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Hypothesis set

Talking about supervised learning and binary classification.

Data (x, t) is distributed according to an unknown distribution D

We want to return a function h that minimizes expected loss (risk)
LD(h) = ED[`(h(x), t)]

Cannot minimize the risk as D is unknown, so we can minimize the
empirical risk LNS (h) = 1

N

∑N
i=1 `(h(x(i)), t(i))

Minimizing over all functions cannot work so we restrict to a subset
hypothesis set

I Linear classifiers
I Neural networks (fixed architecture)
I etc.

Main goal: Define complexity of H and use it to say if H is learnable and
how many examples do we need.

I Learnable means we can find the best function in the hypothesis space
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PAC learning

We are given m samples {(xi , yi )}mi=1 ∼ Dm and a hypothesis space H and
we wish to return h ∈ H minimizing LD(h) = E[`(h(x), y)].

Problem 1: Cannot find the exact minimizer after seeing only a sample of
the data ( or even if we had perfect knowledge). Can only expect an
approximate solution: LD(h) ≤ min

h∈H
LD(h) + ε

Problem 2: We depend on a random sample. There is always a chance we
get a bad sample that doesn’t represent D. Our algorithm can only be
probably correct: there is always some probability δ that we are
completely wrong.

We wish to find a probably approximately correct (PAC) hypothesis.
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PAC learning

Definition (PAC learnable)

A hypothesis class H is PAC learnable, if there exists a learning algorithm A,
satisfying that for any ε > 0 and δ ∈ (0, 1) there exist M(ε, δ) = poly( 1

ε ,
1
δ ) such

that for i.i.d samples Sm = {(xi , yi )}mi=1 drawn from any distribution D and
m ≥M(ε, δ) the algorithm returns a hypothesis A(Sm) ∈ H satisfying

PSm∼Dm(LD(A(S)) > min
h∈H

LD(h) + ε) < δ

If you have enough samples you can guarantee a probably approximately
correct answer.

I There is a number of samples needed doesn’t depend on D.

Next will show that if LS(h) ≈ LD(h) for all h then the empirical risk
minimization (ERM) is a PAC learning algorithm.
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Uniform Convergence

Definition (Uniform convergence)

A hypothesis class H has the uniform convergence property, if for any ε > 0 and
δ ∈ (0, 1) there exist M(ε, δ) = poly( 1

ε ,
1
δ ) such that for any distribution D and

m ≥M(ε, δ) i.i.d samples Sm = {(xi , yi )}mi=1 ∼ Dm with probability at least
1− δ, |LmS (h)− LD(h)| < ε for all h ∈ H.

For a single h, law of large numbers says LmS (h)
m→∞→ LD(h)

For loss bounded by 1 the Hoeffding inequality states

P(|LmS (h)− LD(h)| > ε) ≤ 2e−2ε
2m

The difficulty is to bound all the h ∈ H uniformly.
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PAC by uniform convergence

Theorem (PAC by uniform convergence)

If H has the uniform convergence with M(ε, δ) then H is PAC learnable with the
ERM algorithm and M( ε2 , δ) samples.

Proof.
By uniform convergence: With probability at least 1− δ for all h ∈ H,
|LS(h)− LD(h)| ≤ ε

2 .

Define hERM = arg min
h∈H

LS(h) and h∗ = arg min
h∈H

LD(h).

LD(hERM) ≤ LS(hERM) + ε
2 ≤ LS(h∗) + ε

2 ≤ LD(h∗) + ε

This shows it is sufficient to show uniform convergence.

For binary classification it is necessary as well, not true more generally.
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Finite hypothesis space

A first simple example of PAC learnable spaces - finite hypothesis spaces.

Theorem (uniform convergence for finite H)

Let H be a finite hypothesis space and ` : Y × Y → [0, 1] be a bounded loss

function, then H has the uniform convergence property with M(ε, δ) =
ln( 2|H|

δ )
2ε2

and is therefore PAC learnable by the ERM algorithm.

