CSC 411 Lecture 08: Generative Models for Classification

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto
Today

- Classification – Bayes classifier
- Estimate input probability densities from data
- Naive Bayes
Classification

- Given inputs x and classes y we can do classification in several ways. How?

\[
\begin{align*}
\text{(features)} & \quad \text{(class label)} \\
X & \quad y \\
\text{e.g.:} & \quad \text{elephant} \\
- \text{height} & \quad \text{bear} \\
- \text{weight} & \\
- \text{color} &
\end{align*}
\]
Discriminative Classifiers

- **Discriminative** classifiers try to either:
 - learn mappings directly from the space of inputs \mathcal{X} to class labels $\{0, 1, 2, \ldots, K\}$

![Diagram showing features and class labels]

- For example:
 - Decision trees
Discriminative Classifiers

- **Discriminative** classifiers try to either:
 - or try to learn $p(y|x)$ directly

For example:
- Logistic Regression
Generative Classifiers

How about this approach: build a model of “what data for a class looks like”

- **Generative** classifiers try to model $p(x, y)$. If we know $p(y)$ we can easily compute $p(x|y)$.
- Classification via Bayes rule (thus also called Bayes classifiers)

\[
p(x|y)\quad\quad\quad\quad\quad\quad y
\]

(prob. of features given label) (class label)

e.g:
- height
- weight
- color

Tries to model:
- How does data look like for a class?

Classification (How?)
Generative vs Discriminative

Two approaches to classification:

- **Discriminative** classifiers estimate parameters of decision boundary/class separator directly from labeled examples. Tries to solve: How do I separate the classes?
 - learn $p(y|x)$ directly (logistic regression models)
 - learn mappings from inputs to classes (least-squares, decision trees)

- **Generative approach**: model the distribution of inputs characteristic of the class (Bayes classifier). Tries to solve: What does each class ”look” like?
 - Build a model of $p(x|y)$
 - Apply Bayes Rule
Bayes Classifier

- Aim to classify text into spam/not-spam (yes \(C=1 \); no \(C=0 \))
- Use bag-of-words features, get binary vector \(x \) for each patient
- Given features \(x = [x_1, x_2, \cdots, x_d]^T \) we want to compute class probabilities using Bayes Rule:

\[
p(C|x) = \frac{p(x|C)p(C)}{p(x)}
\]

- More formally

\[
\text{posterior} = \frac{\text{Class likelihood } \times \text{ prior}}{\text{Evidence}}
\]

- How can we compute \(p(x) \) for the two class case? (Do we need to?)

\[
p(x) = p(x|C=0)p(C=0) + p(x|C=1)p(C=1)
\]

- To compute \(p(C|x) \) we need: \(p(x|C) \) and \(p(C) \)
Let’s start with a simple (but slightly redundant) example.

Imagine that we have some biased coins and we observe a single outcome from one of these coins.

We have $P(x|C) = Ber(\theta_C) = \theta_C^x \cdot (1 - \theta_C)^{1-x}$

Notice that we have different parameters for each coin.

How can I fit the distribution to my data?

Simple approach - maximum likelihood
MLE for Bernoulli

- Assumption: data points are independent and identically distributed (i.i.d)

\[p(D_C|C) = \prod_{n=1}^{N} p(x^{(n)}|C) = \prod_{n=1}^{N} \theta_C^{x^{(n)}} \cdot (1 - \theta_C)^{1-x^{(n)}} = \theta_C^{N_C} \cdot (1 - \theta_C)^{N-N_C} \]

- We define \(N_C = \sum_{i=1}^{N} x^{(n)} \) the number of ones (heads) seen.

