
Logistic regression Regularization Validation

CSC 411: Lecture 4 - Logistic regression
Ethan Fetaya, James Lucas and Emad Andrews

CSC411-Lec4

Logistic regression Regularization Validation

Key Concepts:

Logistic Regression

Regularization

Cross validation

note: we are still talking about binary classification (with {0, 1} labels)

CSC411-Lec4

Logistic regression Regularization Validation

So far: Turned a real score wTx = w0 · 1 +
∑d

i=1wi · xi to binary decision by
thresholding.

Alternative: Model the probability P (y = 1|x).

Need to squash wTx into [0, 1], p(y = 1|x) = f(wTx).

What about P (y = −1|w)? P (y = −1|w) = 1− P (y = 1|w) = 1− f(wTx)

How to chose label? Pick the most probable (when shouldn’t you do that?).

Benefits:

Models uncertainty (in a limited manor)

Can use probability for decision making.

Can use probabilistic objective (ML/MAP).

CSC411-Lec4

Logistic regression Regularization Validation

Sigmoid

Useful squashing function: sigmoid or logistic function

σ(z) =
1

1 + exp(−z)

0

0.5

0

1

Smooth function.
Monotonic increasing.
σ(0) = 0.5

σ(z)
z→−∞−−−−→= 0, σ(z)

z→∞−−−→= 1

CSC411-Lec4

Logistic regression Regularization Validation

Sigmoid

Let’s look at how modifying w changes the shape of the function

1D example:
y = σ (w1x+ w0)

The magnitude of w[1:] decides the slope.

It can be seen as a smooth alternative to the step function.

CSC411-Lec4

Logistic regression Regularization Validation

Sigmoid

What is the decision boundary for logistic regression?

p(y = 1|x,w) = σ(wTx) ≥ 0.5⇒ wTx ≥ 0

Decision boundary: wTx = w0 +
∑d

j=1 wjxj = 0.

Logistic regression has a linear decision boundary

The decision boundary is invariant to scaling but the probability isn’t.

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

When we have a d-dim input x ∈ <d

How should we learn the weights w = (w0, w1, · · · , wd)?

We have a probabilistic model

Let’s use maximum likelihood

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

Assume y ∈ {0, 1}, we can write the probability distribution of each of our training
points p(y(1), · · · , y(N)|x(1), · · ·x(N);w)

Assuming that the training examples are sampled IID: independent and identically
distributed, we can write the likelihood function:

L(w) = p(y(1), · · · , y(N)|x(1), · · ·x(N);w) =

N∏
i=1

p(y(i)|x(i);w)

We can write each probability as (will be useful later):

p(y(i)|x(i);w) = p(y = 1|x(i);w)y
(i)

p(y = 0|x(i);w)1−y(i)

= p(y = 1|x(i);w)y
(i)
(

1− p(y = 1|x(i);w
)1−y(i)

We can learn the model by maximizing the likelihood

max
w

L(w) = max
w

N∏
i=1

p(y(i)|x(i);w)

Easier to maximize the log likelihood logL(w)

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

L(w) =

N∏
i=1

p(y(i)|x(i)) (likelihood)

=

N∏
i=1

(
1− p(y = 1|x(i))

)1−y(i)

p(y = 1|x(i))y
(i)

We can convert the maximization problem into minimization the negative
log-likelihood (NLL):

Llog(w) = − logL(w) = −
N∑
i=1

log p(y(i)|x(i);w)

Llog(w) = − logL(w)

= −
N∑
i=1

y(i) log(p(y = 1|x(i),w))−
N∑
i=1

(1− y(i)) log p(y = 0|x(i);w)

Is there a closed form solution?

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

min
w

L(w) = min
w

{
−

N∑
i=1

y(i) log p(y = 1|x(i),w)−
N∑
i=1

(1− y(i)) log(1− p(y = 1|x(i),w))

}

Gradient descent: iterate and at each iteration compute steepest direction towards
optimum, move in that direction, step-size λ

w
(t+1)
j ← w

(t)
j − λ

∂L(w)

∂wj

You can write this in vector form

5L(w) =

[
∂L(w)

∂w0
, · · · , ∂L(w)

∂wk

]T
w(t+1) ← w(t) − λ∇wL(w(t))

But where is w?

p(y = 1|x) =
1

1 + exp (−wTx)
, p(y = 0|x) =

exp(−wTx)

1 + exp (−wTx)

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

The loss is

Llog−loss(w) = −
N∑
i=1

y(i) log p(y = 1|x(i),w)−
N∑
i=1

(1− y(i)) log p(y = 0|x(i),w)

where the probabilities are

p(y = 1|x,w) =
1

1 + exp(−z)
p(y = 0|x,w) =

exp(−z)
1 + exp(−z)

=
1

1 + exp(z)

and z = wTx

We can simplify

L(w)log−loss =
∑
i

y(i) log(1 + exp(−z(i))) +
∑
i

(1− y(i))z(i) +
∑
i

(1− y(i)) log(1 + exp(−z(i)))

=
∑
i

log(1 + exp(−z(i))) +
∑
i

(1− y(i))z(i)

Now it’s easy to take derivatives

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

L(w) =
∑
i

(1− y(i))z(i) +
∑
i

log(1 + exp(−z(i)))

