CSC 411 Lecture 21-22: Reinforcement learning

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto
Today

- Learn to play games
- Reinforcement Learning
Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A
Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE
Reinforcement Learning Resources

 Book (2016)

- Video lectures by David Silver
Learning algorithms differ in the information available to learner

- **Supervised**: correct outputs
- **Unsupervised**: no feedback, must construct measure of good output
- **Reinforcement learning**: Reward.

More realistic learning scenario:

- Continuous stream of input information, and actions
- Effects of action depend on state of the world
- Obtain reward that depends on world state and actions
 - You know the reward for your action, not other actions.
 - Could be a delay between action and reward.
Reinforcement Learning

[pic from: Peter Abbeel]
Example: Tic Tac Toe, Notation

environment
Example: Tic Tac Toe, Notation

(c)urrent
state
Example: Tic Tac Toe, Notation

\[
\begin{array}{ccc}
 O & X & O \\
 O & X & O \\
 X & O & X \\
\end{array}
\]

action
Example: Tic Tac Toe, Notation

reward
(Here: -1)
Formulating Reinforcement Learning

- World described by a set of states and actions
- At every time step t, we are in a state s_t, and we:
 - Take an action a_t (possibly null action)
 - Receive some reward r_{t+1}
 - Move into a new state s_{t+1}
- An RL agent may include one or more of these components:
 - Policy π: agent’s behaviour function
 - Value function: how good is each state and/or action
 - Model: agent’s representation of the environment
A policy is the agent’s behaviour.

It’s a selection of which action to take, based on the current state.

Deterministic policy: \(a = \pi(s) \)

Stochastic policy: \(\pi(a|s) = P[a_t = a|s_t = s] \)

[Slide credit: D. Silver]
Value Function

- **Value function** is the expected future reward
- Used to evaluate the goodness/badness of states
- Our aim will be to maximize the value function (the total reward we receive over time): find the policy with the highest expected reward
- By following a policy π, the value function is defined as:

$$V^\pi(s_t) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$$

- γ is called a **discount rate**, and it is always $0 \leq \gamma \leq 1$
- If γ close to 1, rewards further in the future count more, and we say that the agent is “farsighted”
- γ is less than 1 because there is usually a time limit to the sequence of actions needed to solve a task (we prefer rewards sooner rather than later)

[Slide credit: D. Silver]
Model

- The model describes the environment by a distribution over rewards and state transitions:
 \[P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a) \]

- We assume the Markov property: the future depends on the past only through the current state.
Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent’s location

[Slide credit: D. Silver]
Arrows represent policy $\pi(s)$ for each state s
Maze Example

Numbers represent value $V^\pi(s)$ of each state s

[Slide credit: D. Silver]
Consider the game tic-tac-toe:

- **reward**: win/lose/tie the game (+1/ − 1/0) [only at final move in given game]
- **state**: positions of X’s and O’s on the board
- **policy**: mapping from states to actions
 - based on rules of game: choice of one open position
- **value function**: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, can use a table to represent value function.
• Each board position (taking into account symmetry) has some probability

<table>
<thead>
<tr>
<th>State</th>
<th>Probability of a win (Computer plays “o”)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>x o</td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>o o</td>
<td>0.5</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x o o</td>
<td>1.0</td>
</tr>
<tr>
<td>x o</td>
<td>0.0</td>
</tr>
<tr>
<td>o x o</td>
<td></td>
</tr>
<tr>
<td>x o</td>
<td>0.5</td>
</tr>
<tr>
<td>etc</td>
<td></td>
</tr>
</tbody>
</table>

• Simple learning process:
 ▶ start with all values = 0.5
 ▶ policy: choose move with highest probability of winning given current legal moves from current state
 ▶ update entries in table based on outcome of each game
 ▶ After many games value function will represent true probability of winning from each state

• Can try alternative policy: sometimes select moves randomly (exploration)
Markov Decision Problem (MDP): tuple \((S, A, P, \gamma)\) where \(P\) is

\[
P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)
\]

Main assumption: Markovian dynamics and reward.