- \(N \) and \(N_C \) are called sufficient statistics - hold all the information we need to compute \(P(D_C|C) \)

- We can minimize the negative log-likelihood (NLL)

\[
l_{\text{log-loss}} = - \log(p(x^{(1)}, \cdots, x^{(N)}|C)) = -N_C \log(\theta_C) - (N - N_C) \log(1 - \theta_C)
\]

\[
\frac{\partial l_{\text{log-loss}}}{\partial \theta_C} = - \frac{N_C}{\theta_C} + \frac{N - N_C}{1 - \theta_C} = 0 \Rightarrow \theta_C = \frac{N_C}{N}
\]
Beta-Binomial

- MLE solution $\theta_C = \frac{N_C}{N}$. What if $N_C = 0$?
- Example: Some rare word unseen in a training corpus.
- In that case $P(x|C) = 0$ no matter what other information we have!
- Solution: A prior over θ.
- Simple (conjugate) prior: Beta distribution
 - $Beta(\theta|a, b) \propto \theta^{a-1}(1 - \theta)^{b-1}$
Beta Distribution

- Examples of $Beta(\theta|a, b) \propto \theta^{a-1}(1 - \theta)^{b-1}$:

 - $a = 0.1$
 - $b = 0.1$

 - $a = 1$
 - $b = 1$

 - $a = 2$
 - $b = 3$

 - $a = 8$
 - $b = 4$

[Image credit: Bishop]
Beta-Binomial

- Likelihood: \(p(\mathcal{D}_C|\theta_C) = \theta_C^{N_C} \cdot (1 - \theta_C)^{N - N_C} \)
- Prior: \(P(\theta_C) = Beta(\theta_C|a, b) \propto \theta_C^{a-1} (1 - \theta_C)^{b-1} \)

\[
p(\theta_C|\mathcal{D}_C) = \frac{p(\mathcal{D}_C|\theta_C)P(\theta_C)}{p(\mathcal{D}_C)} \propto \theta_C^{N_C} \cdot (1 - \theta_C)^{N - N_C} \theta_C^{a-1} (1 - \theta_C)^{b-1} \]

\[
= \theta_C^{N_C+a-1} \cdot (1 - \theta_C)^{N - N_C + b-1}
\]

- We have: \(P(\theta_C|\mathcal{D}_C) = Beta(N_C + a, N - N_C + b) \)
- MAP estimation: \(\theta_C,_{map} = \frac{N_C + a - 1}{N + a + b - 2} \) (show!)
Can we do better then the using the MAP estimator? A more Bayesian approach.

We have \(P(\theta_C|\mathcal{D}_C) = Beta(N_c + a, N - N_C + b) \), what is \(P(x = 1|\mathcal{D}_C) \)?

\[
P(x = 1|\mathcal{D}_C) = \int_0^1 P(x = 1|\theta)P(\theta|\mathcal{D}_C) \]

\[
= \int_0^1 \theta C P(\theta|\mathcal{D}_C) = \mathbb{E}[\theta_C|\mathcal{D}_C]
\]

Beta(a,b) has a closed form mean \(\frac{a}{a+b} \) (a bit of work to show) so \(\theta_C = P(x = 1|\mathcal{D}_C) = \frac{N_c+a}{N+a+b} \)

Equivalent to pseudo-counts, adding a fictitious positive examples and \(b \) negative ones.
Moving beyond coins

- In the real world we tend to have a vector of observations \(\mathbf{x} = [x_1, \ldots, x_d] \).
- Modelling \(p(\mathbf{x}, y) \) in this case is much more complex.

\[
p(x_1, \cdots, x_d, y) = p(x_1 | x_2, \cdots, x_d, y) \cdots p(x_{d-1} | x_d, y) p(x_d, y)
\]

- We need to make some assumptions!
- The Naive-Bayes Model is born from a particularly strong assumption.
Naive-Bayes for Bernoulli variables

- Make the (naive) assumption - dimensions $\mathbf{x} = [x_1, \ldots, x_d]$ are independent given the class y.

$$P(\mathbf{x} | y = C, \theta_C) = \prod_{j=1}^{d} p(x_j | y = C, \theta_{jC}) = \prod_{j=1}^{d} \theta_{jC}^{x_j} (1 - \theta_{jC})^{(1-x_j)} =$$

$$\exp \left(\sum_{j=1}^{d} x_j \log(\theta_{jC} / (1 - \theta_{jC})) + \sum_{j=1}^{d} \log(1 - \theta_{jC}) \right) = \exp(\mathbf{w}_C^T \mathbf{x} + w_0C)$$

