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Today

Classification – Bayes classifier

Estimate input probability densities from data

Naive Bayes
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Classification

Given inputs x and classes y we can do classification in several ways. How?
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Discriminative Classifiers

Discriminative classifiers try to either:
I learn mappings directly from the space of inputs X to class labels
{0, 1, 2, . . . ,K}
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Discriminative Classifiers

Discriminative classifiers try to either:
I or try to learn p(y |x) directly
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Generative Classifiers

How about this approach: build a model of “what data for a class looks like”

Generative classifiers try to model p(x, y). If we know p(y) we can easily
compute p(x|y).

Classification via Bayes rule (thus also called Bayes classifiers)
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Generative vs Discriminative

Two approaches to classification:

Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled examples. Tries to solve: How do I separate
the classes?

I learn p(y |x) directly (logistic regression models)
I learn mappings from inputs to classes (least-squares, decision trees)

Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier). Tries to solve: What does each class ”look” like?

I Build a model of p(x|y)
I Apply Bayes Rule
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Bayes Classifier

Aim to classify text into spam/not-spam (yes C=1; no C=0)

Use bag-of-words features, get binary vector x for each patient

Given features x = [x1, x2, · · · , xd ]T we want to compute class probabilities
using Bayes Rule:

p(C |x) =
p(x|C )p(C )

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x|C = 0)p(C = 0) + p(x|C = 1)p(C = 1)

To compute p(C |x) we need: p(x|C ) and p(C )

CSC411 Lec7 8 / 21



Classification: Simple Example

Let’s start with a simple (but slightly redundant) example.

Imagine that we have some biased coins and we observe a single outcome
from one of these coins.

We have P(x |C ) = Ber(θC ) = θxC · (1− θC )1−x

Notice that we have different parameters for each c oin

How can I fit the distribution to my data?

Simple approach - maximum likelihood
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MLE for Bernoulli

Assumption: data points are independent and identically distributed (i.i.d)

p(DC |C) =
N∏

n=1

p(x (n)|C) =
N∏

n=1

θx
(n)

C · (1− θC )1−x(n) = θ
NC
C · (1− θC )N−NC

We define NC =
∑N

i=1 x
(n) the number of ones (heads) seen.

N and NC are called sufficient statistics - hold all the information we need to
compute P(DC |C)

We can minimize the negative log-likelihood (NLL)

`log−loss = − log(p(x (1), · · · , x (N)|C)) = −NC log(θC )− (N − NC ) log(1− θC )

∂`log−loss

∂θC
= −NC

θC
+

N − NC

1− θC
= 0⇒ θC =

NC

N

CSC411 Lec7 10 / 21



Beta-Binomial

MLE solution θC = NC
N . What if NC = 0?

Example: Some rare word unseen in a training corpus.

In that case P(x |C ) = 0 no matter what other information we have!

Solution: A prior over θ.

Simple (conjugate) prior: Beta distribution
I Beta(θ|a, b) ∝ θa−1(1− θ)b−1
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Beta Distribution

Examples of Beta(θ|a, b) ∝ θa−1(1− θ)b−1:

[Image credit: Bishop]
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Beta-Binomial

Likelihood p(DC |θC ) = θNC
C · (1− θC )N−NC

Prior P(θC ) = Beta(θC |a, b) ∝ θa−1
C (1− θC )b−1

p(θC |DC ) =
p(DC |θC )P(θC )

p(DC )
∝ θNC

C · (1− θC )N−NC θa−1
C (1− θC )b−1

= θNC+a−1
C · (1− θC )N−NC+b−1

We have P(θC |DC ) = Beta(NC + a,N − NC + b)

MAP estimation θC ,map = NC+a−1
N+a+b−2 (show!)
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Beta-Binomial *

Can we do better then the using the MAP estimator? A more
Bayesian approach.

We have P(θC |DC ) = Beta(Nc + a,N − NC + b), what is
P(x = 1|DC )?

P(x = 1|DC ) =

∫ 1

0
P(x = 1|θC )P(θC |DC )

=

∫ 1

0
θCP(θC |DC ) = E[θC |DC ]

Beta(a,b) has a closed form mean a
a+b (a bit of work to show) so

θC = P(x = 1|DC ) = NC+a
N+a+b

Equivalent to pseudo-counts, adding a fictitious positive examples and
b negative ones.
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Moving beyond coins

In the real world we tend to have a vector of observations
x = [x1, .., xd ].
Modelling p(x, y) in this case is much more complex.

p(x1, · · · , xd , y) = p(x1|x2, · · · , xd , y) · · · p(xd−1|xd , y)p(xd , y)

We need to make some assumptions!
The Naive-Bayes Model is born from a particularly strong assumption.
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Naive-Bayes for Bernoulli variables

Make the (naive) assumption - dimensions x = [x1, .., xd ] are
independent given the class y .

P(x|y = C , θC ) =
d∏

j=1

p(xj |y = C , θjC ) =
d∏

j=1

θ
xj
jC (1− θjC )(1−xj ) =

exp

 d∑
j=1

xj log(θjC/(1− θjC )) +
d∑

j=1

log(1− θjC )

 = exp(wT
C x+w0C )

Define wCj = log(θjC/(1− θjC )), w0C =
∑d

j=1 log(1− θjC )
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Naive-Bayes for Bernoulli variables

How do we classify?

P(y = C |x) ∝ P(y = C )P(x|y = C ) = exp(wT
C x + bC )

wCj = log(θjC/(1− θjC )), bC = w0C + log(P(y = C ))

Linear classifier! Model is similar to logistic regression, but different
optimization.

I No gradients - just need to count! Really fast to train.
I Doesn’t take into account correlation between features.
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Example: 20newsgroups

Table: Top word per topic

Topic Naive Bayes Logistic regression
’alt.atheism’, don enlightening
’comp.graphics’, thanks needed
’comp.os.ms-windows.misc’, windows windows
’comp.sys.ibm.pc.hardware’, thanks disappointing
’comp.sys.mac.hardware’, mac mac
’comp.windows.x’, window xtvaappinitialize
’misc.forsale’, sale semd
’rec.autos’, car car
’rec.motorcycles’, bike bike
’rec.sport.baseball’, year 950k
’rec.sport.hockey’, team hockey
’sci.crypt’, key encryption
’sci.electronics’, use cci
’sci.med’, don melittin
’sci.space’, space launch
’soc.religion.christian’, god satan
’talk.politics.guns’, people gun
’talk.politics.mideast’, people kidding
’talk.politics.misc’, people paranoia
’talk.religion.misc’ people compuserve
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Beyond Bernoulli

We focused on binary features, xi , but Naive bayes is more general.

Discrete features - multinomial.

Continuous features - Gaussian (or any other).

No problem to mix (unlike logistic regression)!
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NB recap

Learning parameters:
I Estimate P(y = C ), e.g. P(y = C ) = # class C

# data points
I For each class C and feature xi estimate the distribution p(xi |y = C )

At test time:
I For each class compute SC = log(P(Y = C )) +

∑d
i=1 log(p(xi |y = C ))

I Classify according to maxCSC

Probabilities: P(y = C |x) = exp(SC )∑L
i=1 exp(Si )
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NB recap

Pros:
I Really fast to train (single pass through data!).
I Fast to test.
I Less over-fitting, sometimes better then logistic on small data sets
I Easy to add/remove classes
I Can handle partial data.

Cons:
I When naive i.i.d assumption doesn’t hold (almost always) - can

perform much worse.
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