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return

[Pic: P. Abbeel]
Basic Problems

- **Markov Decision Problem (MDP):** tuple (S, A, P, γ) where P is

 \[P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a) \]

- **Standard MDP problems:**
 1. **Planning:** given complete Markov decision problem as input, compute policy with optimal expected return
 2. **Learning:** We don’t know which states are good or what the actions do. We must try out the actions and states to learn what to do

[P. Abbeel]
1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return

2. **Learning**: Only have access to experience in the MDP, learn a near-optimal strategy
Example of Standard MDP Problem

1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return

2. **Learning**: Only have access to experience in the MDP, learn a near-optimal strategy

We will focus on learning, but discuss planning along the way
Exploration vs. Exploitation

- If we knew how the world works (embodied in P), then the policy should be deterministic
 - just select optimal action in each state
- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment
- Without losing too much reward along the way
- Since we do not have complete knowledge of the world, taking what appears to be the optimal action may prevent us from finding better states/actions
- Interesting trade-off:
 - immediate reward (exploitation) vs. gaining knowledge that might enable higher future reward (exploration)
Examples

- **Restaurant Selection**
 - **Exploitation**: Go to your favourite restaurant
 - **Exploration**: Try a new restaurant

- **Online Banner Advertisements**
 - **Exploitation**: Show the most successful advert
 - **Exploration**: Show a different advert

- **Oil Drilling**
 - **Exploitation**: Drill at the best known location
 - **Exploration**: Drill at a new location

- **Game Playing**
 - **Exploitation**: Play the move you believe is best
 - **Exploration**: Play an experimental move

[Slide credit: D. Silver]
The value function $V^\pi(s)$ assigns each state the expected reward

$$V^\pi(s) = \mathbb{E}_{a_t, a_{t+i}, s_{t+i}} \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} | s_t = s \right]$$

Usually not informative enough to make decisions.

The Q-value $Q^\pi(s, a)$ is the expected reward of taking action a in state s and then continuing according to π.

$$Q^\pi(s, a) = \mathbb{E}_{a_{t+i}, s_{t+i}} \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} | s_t = s, a_t = a \right]$$
Bellman equations

The foundation of many RL algorithms

\[V^\pi(s) = \mathbb{E}_{a_t, a_{t+i}, s_{t+i}} \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \mid s_t = s \right] \]

\[= \mathbb{E}_{a_t} [r_t \mid s_t = s] + \gamma \mathbb{E}_{a_t, a_{t+i}, s_{t+i}} \left[\sum_{i=1}^{\infty} \gamma^i r_{t+i+1} \mid s_t = s \right] \]

\[= \mathbb{E}_{a_t} [r_t \mid s_t = s] + \gamma \mathbb{E}_{s_{t+1}} [V^\pi(s_{t+1}) \mid s_t = s] \]

\[= \sum_{a,r} P^\pi(a \mid s_t)p(r \mid a, s_t) \cdot r + \gamma \sum_{a,s'} P^\pi(a \mid s_t)p(s' \mid a, s_t) \cdot V^\pi(s') \]

Similar equation holds for \(Q \)

\[Q^\pi(s, a) = \mathbb{E}_{a_{t+i}, s_{t+i}} \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \mid s_t = s, a_t = a \right] \]

\[= \sum_r p(r \mid a, s_t) \cdot r + \gamma \sum_{s'} p(s' \mid a, s_t) \cdot V^\pi(s') \]

\[= \sum_r p(r \mid a, s_t) \cdot r + \gamma \sum_{a', s'} p(s' \mid a, s_t)p(a' \mid s') \cdot Q^\pi(s', a') \]
The Bellman equations are a set of linear equations with a unique solution.

Can solve fast(er) because the linear mapping is a contractive mapping.

This lets you know the quality of each state/action under your policy - policy evaluation.

You can improve by picking $\pi'(s) = \max_a Q^\pi(s, a)$ - policy improvement.

Can show the iterative policy evaluation and improvement converges to the optimal policy.

Are we done? Why isn’t this enough?