Proof .

For any h ∈ H, `(h(x1), y1), ..., `(h(xm), ym) are i.i.d random variables with
expected value LD(h).

According to the Hoeffding inequality,

P(|LS(h)− LD(h)| > ε) ≤ 2e−2ε
2m ≤ 2e−2ε

2M(ε,δ) =
δ

|H|
(1)
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Proof (Cont.)

We can now use the union bound: For all events A1, ...,An

P(∪ni=1Ai ) ≤
n∑

i=1

P(Ai ) (2)

For all h ∈ H define Ah as the event that |LS(h)− LD(h)| > ε. By
equation 1 we know that P(Ah) ≤ δ

|H| . With equation 2 we can conclude

P(∃h ∈ H : |LS(h)− LD(h)| > ε) = P(∪h∈HAh) ≤
∑
h∈H

P(Ah)

≤
∑
h∈H

δ

|H|
= δ
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Infinite hypothesis sets

We have seen that finite hypothesis class can be learned, but what about
infinite ones like linear predictors?

We can discretize (after all we are working on a finite precision machines),
but this is not a great solution.

I If we move from float to double does generalization changes?
I The union bound is very suboptimal as similar hypothesis will fail on

similar samples

The solution is the check how many effective hypothesis there are on a
sample of size m

We will restrict ourselves to binary classification with 0− 1 loss.
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Growth function

Definition

Let H be a set of function from X to {±1} and let C ⊂ X be a subset of
the input space. We denote by H|C all the function that can be derived
by restricting functions in H to C .

H|C = {h|C : C → {±1} : h ∈ H}

Definition (Growth function)

The growth function of H, ΠH(m) is the size of the largest restriction of
H to a set of size m.

ΠH(m) = max{|H|C | : C ⊂ X , |C | = m}

ΠH measures the maximum number of ways to label your inputs
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Growth function - Examples

Notice that ΠH(m) ≤ 2m.

1. H = 2X for infinite X , ΠH(m) = 2m.

2. For finite H, ΠH(m) ≤ |H|

3. For H = {ha(x) = sign(x − a), a ∈ R}, ΠH(m) = m + 1.

4. For H = {h±a (x) = sign(±x − a), a ∈ R}, ΠH(m) = 2m.

As we can see, even for an infinite hypothesis set it is possible that
ΠH(m)� 2m.
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Uniform Convergence Bound

We can now state the main theorem that shows the importance of the
growth function.

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the 0− 1
loss, then for any distribution D on X × {±1}, any ε > 0 and positive
integer m, we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)
Immediate corollary - if ΠH(m) grows sub-exponentially then H is PAC
learnable.
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Proof sketch

This is not a simple proof, we will just go over the main idea.

We will discretize and use the union bound + Hoeffding inequality.

The trick is to have the ”right” discretization.

We want to look only at ΠH(m) classifiers but it isn’t that straightforward

I The test loss depends on infinite number of data-points
I H|C on the training input x1, ..., xN .

We start by showing the we can replace LD by LS̃ - the error on another m
independent ”test” samples.

The next step to show you can fix the samples, and look at the probability
of permuting between the train and test sets.

Then we can use the union bound and Hoeffding on this reduced case.
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VC dimension

In order to prove uniform convergence, and therefore PAC learnability, it is
enough to show that the growth function is sub-exponential.

As we will see, the behavior ΠH(m) is greatly controlled by a single
parameter - the VC dimension.

Definition (Shattering)

Let H be a set of functions from X to Y = {±1}. We say that H shatters
C ⊂ X if H|C = 2C .

Definition (VC-dimension)

Let H be a set of functions from X to Y = {±1}. The VC-dimension of H is
the size of the largest finite set that H shatters (or ∞ if there is no maximum).

