2
oh =
S [ = K]

Hik =

@ What decision boundaries do we get?
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Decision Boundary: isotropic

@ In this case: o x = o (just one parameter), class priors equal (e.g.,
p(tx) = 0.5 for 2-class case)

@ Going back to class posterior for GDA:

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
d 1 1 _
=~ log(2m) — Jlog [T | = S (x — ) TT, T (x = ) +

+ log p(t) — log p(x)

where we take ¥4 = 02/ and ignore terms that don't depend on k (don't
matter when we take max over classes):

g pl(tx) = ——5(x = ) (x = 1)
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Decision Boundary: isotropic

@ Same variance across all classes and input dimensions, all class priors equal

@ Classification only depends on distance to the mean. Why?
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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Generative models - Recap

@ GDA - quadratic decision boundary.
@ With shared covariance "collapses” to logistic regression.
@ Generative models:

» Flexible models, easy to add/remove class.

» Handle missing data naturally

» More "natural” way to think about things, but usually doesn’'t work as
well.

@ Tries to solve a hard problem in order to solve a easy problem.
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