- Need to know the model! Usually isn’t known.
- Number of states is usually huge (how many unique states does a chess game have?)
Optimal Bellman equations

- First step is to understand the Bellman equation for the optimal policy \(\pi^* \)
- Under this policy \(V^*(s) = \max_a Q^*(s, a) \)

\[
V^*(s) = \max_a \left[\mathbb{E}[r_{t+1}|s_t = s, a_t = a] + \gamma \mathbb{E}[V^*(s_{t+1})|s_t = s, a_t = a] \right]
\]

\[
= \max_a \left[\sum_r p(r|a, s_t) \cdot r + \gamma \sum_{s'} p(s'|a, s_t) \cdot V^*(s') \right]
\]

\[
Q^*(s, a) = \mathbb{E}[r_{t+1}|s_t = s, a_t = a] + \gamma \mathbb{E}[\max_{a'} Q^*(s_{t+1}, a')|s_t = s, a_t = a]
\]

\[
= \sum_r p(r|a, s_t) \cdot r + \gamma \sum_{s'} p(s'|a, s_t) \cdot \max_{a'} Q^*(s', a')
\]

- Set on nonlinear equations.
- Same issues as before.
Q-learning intuition

- Q-learning is a simple algorithm to find the optimal policy without knowing the model.

- Q^* is the unique solution to the optimal Bellman equation.

\[
Q^*(s, a) = \mathbb{E}[r_{t+1} | s_t = s, a_t = a] + \gamma \mathbb{E}_{s_{t+1}} \left[\max_{a'} Q^*(s_{t+1}, a') | s_t = s, a_t = a \right]
\]

- We don’t know the model and don’t want to update all states simultaneously.

- Solution - given sample $s_t, a_t, r_{t+1}, s_{t+1}$ from the environment update your Q-values so they are closer to satisfying the bellman equation.

 - off-policy method: Samples don’t have to be from the optimal policy.

- Samples need to be diverse enough to see everything - exploration.
Given Q-value the best thing we can do (given our limited knowledge) is to take $a = \arg \max_{a'} Q(s, a')$ - exploitation

How do we balance exploration with exploitation?

Simplest solution: ϵ-greedy.

- With probability $1 - \epsilon$ pick $a = \arg \max_{a'} Q(s, a')$ (i.e. greedy)
- With probability ϵ pick any other action uniformly.

Another idea - softmax using Q values

- With probability $1 - \epsilon$ pick $a = \arg \max_{a'} Q(s, a')$ (i.e. greedy)
- With probability ϵ pick any other action with probability $\propto \exp(\beta Q(s, a))$.

Other fancier solutions exist, many leading methods use simple ϵ-greedy sampling.
Q-learning algorithm

- Can prove convergence to the optimal Q^* under mild conditions.
- Update is equivalent to gradient descent on loss
 $||R + \gamma \max_a Q(S', a) - Q(s, a)||^2$.
- Why L_2 loss? Optimal solution is the mean which is what we are looking for!
Another way to think about Q-learning.

\(Q(s, a) \) is the expected reward, can use Monte-Carlo estimation.

Problem - you update only after the episode ends, can be very long (or infinite).

Q-learning solution - take only 1 step forward and estimate the future using our Q value - **bootstrapping**.

- "learn a guess from a guess"

Q-learning is just one algorithm in a family of algorithms that use this idea.
Function approximation

- Q-learning still scales badly with large state spaces, how many states does a chess game have? Need to save the full table!
- Similar states, e.g. move all chess pieces two steps to the left, are treated as totally different.
- Solution: Instead of Q being a $S \times A$ table it is a parametrized function.

- Looking for function $\hat{Q}(s, a; w) \approx Q^*(s, a)$
 - Linear functions $Q(s, a; w) = w^T \phi(s, a)$.
 - Neural network

- Hopefully can generalize to unseen states.
- Problem: Each change to parameters changes all states/actions - can lead to instability.
- For non-linear Q-learning can diverge.
Deep Q-learning

- We have a function approximator $Q(s, a; \theta)$, standard is neural net but doesn’t have to be.

- What is the objective that we are optimizing?