Now it’s easy to take derivatives

Remember z = wTx⇒ ∂z
∂wj

= xj

∂`

∂wj
=
∂`

∂z
· ∂z
∂wj

=
∑
i

x
(i)
j

(
1−y(i)− exp(−z(i))

1 + exp(−z(i))

)
=
∑
i

x
(i)
j

(1

1 + exp(−z(i))
−y(i)

)

What’s x
(i)
j ? The j−th dimension of the i−th training example x(i)

And simplifying
∂`

∂wj
=
∑
i

x
(i)
j

(
p(y = 1|x(i);w)− y(i)

)

Don’t get confused with indices: j for the weight that we are updating and i for the
training example

CSC411-Lec4

Logistic regression Regularization Validation

Optimization

Putting it all together (plugging the update into gradient descent): Gradient
descent for logistic regression:

w
(t+1)
j ← w

(t)
j − λ

∑
i

x
(i)
j

(
p(y = 1|x(i);w)− y(i)

)
where:

p(y = 1|x(i);w) =
1

1 + exp (−wTx)

This is all there is to learning in logistic regression. Simple, huh?

CSC411-Lec4

Logistic regression Regularization Validation

Non-probabilistic perspective

We are optimizing
∑

i(1− y(i))z(i) +
∑

i log(1 + exp(−z(i))).

We can forget the probabilistic interpretation and just think about a surrogate
loss function

`(y, ŷ) = (1− y)ŷ + log(1 + exp(−ŷ)) =

{
log(1 + exp(−ŷ)), y = 1,

log(1 + exp(ŷ)), y = 0,

It is convex, so gradient descent converges to global minimum.

CSC411-Lec4

Logistic regression Regularization Validation

Non-probabilistic perspective

Logistic Regression vs Least Squares Regression:

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts away
from outliers)

logistic
regression

least squares
regression

33

CSC411-Lec4

Logistic regression Regularization Validation

Prior

Regularization:

We can also look at

p(w|{y}, {x}) ∝ p({y}|{x},w) p(w)

with {y} = (y(1), · · · , y(N)), and {x} = (x(1), · · · ,x(N))

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

max
w

log

[
p(w)

∏
i

p(y(i)|x(i),w)

]

This is called maximum-a-posteriori estimation (MAP)?

What’s p(w)?

CSC411-Lec4

Logistic regression Regularization Validation

Prior

For example, define prior: normal distribution, zero mean and identity covariance
p(w) ∝ N (0, α−1I) (best to exclude w0)

This prior pushes parameters towards zero (why is this a good idea?)

Equivalent to L2 regularization

Including this prior the new gradient is

w
(t+1)
j ← w

(t)
j − λ

∂L(w)

∂wj
− λαw(t)

j

where t here refers to iteration of the gradient descent

The parameter α is the importance of the regularization, and it’s a hyper-parameter

How do we decide the best value of α (or a hyper-parameter in general)?

CSC411-Lec4

Logistic regression Regularization Validation

Example

MNIST digit data-set: 60, 000 training 28× 28 digit images, 10, 000 test images.
Need to classify as 0-9.

Only take zero and ones - binary classification.

CSC411-Lec4

Logistic regression Regularization Validation

Example

Train logistic regression with various regularization parameters-

CSC411-Lec4

Logistic regression Regularization Validation

Example

How do the classifiers look?

(doesn’t overfit that much, still great on test)

CSC411-Lec4

Logistic regression Regularization Validation

Validation set

Tuning hyper-parameters:

Never use test data for tuning the hyper-parameters

We can divide the set of training examples into two disjoint sets: training and
validation.

Use the first set (i.e., training) to estimate the weights w for different values of α.

Use the second set (i.e., validation) to estimate the best α, by evaluating how well
the classifier does on this second set.

This tests how well it generalizes to unseen data.

Trade-off: Large validation set → less training data to use.

Trade-off: Small validation set → less accurate estimation.

Can overfit on the validation set!

CSC411-Lec4

Logistic regression Regularization Validation

Cross-validation

Leave-p-out cross-validation:

We use p observations as the validation set and the remaining observations as
the training set.
This is repeated on all ways to cut the original training set.
It requires

(
n
p

)
for a set of n examples

Leave-1-out cross-validation: When p = 1, does not have this problem

k-fold cross-validation:

The training set is randomly partitioned into k equal size subsamples.
Of the k subsamples, a single subsample is retained as the validation data for
testing the model, and the remaining k − 1 subsamples are used as training
data.
The cross-validation process is then repeated k times (the folds).
The k results from the folds can then be averaged (or otherwise combined) to
produce a single estimate

CSC411-Lec4

Logistic regression Regularization Validation

Cross-validation

Train your model:

Leave-one-out cross-validation:
k-fold cross-validation:

CSC411-Lec4

Logistic regression Regularization Validation

Cross-validation

Logistic Regression wrap-up

Pros:

Probabilistic view of class predictions

Quick to train, convex loss

Fast at classification

Good accuracy for many simple data sets

Resistant to overfitting (Rule of thumb: #data >= 10 ·#features)

Can interpret model coefficients as indicators of feature importance

Cons:

Linear decision boundary (too simple for more complex problems?)

Very simple model of the conditional probabilities

CSC411-Lec4

	Logistic regression
	Sigmoid
	Optimization
	Non-probabilistic perspective

	Regularization
	Prior
	Example

	Validation
	Validation set
	Cross-validation