So VC (H) = d ⇔ ΠH(d) = 2d ∧ ΠH(d + 1) < 2d+1
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VC dimension examples

1. H = 2X for infinite X , ΠH(m) = 2m Therefore VC (H) =∞.

2. For finite H, ΠH(m) ≤ |H| ⇒ VC (H) ≤ log2(|H|)

3. For H = {ha(x) = sign(x − a), a ∈ R}, ΠH(m) = m + 1⇒ VC (H) = 1.

4. For H = {h±a (x) = sign(±x − a), a ∈ R}, ΠH(m) = 2m⇒ VC (H) = 2.

5. The class of axis aligned rectangles
h(x1,x2,y1,y2)(x , y) := 1⇔ x1 < x < x2 ∧ y1 < y < y2 for x1 < x2, y1 < y2.

I It is easy to find a 4 element set that H shatters. To show VC (H) = 4,
we need to show it cannot shatter any set of five elements.

I This can be done by observing that one point is always in the convex
hall of the other points that cannot get zero if all others are one.

6. The class of convex sets in the plane hC (x , y) := 1⇔ (x , y) ∈ C for a
convex set C ⊂ R2. We can see that VC (H) =∞ by arranging points on
the circle.
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VC of linear classifiers

What is the VC dimension of linear classifiers:
Hd = {hw (x) = sign(〈w , x〉) : w ∈ Rd}?
To show that VC(Hd) = d it is enough to prove the following lemma:

Lemma

The vectors x1, ..., xk ∈ Rd are shattered by Hd if and only if they are linearly
independent.

Proof.
⇒ assume by contradiction that they are linearly dependent, so there exist some j such

that xj =
j−1∑
i=1

αixi . Any labeling yi such that αiyi ≥ 0 has to have yj = 1, therefore the

set is not shattered - a contradiction.

⇐ Let X be the matrix with rows xT
i , then the vector of labels given by any w is just

sign(X · w). Our assumptions means that X has rank k and is therefore an onto
mapping, and the set is shattered.

This shows that the VC dimension and the algebraic dimension are the same.
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Bounding the growth function

The next step is bounding ΠH(m) using the VC dimension.

Theorem (Sauer Shelah )

Let H be a set of functions from X to Y = {±1} with VC-dimension d <∞,

then ΠH(m) ≤
d∑

k=1

(
m
k

)
Notice that S(m, d) =

d∑
k=0

(
m
k

)
is the number of subset of size smaller or equal to

d of a set of size m.

Proof.

We will show a stronger claim |H|C | ≤ |{B ⊂ C : H shatters B }| ≤
d∑

k=0

(
m
k

)
.

This is done by induction on m. For m = 1 the claim is trivial.
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Sauer-Shelah Proof

Proof (Cont.)

Let C = {x1, ..., xm+1} and C̃ = {x1, ..., xm}. Each function of H|C̃ corresponds
to either one function in H|C if it has a unique extension, or to two function if
both extensions are possible.

Define F ⊂ H|C̃ as all the function that correspond to two functions in H|C , then
|H|C | = |H|C̃ |+ |F|.

From our induction hypothesis
|H|C̃ | ≤ |{B ⊂ C̃ : H shatters B }| = |{B ⊂ C : H shatters B ∧ xm+1 /∈ B}|.

For F : |F| ≤ |{B ⊂ C̃ : F shatters B }|. For each such B shattered by F ,
B ∪ {xm+1} is shattered by H, so
|F| ≤ |{B ⊂ C : H shatters B ∧ xm+1 ∈ B}|.

Can simplify the bound ΠH(m) ≤
(
em
d

)d
= O(md).
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PAC Learnability

We can combine all our results to show that if H has VC-dimension d <∞
then it is PAC learnable

Theorem (PAC learnability of finite VC-dimension)

Let H be a set of functions from X to Y = {±1} with VC-dimension d <∞,

then H has the uniform convergence property with M(ε, δ) = O
(

d ln( 1
ε )+ln( 1

δ )

ε2

)
and is therefore PAC learnable with the ERM algorithm.

