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The Midterm

Mid-term Key Info

Time and Date: 7:10pm - 8:10pm on Friday Oct. 20th

Location: MS3153(A-L)/MS3154(M-Z)

There is an alternate seating on this date from 8-9pm. The only way you can
write in the alternate seating is if you have a scheduled conflict at the time of the
first seating.
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Midterm - Alternate Seating

To attend the alternate seating:

1. Send me an email (csc411-20179-instrs@cs.toronto.edu) by 10:00 PM
October 9 containing a screenshot (or pdf) from your ROSI/ACORN where
your name and student number are visible and clearly show a regularly
scheduled class or lab at University of Toronto which overlaps with the
regular midterm. If you send me such an email on October 10, you won’t be
seated in the alternate seating. Your email must contain the words ”CSC411
Test Conflict with regular midterm” in the subject line. Even if you sent
me an email earlier in the term, send another one to make sure you get
your room number and approval.

2. If in fact it is a course conflict, I’ll give you the location for the alternate
seating. However, having other midterms that day (with times not
overlapping ours) does NOT count as a conflict.
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Midterm - Makeup Test

There will also a makeup test for students who cannot attend BOTH the regular
time and alternate seating exams for a valid reason(medical documentation or
time conflict prove), by doing the following.

Please follow the instructions from the previous slide - providing equivalent proof
that you cannot attend BOTH the regular midterm and the additional seating.

If you cannot take the scheduled exams on Friday Oct. 20 for medical/emergency
reasons, you must contact your instructor immediately to obtain special
permission and provide proper documentations.
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Missing The Midterm Exam

If you skip a test without prior approval, you will receive a zero for the test
(unless the absence is due to an illness or exceptional circumstances and
properly documented). If you cannot show up for the test because of
illness, you should submit your medical documentation to your instructor
no later than one week after the day of the test.
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Today

Multi-class classification with:

Logistic Regression

K-NN

Decision trees
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Reduction to binary case.

”if all you have is a hammer, everything looks like a nail”

I We have binary classifiers, can we reduce to that?

How can that be done?

I One vs all
I One vs one
I Other ideas: Hierarchical Classification, Error correcting codes.
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One vs All

First idea: Use K − 1 classifiers, each solving a two class problem of
separating point in a class Ck from points not in the class.

Known as 1 vs all or 1 vs the rest classifier

Each classifier partitions the space with a decision boundary

PROBLEM: More than one good answer for green region!
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One vs One

Another simple idea: Introduce K (K − 1)/2 two-way classifiers, one for each
possible pair of classes

Each point is classified according to majority vote amongst the disc. func.

Known as the 1 vs 1 classifier

PROBLEM: Two-way preferences need not be transitive
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Hierarchical Classification *

Hierarchical Classification - classify by a sequence of binary decisions

I Similar to decision tree - but on the labels

How to decide the hierarchy?

Problems: Sensitive to single mistake, decision can be harder then 1-vs-1 or
1-vs-all

CSC411 Lec7 10 / 22



Error correcting codes *

Each binary classifier hi gives some classes label 1 and some zero.

Binary classifiers h1, .., hL give each class a binary code, e.g. [0, 0, 1, 0, 1]

Idea - use error correcting codes. Two separate class codes should be very
different.

Should be robust to several classifier errors.

Problem: The binary classifiers, e.g. even vs odd numbers, can be hard to
train.
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K-Class Discriminant

We can avoid these problems by considering a single K-class discriminant
comprising K functions of the form

yk(x) = wT
k x + wk,0

and then assigning a point x to class Ck if

∀j 6= k yk(x) > yj(x)

Note that wT
k is now a vector, not the k-th coordinate

The decision boundary between class Cj and class Ck is given by
yj(x) = yk(x), and thus it’s a (D − 1) dimensional hyperplane defined as

(wk −wj)
Tx + (wk0 − wj0) = 0

What about the binary case? Is this different?

