CSC 411: Lecture 3 - Linear Classification

Ethan Fetaya, James Lucas and Emad Andrews

This lecture:

m Linear classification (binary).

m First order optimization.

m Key concepts:
m Decision boundaries.
m Loss functions.
m metrics to evaluate classification.
m Stochastic gradient descent.

inea,
@000

Decision boundaries

Last week: Mapping x € R into y € R.

This week: Mapping x € R? into categorical y (in a finite set S).
Usually use S = {1,..,k}, S={0,1} or S = {—1,1} (our focus now).
Linear model: § = f(x,w) = w’x outputs a real score.
How do we turn it into a binary decision? Threshold -
1 ifwlix>0
A~ . T -
= X,W = S1gn({w- X) =
h=1) n() -1 ifwlx<0

Decision boundary is the hyperspace defined by w.

Decision boundaries

wlx =0 is a hyperplane (line in d = 2) passing though the origin and

orthogonal to w. w’x + wqy = 0 shifts it by wy.

wo + wlx =0

Figure from G. Shakhnarovich

Decision boundary is invariant to scaling.

Decision boundaries

If we can separate the classes by a hyperplane, the problem is linearly
separable

Causes of non perfect separation:

m Model is too simple.

m Noise (optimal classifier might not be perfect).

m Errors in data targets (miss labelings).

m Simple features that do not account for all variations.
m Need different feature parametrization.

X,Y coordinates Polar coordinates

Should we make the model complex enough to have perfect separation
in the training data?

Decision boundaries

Learning consists of finding a good decision boundary.
We need to find w (direction) and wyp (location) of the boundary.

What does ”good” mean? Is this boundary good?

We need a criteria that tell us how to select the parameters.

@00

Losses

1 if 1
A natural loss function: zero-one loss. £o—1(9,y) =) y7 Z{

0 ify=yg
Is this minimization easy to do? Why?

Asymmetric Binary Loss: Should we treat both types of mistakes
a ify=0Ag=1

equally? Lapr(9,y) =46 ify=1A§=0
0 ify=yg

When is this important?

Goal: Optimizing fy—1 (or £apr).

Problem: (NP)hard, piecewise constant.
Approach: use a surrogate loss 7 to optimize instead.

What makes a good surrogate loss?
m Easy to optimize

m (Piecewise) Smooth.
m Convex.

m Representative - low surrogate loss means low original loss.
= Upper bound ¥yv§((y, 9) < {(y.9).

Linear Classification

Metrics

How to evaluate how good my classifier is? Metrics

m Metrics on a dataset is what we care about (performance).

m We typically cannot directly optimize for the metrics.

m Our loss function should reflect the problem we are solving. We
then hope it will yield models that will do well on our dataset.

Metrics

Accuracy: Percent of correct predictions, 1 — fy_1(w).
Is it a good measure? Data balanced? Unbalanced?
Recall: The fraction of relevant instances that are retrieved.

R=

TFN al groundtruth instances

Precision: The fraction of retrieved instances that are correct.

P = =
+ FP all positive predictions

F1 score: Harmonic mean of precision and recall.

1ol R

P+ R

Metrics

Precision-Recall curve: Trade-off between recall and precision using the
decision threshold.

L — precision=recall

— precision

Precision
o
o

049 05
Recall

Average Precision (AP): area under the curve.

We might be interest in a single working point (recall or precision).

Metrics

Receiver Operator Characteristic (ROC): Trade-off between
false-positive-rate (FPR) and true-positive-rate (TPR) using the
decision threshold.

1 1
Algorithm 1
Algorithm 2 e
3 0.8 0.8
]
& hey
g 0.6 & 0.6
2 o
i}
b i
a b
2 o0.q 504
@
1
.
e 0.2 0.2 N
Algorithm 1 ——
Algezithm 2 e
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate Recall
(a) Comparison in ROC space (b) Comparison in PR space

Better in ROC = better in PR (not always vice-versa).

Difference can be big with unbalanced data

'Figure from ” The Relationship Between Precision-Recall and ROC Curves”

Optimization
[Je]

Gradient descent

Once we decide on a (smooth) loss ¢ - how do we find
w = argmin L(w) = 3 S, Uy, f(zi, w))?

One straightforward method: gradient descent

m initialize wo (e.g., randomly)

m repeatedly update w based on the
gradient

Wiyl = Wi —)\tva(Wt)

A is the learning rate.

Optimization
oe

Gradient descent

Update rule: w1 = wy — AV L(wy)

Finding a good learning rate is very important.

m Too large \: unstable and can diverge. Gradient Descent

m Too low A: stable but very slow progress. sigleamingrate smalllearning rate
m Line search methods - usually too slow. ‘
m Standard to decay A as learning

progresses. '

Commonly found using simple grid search, some automatic tools exist.

Tmage credit: https://www.slideshare.net/simaokasonse/learning-deep-learning.

Optimization

0

What is the computational cost of computing Vy, L(wy)?

L(w) =% Zf;l L(yi, f(zi,w)) - grows linearly in N (number of data
points).

Huge (millions/billions) dataset = large cost for a tiny update!
Solution: Stochastic gradient descent. Instead of computing gradient

9t = VwL(wy) = % Zfil Ve(yi, f(z;,w)), pick random datum j and
compute G = VL(y;, f(z;, w))

Will it work? Theoretically - yes (with the right learning rate decay).
Practically - very noisy.

Optimization

(o] J

Better solution: Mini-batch. Middle-ground, average 1 < m << N gradients.

Mean is still g; but variance is lower. Trade-off between accuracy (big batch)
and runtime (small batch).

Algorithm 1 Mini-batch gradient descent epoch

1: Randomly shuffle examples in the training set
2: for i =0 to N/m do

3: Update:
W W+ 1 mz_:l VO(y™ I f (2™ w))
m =
4: end for

This simple idea is a important component behind a lot of recent success.

People commonly use the term SGD for mini-batch optimization.

	Linear Classification
	Decision boundaries
	Losses
	Metrics

	Optimization
	Gradient descent
	SGD