One can get (with some extra effort) a better bound without the ln( 1
ε )

factor.

Can show the bound (without the ln( 1
ε ) factor) is tight.

Number of samples needed scales linearly with the dimension.
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Proof

Proof (sketch).

To prove uniform convergence we need to show that

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ δ ∀m ≥M(ε, δ)

We already showed that

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)
Using the inequality ΠH(m) ≤

(
em
d

)d
and the inequality

∀α, x > 0 : ln(x) ≤ αx − ln(α), we can show (with some algebra) that

4ΠH(2m) exp
(
− ε2m

8

)
≤ δ.
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No Free Lunch

We have seen when ML can do, what can’t it do?

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification with respect
to the 0− 1 loss over a domain X . Let m be any number smaller than |X |/2,
representing a training set size. Then, there exists a distribution D over
X × {0, 1} such that:

1) There exists a function f : X → {0, 1} such that LD(f ) = 0.
2) With probability at least 1/7 over the choice of S ∼ Dm we have that
LD(A(S)) ≥ 1/8.

Main concept - Generalizing is extrapolating to new data. To do that you need to
make assumptions and for problems where the assumptions don’t hold you will be
suboptimal. (skipping proof)
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Infinite VC dimension

We will use the No-Free-Lunch theorem to show that any H with infinite
VC dimension is not PAC learnable.

Theorem

Let H be a hypothesis class of functions from a domain X to {0, 1} with
VC (H) =∞ and let the loss function be the 0− 1 loss. The hypothesis
class H is not PAC learnable.

Proof.

Assume by contradiction that H is PAC learnable. Then there exists
some learning algorithm A (not necessarily ERM) such that for all ε, δ > 0
there exists M(ε, δ) such that if m >M(ε, δ) then for all distributions D,
PS∼Dm(LD(A(S)) > LD(h∗) + ε) < δ where h∗ = arg minh∈H LD(h)
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Proof.

Assume by contradiction that such algorithm exists. Pick some
ε < 1/8, δ < 1/7 and m >M(ε, δ). Since VC (H) =∞ there exists
some x1, ..., x2m ∈ X that H shatters.

From the No-Free-Lunch theorem there is a distribution D on x1, ..., x2m
(and labels) such that: There exists some f : X → {0, 1} with LD(f ) = 0
and PS∼Dm(LD(A(S)) > 1/8) > 1/7.

Since the distribution is supported only by {x1, ..., x2m} and this set is
shattered by H, this means that LD(h∗) = 0.

This finishes the proof as PS∼Dm(LD(A(S)) > LD(h∗) + ε) ≥
PS∼Dm(LD(A(S)) > 1/8) > 1/7 > δ.
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Fundamental Theorem of Statistical Learning

We can combine everything we did so far and get the fundamental
theorem of statistical learning (binary classification):

Theorem (Fundamental Theorem of Statistical Learning)

Let H be a hypothesis class of functions from a domain X to {0, 1} and let
the loss function be the 0− 1 loss. The following are equivalent:

1. H has uniform convergence.

2. The ERM is a PAC learning algorithm for H.

3. H is PAC learnable.

4. H has finite VC dimension.
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Proof.

1⇒ 2 We have seen uniform convergence implies that ERM is PAC
learnable in lecture 2.

2⇒ 3 Obvious.

3⇒ 4 We just proved that PAC learnability implies finite VC dimension.

4⇒ 1 We proved that finite VC dimension implies uniform convergence.
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Recap

We define the PAC learning theoretical framework.

We have seen that the VC dimension fully determines learnability for
binary classification

The VC dimension doesn’t just determine learnability, it also gives a
bound on the sample complexity (which can be shown to be tight).

Can extend to regression/multiclass classification but theory isn’t as
simple.

Recent advances in neural network pose a serious challenge to ML
theory as the performence is much better then the theoretical bounds
predict.
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