- Define $w_{Cj} = \log(\theta_{jC} / (1 - \theta_{jC}))$, $w_0C = \sum_{j=1}^{d} \log(1 - \theta_{jC})$
Naive-Bayes for Bernoulli variables

- How do we classify?

\[
P(y = C|x) \propto P(y = C)P(x|y = C) = \exp(w_C^T x + b_C)
\]

- \(w_Cj = \log(\theta_{jC}/(1 - \theta_{jC}))\), \(b_C = w_0C + \log(P(y = C))\)

- Linear classifier! Model is similar to logistic regression, but different optimization.
 - No gradients - just need to count! Really fast to train.
 - Doesn’t take into account correlation between features.
Example: 20newsgroups

<table>
<thead>
<tr>
<th>Topic</th>
<th>Naive Bayes</th>
<th>Logistic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>'alt.atheism',</td>
<td>don</td>
<td>enlightening</td>
</tr>
<tr>
<td>'comp.graphics',</td>
<td>thanks</td>
<td>needed</td>
</tr>
<tr>
<td>'comp.os.ms-windows.misc',</td>
<td>windows</td>
<td>windows</td>
</tr>
<tr>
<td>'comp.sys.ibm.pc.hardware',</td>
<td>thanks</td>
<td>disappointing</td>
</tr>
<tr>
<td>'comp.sys.mac.hardware',</td>
<td>mac</td>
<td>mac</td>
</tr>
<tr>
<td>'comp.windows.x',</td>
<td>window</td>
<td>xtvappinitialize</td>
</tr>
<tr>
<td>'misc.forsale',</td>
<td>sale</td>
<td>semd</td>
</tr>
<tr>
<td>'rec.autos',</td>
<td>car</td>
<td>car</td>
</tr>
<tr>
<td>'rec.motorcycles',</td>
<td>bike</td>
<td>bike</td>
</tr>
<tr>
<td>'rec.sport.baseball',</td>
<td>year</td>
<td>950k</td>
</tr>
<tr>
<td>'rec.sport.hockey',</td>
<td>team</td>
<td>hockey</td>
</tr>
<tr>
<td>'sci.crypt',</td>
<td>key</td>
<td>encryption</td>
</tr>
<tr>
<td>'sci.electronics',</td>
<td>use</td>
<td>cci</td>
</tr>
<tr>
<td>'sci.med',</td>
<td>don</td>
<td>melittin</td>
</tr>
<tr>
<td>'sci.space',</td>
<td>space</td>
<td>launch</td>
</tr>
<tr>
<td>'soc.religion.christian',</td>
<td>god</td>
<td>satan</td>
</tr>
<tr>
<td>'talk.politics.guns',</td>
<td>people</td>
<td>gun</td>
</tr>
<tr>
<td>'talk.politics.mideast',</td>
<td>people</td>
<td>kidding</td>
</tr>
<tr>
<td>'talk.politics.misc',</td>
<td>people</td>
<td>paranoia</td>
</tr>
<tr>
<td>'talk.religion.misc'</td>
<td>people</td>
<td>compuserve</td>
</tr>
</tbody>
</table>
Beyond Bernoulli

- We focused on binary features, x_i, but Naive bayes is more general.
- Discrete features - multinomial.
- Continuous features - Gaussian (or any other).
- No problem to mix (unlike logistic regression)!
NB recap

- **Learning parameters:**
 - Estimate $P(y = C)$, e.g. $P(y = C) = \frac{\# \text{class } C}{\# \text{data points}}$
 - For each class C and feature x_i estimate the distribution $p(x_i|y = C)$

- **At test time:**
 - For each class compute $S_C = \log(P(Y = C)) + \sum_{i=1}^{d} \log(p(x_i|y = C))$
 - Classify according to $\max_C S_C$

- **Probabilities:**
 - $P(y = C|x) = \frac{\exp(S_C)}{\sum_{i=1}^{L} \exp(S_i)}$
Pros:

- Really fast to train (single pass through data!).
- Fast to test.
- Less over-fitting, sometimes better than logistic on small data sets.
- Easy to add/remove classes.
- Can handle partial data.

Cons:

- When naive i.i.d assumption doesn’t hold (almost always) - can perform much worse.