 We want to minimize $\mathbb{E}_\rho[||R + \gamma \max_{a'} Q(S', a') - Q(s, a)||^2]$

 - ρ is a distribution over states, depends on θ!

- Two terms depend on Q, don’t want to take gradients w.r. to $\gamma \max_a Q(S', a)$

- We want to correct our previous estimation given the new information.

 online Q iteration algorithm:

 1. take some action a_i and observe (s_i, a_i, s'_i, r_i)

 2. $y_i = r(s_i, a_i) + \gamma \max_{a'} Q_\phi(s'_i, a'_i)$

 3. $\phi \leftarrow \phi - \alpha \frac{dQ_\phi}{d\phi}(s_i, a_i)(Q_\phi(s_i, a_i) - y_i)$

 Figure: Take from:rll.berkeley.edu/deeprlcourse

- This simple approach doesn’t work well as is.
Issues and solutions

- **Problem**: data in the minibatch is highly correlated
 - Consecutive samples are from the same episode and probably similar states.
 - Solution: Replay memory.
 - You store a large memory buffer of previous \((s, a, r, s')\) (notice this is all you need for Q-learning) and sample from it to get diverse minibatch.

- **Problem**: The data distribution keeps changing
 - Since we aren’t optimizing \(y_i\) its like solving a different (but related) least squares each iteration.
 - We can stabilize by fixing a target network for a few iterations

1. take some action \(a_i\) and observe \((s_i, a_i, s'_i, r_i)\), add it to \(B\)
2. sample mini-batch \(\{s_j, a_j, s'_j, r_j\}\) from \(B\) uniformly
3. compute \(y_j = r_j + \gamma \max_{a'_j} Q_{\phi'}(s'_j, a'_j)\) using target network \(Q_{\phi'}\)
4. \(\phi \leftarrow \phi - \alpha \sum_j \frac{dQ_{\phi}}{d\phi}(s_j, a_j)(Q_{\phi}(s_j, a_j) - y_j)\)
5. update \(\phi'\): copy \(\phi\) every \(N\) steps

Figure: Take from: rll.berkeley.edu/deeprlcourse
Example: DQN on atari

- Trained a NN from scratch on atari games

- Ablation study

<table>
<thead>
<tr>
<th>Game</th>
<th>Replay Fixed-Q</th>
<th>Replay Q-learning</th>
<th>No replay Fixed-Q</th>
<th>No replay Q-learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakout</td>
<td>316.81</td>
<td>240.73</td>
<td>10.16</td>
<td>3.17</td>
</tr>
<tr>
<td>Enduro</td>
<td>1006.3</td>
<td>831.25</td>
<td>141.89</td>
<td>29.1</td>
</tr>
<tr>
<td>River Raid</td>
<td>7446.62</td>
<td>4102.81</td>
<td>2867.66</td>
<td>1453.02</td>
</tr>
<tr>
<td>Seaquest</td>
<td>2894.4</td>
<td>822.55</td>
<td>1003</td>
<td>275.81</td>
</tr>
<tr>
<td>Space Invaders</td>
<td>1088.94</td>
<td>826.33</td>
<td>373.22</td>
<td>301.99</td>
</tr>
</tbody>
</table>
RL recap

- Learning from experience not from labeled examples.

- Why is RL hard?
 - Limited feedback.
 - Delayed rewards.
 - Your model effect what you see.
 - Huge state space.

- Usually solved by learning the value function or optimizing the policy (not covered)

- Model based method but less successful at the moment.

- How do you define the rewards? Can be trick.
 - Bad rewards can lead to reward hacking
Q-Learning recap

- Try to find Q that satisfies the optimal Bellman conditions
- **Off-policy** algorithm - Doesn’t have to follow a greedy policy to evaluate it.
- **Model free** algorithm - Doesn’t have any model for instantaneous reward or dynamics.
- Learns a separate value for each s, a pair - doesn’t scale up to huge state spaces.
- Can scale using a function approximation
 - No more theoretical guarantees.
 - Can diverge.
 - Some simple tricks help a lot.