What is the shape of the overall decision boundary?
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K-Class Discriminant

The decision regions of such a discriminant are always convex

In Euclidean space, an object is convex if for every pair of points within the
object, every point on the straight line segment that joins the pair of points
is also within the object

Which object is convex?
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K-Class Discriminant

The decision regions of such a discriminant are always convex

Consider 2 points xA and xB that lie inside decision region Rk

Any convex combination x̂ of those points also will be in Rk

x̂ = λxA + (1− λ)xB
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Proof

A convex combination point, i.e., λ ∈ [0, 1]

x̂ = λxA + (1− λ)xB

From the linearity of the classifier y(x)

yk(x̂) = λyk(xA) + (1− λ)yk(xB)

Since xA and xB are in Rk , it follows that yk(xA) > yj(xA), yk(xB) > yj(xB),
∀j 6= k

Since λ and 1− λ are positive, then x̂ is inside Rk

Thus Rk is convex
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Example
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Multi-class Logistic Regression

Associate a set of weights with each class, then use a normalized
exponential output

p(Ck |x) = yk(x) =
exp(zk)∑
j exp(zj)

where the activations are given by

zk = wT
k x

The function exp(zk )∑
j exp(zj )

is called a softmax function

Useful notation: One-hot encoding.

I instead of using t = k (target has label k) we use a vector of K target
values containing a single 1 for the correct class and zeros elsewhere

I Example: For a 4-class problem, we would write a target with class
label 2 as:

t = [0, 1, 0, 0]T
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Multi-class Logistic Regression

The likelihood

p(T|X,w1, · · · ,wk) =
N∏

n=1

K∏
k=1

p(Ck |x(n))
t
(n)
k =

N∏
n=1

K∏
k=1

y
(n)
k (x(n))

t
(n)
k

with
p(Ck |x) = yk(x) =

exp(zk)∑
j exp(zj)

where n-th row of T is 1-of-K encoding of example n and

zk = wT
k x + wk0

What assumptions have I used to derive the likelihood?

Derive the loss by computing the negative log-likelihood:

L(w1, · · · ,wK ) = − log p(T|X,w1, · · · ,wK ) = −
N∑

n=1

K∑
k=1

t
(n)
k log[y

(n)
k (x(n))]

This is known as the cross-entropy error for multiclass classification

How do we obtain the weights?
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Training Multi-class Logistic Regression

How do we obtain the weights?

L(w1, · · · ,wK ) = − log p(T|X,w1, · · · ,wK ) = −
N∑

n=1

K∑
k=1

t
(n)
k log[y

(n)
k (x(n))]

Do gradient descent, where the derivatives are

∂y
(n)
j

∂z
(n)
k

=
∂

∂z
(n)
k

(
exp(z

(n)
j )∑

l exp(z
(n)
l )

)
= δ(k , j)y

(n)
j − y

(n)
j y

(n)
k

and

∂L

∂z
(n)
k

=
K∑
j=1

∂L

∂y
(n)
j

·
∂y

(n)
j

∂z
(n)
k

= y
(n)
k − t

(n)
k

∂L

∂wk,i
=

N∑
n=1

∂L

∂z
(n)
k

·
∂z

(n)
k

∂wk,i
=

N∑
n=1

(y
(n)
k − t

(n)
k ) · x (n)i

The derivative is the error times the input
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Softmax for 2 Classes

Let’s write the probability of one of the classes

p(C1|x) = y1(x) =
exp(z1)∑
j exp(zj)

=
exp(z1)

exp(z1) + exp(z2)

I can equivalently write this as

p(C1|x) = y1(x) =
exp(z1)

exp(z1) + exp(z2)
=

1

1 + exp (−(z1 − z2))

So the logistic is just a special case that avoids using redundant parameters

Rather than having two separate set of weights for the two classes, combine
into one

z ′ = z1 − z2 = wT
1 x−wT

2 x = wTx

The over-parameterization of the softmax is because the probabilities must
add to 1.
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Multi-class K-NN

Can directly handle multi class problems
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Multi-class Decision Trees

Can directly handle multi class problems

How is this decision tree constructed?
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